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Abstract: With pronounced differences in emission factors among vehicle types and marked spa-
tiotemporal heterogeneity of vehicle fleet composition, extrapolating fleet composition from insuffi-
cient sample hour periods and road segments will introduce significant uncertainty in calculating
regional daily road traffic emissions. We proposed a framework to manage uncertainty in urban road
traffic emissions associated with vehicle fleet composition from the perspective of spatiotemporal
sampling coverage. Initially, the respective relationships of the temporal and spatial sampling cover-
ages of fleet composition with the resulting regional daily road traffic emission uncertainties were
determined, using the core area of a typical small and medium-sized city in China with the widely-
used International Vehicle Emissions (IVE) model as example. Subsequently, function models were
developed to explore the determination of the spatiotemporal sampling coverage of fleet composition.
These results of emission uncertainties and function models implied that gases with larger emission
factor discrepancies between vehicle types, such as NOx, required greater spatiotemporal sampling
coverage than gases with smaller discrepancies, such as CO2, under the same uncertainties target.
Therefore, sampling efforts should be prioritized for gases with larger emission factor discrepancies.
Additionally, increasing sampling coverage in one dimension (either spatial or temporal) can reduce
the minimum required coverage in the other dimension. To further reduce uncertainty, enhancing
both spatial and temporal sampling coverage of the fleet composition is more effective than enhanc-
ing one type of coverage alone. The framework and results proposed in this work can reduce the
uncertainty of emissions calculations caused by insufficient sampling coverage and contribute to
more accurate transport emission reduction policy formulation.

Keywords: air pollution and climate change; urban road traffic emissions; uncertainty; fleet composition;
sampling coverage

1. Introduction

As a major source of urban air pollution and greenhouse gases, road traffic emis-
sions are a significant consideration when implementing reduction policies for urban
emissions [1–3]. Quantification of urban road traffic emissions with low uncertainty is
fundamental to effective emission reduction policies [4,5]. Due to the high cost of the large-
scale direct monitoring of vehicle exhaust, current research on urban road traffic emissions
primarily uses emission models (such as IVE and MOVES) for emission quantification [6–8].
These models define various vehicle types for which emissions per unit distance can differ
significantly by several or even hundreds of times with parameters such as fuel type, emis-
sion standards, weight, and displacement [9,10]. Moreover, the spatiotemporal dynamic
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characteristics of vehicle travel mean that each type of vehicle exhibits varying travel
distance proportions across different hour periods and road segments [11]. Thus, the differ-
ences in emissions per unit distance and dynamics of vehicle travel may bring significant
uncertainty to the quantification of road traffic emissions [12]. To reduce uncertainty in
quantifying urban road traffic emissions, it is ideal to determine the proportion of the
distance travelled for each vehicle type on the road (i.e., vehicle fleet composition) using
the highest possible spatiotemporal sampling coverage within the specified spatiotemporal
domain, followed by input into emission models for emissions calculations.

Due to the substantial expenses required to gather detailed information on the fleet
composition on roads, previous studies often simplified the process of obtaining such
data, which may bring significant uncertainty to the emission quantification results. Li
et al. [13] assumed that all vehicles in the Nanning urban area were light-duty vehicles
when quantifying traffic emissions. Additionally, many studies have estimated the fleet
composition based on static information from government statistical yearbooks or local
vehicle registration databases [14–16]. However, the fleet composition cannot be expressed
by a single-vehicle type or remains static. Due to the irrationality of these assumptions,
other studies have started to use sampling methods to determine the fleet composition. For
instance, Sun et al. [17] adopted a sampling survey approach, selecting the fleet compo-
sition from a survey of 40 roads as samples to represent the fleet composition for a total
of 536 roads and quantified the NOx emissions for these roads. Meng et al. [18] used
video cameras at 14 intersections to collect 8-h data on fleet composition, extrapolated the
fleet composition across additional roads in the urban area of Chengdu and quantified
the HC, NOx, and CO emissions in the urban area. Li et al. [19] collected data on the fleet
composition for an hour (8:00 am–9:00 am) at 15 road monitoring sites evenly distributed
across Macau and estimated the annual emissions of CO, CO2, PM, NOx, and VOC from
road traffic in Macau. However, the studies above lacked a process for determining the spa-
tiotemporal coverage of fleet composition sampling, which directly affects the uncertainty
of the emission quantification results. To determine the spatiotemporal sampling coverage
needed, it is necessary to first understand the relationship between the spatiotemporal sam-
pling coverage of fleet competition and the resulting uncertainty. Subsequently, according
to the aforementioned relationship and the uncertainty management target, reasonable
spatial and temporal sampling coverages can be determined. Nevertheless, current research
on the aforementioned relationship is lacking; thus, it is difficult to determine reasonable
spatial and temporal sampling coverage of fleet composition.

In response to the aforementioned research gaps in existing studies, this study pro-
posed a framework to manage uncertainty in urban road traffic emissions associated with
vehicle fleet composition from the perspective of spatiotemporal sampling coverage. Ini-
tially, the respective relationships of the temporal and spatial sampling coverages of fleet
composition with the resulting regional daily road traffic emission uncertainties were
determined. Subsequently, based on the aforementioned relationships, function models
were developed to explore the determination of the spatiotemporal sampling coverage of
fleet composition to manage the emissions uncertainty associated with fleet composition.

The analysis in this study utilized the IVE model, which is a traditional emission
quantification model and Xuancheng city, a representative small and medium-sized city, as
an example. The IVE model has been widely used in road traffic emission quantification
research in developing countries [20–22]. Small and medium-sized cities, which constitute a
significant proportion of Chinese cities and often experience rapid economic and emissions
growth, will play an essential role in the construction of green cities in the future [23].

2. Materials and Methods

The overall research framework of this article is shown in Figure 1. (1) Using road
network data, automatic licence plate recognition (ALPR) data, and vehicle registration
data, this study acquired the parameters necessary for emissions calculations, such as
traffic flows, fleet composition, and driving conditions, for each road segment and hour.
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(2) Using the IVE model and Monte Carlo simulation, this study calculated the uncertainties
associated with regional daily road traffic emissions for different spatial or temporal
coverage levels and then analysed the variation patterns in uncertainties. (3) This study
calculated the uncertainties associated with different spatiotemporal coverage combinations
of regional daily road traffic emissions, and constructed a requirement model for the
spatiotemporal sampling coverage of fleet composition for the quantification of regional
daily road traffic emissions.
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Figure 1. Research framework.

2.1. Research Area and Data Sources

In this study, the core urban area of Xuancheng city was selected as the research area
for the following reasons. First, Xuancheng is one of the 27 central cities in the Yangtze River
Delta, a typical small and medium-sized city in China experiencing rapid development
(see Figure S1). Its population in 2018 was 2.64 million. From 2005 to 2018, the per capita
gross regional product (GDP) of Xuancheng grew at an annual rate of 10.5%. Cities of this
size will play an important role in the construction of green cities in the future [24]. Second,
the car ownership per capita in Xuancheng (0.15 vehicles/person) was close to the national
average in China (0.166 vehicles/person) [25]. The fleet composition in the core urban area
of Xuancheng was similar to that in other small and medium-sized Chinese cities, such as
Langfang [26], Yangquan [27], and Foshan [28], with light passenger cars accounting for
more than 85% of the total traffic mileage, while the proportions of heavy passenger cars,
light-duty trucks, and heavy-duty trucks were relatively low at approximately 2%, 5%, and
2%, respectively. Therefore, the fleet composition in Xuancheng is highly representative
of that of other small and medium-sized Chinese cities. Third, the urban core area is
often congested and densely populated, thus increasing the health risks associated with
traffic pollution. Fourth, the central area of Xuancheng was densely equipped with ALPR
detectors, providing data samples with high spatiotemporal sampling coverage for this
study. Through the ALPR detectors, traffic flow and licence plate information for vehicles
on corresponding roads can be obtained, thereby further supporting accurate emissions
and uncertainty quantification.

The road segments covered by ALPR detectors in the study area are shown in Figure 2,
and include 113 monitored road segments categorized into expressways, arterial roads,
and local roads [28], with each category accounting for approximately one-third of the total
road length. The coverage of ALPR detectors on expressways and arterial roads within
the area was nearly 100%. The urban structure of the study area exhibits a typical radial
pattern [29].
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The ALPR dataset in this study comprises approximately 40 million records obtained
from 10 May to 9 June 2018. The types of data collected include the detector location ID,
licence plate number, and detection time of each vehicle passing by a specific detector.
Based on the aforementioned data, the traffic volume on each road segment every hour,
the driving time of each vehicle in each segment, the average driving speed, etc., can be
calculated. An example of the ALPR data is shown in Table 1.

Table 1. Examples of ALPR data.

Record Number Detector Location ID
Licence Plate

Number
(Anonymized)

Detection Time

1 HK-84 964352155 2018/5/8 07:00:05
2 HK-91 964352146 2018/5/8 07:30:55
3 HK-136 964352158 2018/5/8 08:20:50

By correlating ALPR data with licence plate numbers in the Xuancheng vehicle registra-
tion database, we can obtain detailed technical attribute information for vehicles travelling
on each road segment every hour (further explained in the Section 2.2). Consequently, the
fleet composition can be determined for each road segment every hour. Due to the lack of
technical information on unregistered vehicles in the registration database and the fact that
90% of the traffic volume in the study area involves registered vehicles, this study primarily
focuses on registered vehicles.

2.2. Emission Quantification Method

This study used the IVE model to calculate hourly segment-level emissions [30]. The
IVE model, developed by the International Sustainable Systems Research Center (ISSRC)
and University of California, Riverside (UCR), is known as an efficient tool for developing
traffic emission inventories in developing countries [31] and has been widely used in
China [29], India [21], and Iran [22]. The fleet composition of each hour and road segment
was composed of the proportion of mileage travelled by each vehicle type to the total
mileage [17], with the proportion calculation formula shown in Equation (1).

Pt,h,l =
Lt,h,l

Lh,l
=

Qt,h,l × Dl

Qh,l × Dl
(1)

where Pt,h,l is the proportion of vehicle kilometres travelled (VKT) by vehicle type t on road
segment l during hour h; Lt,h,l is the VKT of vehicle type t in road segment l during hour
h, m; Lh,l is the VKT of all vehicles in road segment l during hour h, m; Qt,h,l is the traffic
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volume of vehicle type t in road segment l during hour h, veh/h; Qh,l is the traffic volume of
road segment l during hour h, veh/h; and Dl is the length of road segment l, m.

The emissions from each hour and road segment are obtained by summing the emis-
sions for each vehicle type, and the corresponding formula as shown in Equation (2).
Regional emissions can be calculated by summing all road segments, and daily emissions
can be calculated by summing the hourly emissions.

Eh,l,j = ∑t

{VFTP × Dl × Qh,l × Pt,h,l × Bt,j × Kh,t,l,j

Vh,l
(2)

where Eh,l,j is the emissions of gas j on road segment l during hour h, g/h; VFTP is average
speed of the LA4 driving cycle, which is set to 8.7 m/s; Bt,j is the basic emission factor of
emission j of vehicle type t, g/veh/km; Kh,t,l,j is other correction factors (speed correction, oil
correction, etc.) for emission j of vehicle type t, g/veh/km; and Vh,l is the vehicle average
driving speed of road segment l during hour h, m/s.

Vehicle types in the IVE model are categorized into over 1300 types based on various
technical attributes, including description, weight, fuel type, exhaust characteristics, and
age (defined by cumulative mileage). In this study, the method for matching each vehicle’s
base emission factors and correction factors, based on vehicle registration data, refers to the
approach described by Yu et al. [29]. The comparison and examples of vehicle technical
information used in the IVE model and from the Xuancheng registration database are
shown in Table 2.

Table 2. Comparison and examples of vehicle technical information used in the IVE model and from
the Xuancheng registration database.

Vehicle Technical
Attribute Parameters in

the IVE Model

Example of Vehicle Technical
Attribute Parameters in the

IVE Model

Corresponding Parameters in
the Xuancheng Registration

Database

Example of Xuancheng
Registration Database

Weight <2268 kg Mass 2000 kg
Description <1.5 L Displacement 1 L

Fuel Petrol Fuel Petrol
Exhaust EURO I Exhaust China 1 1

Age <79 × 106 m
Registration date, vehicle type

and function

For detailed vehicle age estimation
methods, please refer to Yu

et al. [29]

Air/Fuel Control Multi-Pt FI - Determined based on the vehicle’s
Description and Exhaust

Evaporative PCV/Tank - Determined based on the vehicle’s
Description and Exhaust

1 The emission standards are recorded as the China 1–5, which can be considered equal to the EURO I−V
respectively [32].

This study focused on the uncertainty of NOx and CO2 emissions because of their
importance for air quality and climate change [33,34]. Furthermore, among common vehicle
pollutants and greenhouse gases (VOC, CO, NOx, SO2, and CO2), the variability in emission
factors among vehicle types for NOx and CO2 was the largest and smallest, respectively.
Therefore, analysing NOx and CO2 aids in understanding the potential ranges and trends
of uncertainties for common vehicle pollutants and greenhouse gases as sampling coverage
changes.

2.3. Uncertainty Quantification Method

As regional daily total emissions are a key indicator involved in current emissions
management policies, this research mainly focuses on the uncertainty of daily road traf-
fic emissions at the regional level within the study area [35,36]. Uncertainty is a lack of
knowledge of the true value of a variable and can be described with a confidence interval
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characterizing the range of possible values [37]. Current studies commonly use Monte Carlo
simulations to calculate emission uncertainties [38–40]. In this study, the emission uncer-
tainties associated with differences in spatiotemporal sampling coverages were calculated
via Monte Carlo simulation.

To provide general guidance for the existing studies, the spatiotemporal sampling
coverage was defined based on current research [17–19]. The specific examples are shown in
Table S1. For temporal sampling, one hour was selected as the smallest sampling unit, and
stratified sampling was conducted based on daytime and nighttime. For spatial sampling,
given that fleet composition samples are typically obtained based on a certain number of
road segments or intersections, a single road segment between two adjacent intersections
was selected as the smallest sampling unit. Stratified spatial sampling was conducted
based on road type (the road type was detailed in the Section 2.1). According to these
settings, temporal sampling coverage refers to the proportion of sampled hours (e.g., 2 h)
to the total number of hours (24 h in this study) representing the full period for emissions
quantification. Spatial sampling coverage refers to the proportion of the number of sampled
road segments to the total number of road segments in the study area.

The Monte Carlo method to calculate uncertainty for a specified spatiotemporal
sampling coverage combination (which refers to sampling with a specific spatial coverage
and temporal coverage) involves the following steps. First, T-fold random sampling
simulations were performed. In this study, T was set to 1000 [41,42]. The sample size of each
sampling simulation was determined based on the spatiotemporal sampling coverage and
sampling population. Second, the fleet composition for the time periods and road segments
included in the sample were calculated via Equation (1). Third, in each simulation, the fleet
composition of hours and road segments not included in the sample were extrapolated
based on the samples already collected, the calculation method is shown in Equation (3).

Pt,h∗ ,l∗ =
∑h,l Lt,h,l

∑h,l Lh,l
=

∑h,l Qt,h,l × Dl

∑h,l Qh,l × Dl
(3)

where Pt,h∗ ,l∗ is the proportion of VKT by vehicle type t on road segment l* during hour h*,
inferred from the sample, l* refers to the road segment to be inferred, and h* refers to the
hour period to be inferred.

Fourth, the regional daily road traffic emissions were calculated for this simulation
via Equation (2). Finally, the emission calculation results from the 1000-fold simulations
for a single spatiotemporal sampling coverage combination were used to compute a 95%
confidence interval to represent uncertainties.

2.4. Method for Constructing the Requirement Model for the Spatiotemporal Sampling Coverage of
Fleet Composition

The goal of this section was to develop a method to provide guidance for sampling
fleet composition data for quantifying daily road traffic emissions in the core urban area.
First, it was essential to determine the respective relationships of the temporal and spa-
tial sampling coverages of fleet composition with the resulting uncertainties in emission
quantification. Calculating uncertainties for all possible combinations of spatiotemporal
coverage using Monte Carlo simulation requires substantial computational effort. There-
fore, it is necessary to construct function models that approximates the relationship between
spatiotemporal coverage and regional daily road traffic emission uncertainties based on a
series of experiments. In each of these experiments, the uncertainties were measured for
specified spatiotemporal coverage settings.

To effectively construct the function models, we first determined the patterns of un-
certainty variations for different typical spatial sampling coverages (assuming that the
temporal sampling coverage is constantly 100%) and for temporal sampling coverages
(assuming that the spatial sampling coverage is constantly 100%) in sequence. The sample
collection scheme was designed based on methods found in the current research [17–19], as
presented in Table S1. Second, to intuitively reflect the patterns of variations, we fitted func-
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tions with emission uncertainties as the dependent variable and spatial/temporal sampling
coverage as the independent variables. Third, for intervals of temporal or spatial sampling
coverage in which the change in uncertainties was significant, the number of spatiotempo-
ral sampling coverage combinations was increased to more effectively reflect these changes.
Finally, based on the results of the uncertainties associated with different combinations of
spatiotemporal sampling coverage, we constructed a model that delineated the relationship
between assorted combinations of spatiotemporal sampling coverage and their resultant
uncertainties. The selection of an appropriate fitting method for this model hinges on the
pattern analysis of variations delineated in the second step of the aforementioned.

After the requirement model was constructed, the minimum spatiotemporal sampling
coverage requirements can be determined by inputting the targeted uncertainties into the
model. The required sample size can be obtained by multiplying the minimum spatiotem-
poral sampling coverage determined by the requirement model and the total population. If
the sample size result was a noninteger, it should be rounded up to the nearest (higher)
integer to adhere to the principle of conservatism.

Given the similarity of the fleet composition in the study area to that of other small
and medium-sized cities in China (as detailed in the Section 2.1), the model constructed
has a general degree of applicability in such cities.

3. Results and Discussion
3.1. Variation Patterns in Regional Daily Road Traffic Emission Uncertainties with Changes in
Spatial Sampling Coverage

The uncertainty (expressed as 95% confidence intervals) quantification results of NOx
and CO2 emissions on weekdays and weekends under different spatial sampling coverage
levels are shown in Figure 3. Considering the similarity in the distribution of uncertainties
between weekdays and weekends, the discussion below was based on the corresponding
average values. With a temporal sampling coverage of 100%, as the spatial coverage of the
samples increased, the uncertainties gradually and monotonically decreased towards zero.
For NOx, in the case of a spatial sampling coverage of 5%, the emission uncertainties were
−36~52%. When the spatial sampling coverage increased to 35% and 70%, the uncertainties
decreased to −14~15% and −5~5%, respectively. In contrast, the uncertainties of CO2 for
the same spatial sampling coverage were smaller than that of NOx; notably, at a spatial
sampling coverage of 5%, the uncertainties were −3~4%.

Sustainability 2024, 16, x FOR PEER REVIEW 8 of 16 
 

 
Figure 3. At different spatial sampling coverage levels, the uncertainties of NOx (a) and CO2 (b) 
emissions on weekdays and weekends. 

The uncertainties of NOx emissions exceeded those of CO2 emissions when consid-
ering the same spatial sampling coverage. This is because there are more significant vari-
ations in NOx emission factors among vehicle types than those for CO2, and there are 
distinct differences in fleet composition among road segments. For example, for road Seg-
ments 1 and 2 in this study area (both expressways), the vehicle type with the highest NOx 
emission factor was the heavy-duty old-age (Vehicle age is defined by cumulative mileage; 
the cumulative mileage of old-age vehicles is <79 K km, that of young-age vehicles is 79–
161 K km, and that of new-age vehicles is >161 K km [43]) vehicles using China III diesel 
(referred to as Type A), and that with the lowest was the light-duty new-age vehicles using 
China IV gasoline (referred to as Type B), with the former’s base emission factor being 136 
times that of the latter [43]. Within Segment 1, the VKT proportions of Type A and Type 
B were 0.13% and 20%, respectively, while in Segment 2, they were 1.8% and 19%, respec-
tively. Therefore, estimating the fleet composition of Segment 1 based on that of Segment 
2 could result in an overestimation of the VKT proportion of Type A and an underestima-
tion of the VKT proportion of Type B, thereby significantly overestimating the emissions 
for Segment 1 beyond the actual values. In contrast, the difference between the highest 
and lowest CO2 emission factors for different vehicle types on road Segments 1 and 2 was 
only five times. This means that the impact of variations in fleet composition among seg-
ments on the emissions calculation has less effect on gases with small differences in vehicle 
emission factors than gases with large differences. Therefore, to achieve the same uncer-
tainty goal, the spatial sampling coverage of gases with large emission factors differences 
between vehicle types needs to be larger than that of gases with small differences. 

Additionally, as the spatial sampling coverage increased, the magnitude of change in 
the corresponding uncertainties gradually decreased. For instance, when the spatial sam-
pling coverage increased from 5% to 20%, the upper bound of NOx uncertainty decreased 
by 27% points and the lower bound increased by 12% points. However, when spatial sam-
pling coverage increased from 20% to 50%, the upper bound decreased by only 13% 
points, and the lower bound increased by only 10% points. This shows a trend that the 
benefit of reducing uncertainty diminishes as the spatial sampling coverage increases. 
Meanwhile, the uncertainties at low spatial sampling coverage showed significant asym-
metry, with greater upper bound than the lower bound’s absolute value. This phenome-
non was caused by the non-negative characteristics of emissions and the strong influence 
of outliers of fleet composition under low spatial sampling coverage. This asymmetry de-
creased as spatial sampling coverage increased, and starting at 35%, the absolute values 
of the upper and lower bounds were almost the same, differing by less than 0.5% points. 
Thus, with lower spatial sampling coverage, the degree of overestimation in emission 

Figure 3. At different spatial sampling coverage levels, the uncertainties of NOx (a) and CO2

(b) emissions on weekdays and weekends.

The uncertainties of NOx emissions exceeded those of CO2 emissions when consider-
ing the same spatial sampling coverage. This is because there are more significant variations
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in NOx emission factors among vehicle types than those for CO2, and there are distinct
differences in fleet composition among road segments. For example, for road Segments 1
and 2 in this study area (both expressways), the vehicle type with the highest NOx emission
factor was the heavy-duty old-age (Vehicle age is defined by cumulative mileage; the
cumulative mileage of old-age vehicles is <79 K km, that of young-age vehicles is 79–161 K
km, and that of new-age vehicles is >161 K km [43]) vehicles using China III diesel (referred
to as Type A), and that with the lowest was the light-duty new-age vehicles using China
IV gasoline (referred to as Type B), with the former’s base emission factor being 136 times
that of the latter [43]. Within Segment 1, the VKT proportions of Type A and Type B were
0.13% and 20%, respectively, while in Segment 2, they were 1.8% and 19%, respectively.
Therefore, estimating the fleet composition of Segment 1 based on that of Segment 2 could
result in an overestimation of the VKT proportion of Type A and an underestimation of the
VKT proportion of Type B, thereby significantly overestimating the emissions for Segment
1 beyond the actual values. In contrast, the difference between the highest and lowest
CO2 emission factors for different vehicle types on road Segments 1 and 2 was only five
times. This means that the impact of variations in fleet composition among segments on
the emissions calculation has less effect on gases with small differences in vehicle emission
factors than gases with large differences. Therefore, to achieve the same uncertainty goal,
the spatial sampling coverage of gases with large emission factors differences between
vehicle types needs to be larger than that of gases with small differences.

Additionally, as the spatial sampling coverage increased, the magnitude of change in
the corresponding uncertainties gradually decreased. For instance, when the spatial sam-
pling coverage increased from 5% to 20%, the upper bound of NOx uncertainty decreased
by 27% points and the lower bound increased by 12% points. However, when spatial sam-
pling coverage increased from 20% to 50%, the upper bound decreased by only 13% points,
and the lower bound increased by only 10% points. This shows a trend that the benefit of
reducing uncertainty diminishes as the spatial sampling coverage increases. Meanwhile,
the uncertainties at low spatial sampling coverage showed significant asymmetry, with
greater upper bound than the lower bound’s absolute value. This phenomenon was caused
by the non-negative characteristics of emissions and the strong influence of outliers of fleet
composition under low spatial sampling coverage. This asymmetry decreased as spatial
sampling coverage increased, and starting at 35%, the absolute values of the upper and
lower bounds were almost the same, differing by less than 0.5% points. Thus, with lower
spatial sampling coverage, the degree of overestimation in emission quantification will
be greater than that of underestimation. If the tolerance of overestimation of emission
results is lower than that of underestimation, the spatial sampling coverage should be
further improved.

3.2. Variation Patterns in Regional Daily Road Traffic Emission Uncertainties with Changes in
Temporal Sampling Coverage

The uncertainty quantification results of NOx and CO2 emissions on weekdays and
weekends at different temporal sampling coverage levels are shown in Figure 4. The uncer-
tainties distributions for weekdays and weekends were similar; thus, the discussion below
was based on the corresponding average values. With 100% spatial sampling coverage, the
overall trend was that the uncertainties gradually and monotonically decreased, approach-
ing zero as the temporal sampling coverage increased. For NOx, at a temporal sampling
coverage of 10%, the emission uncertainties were −22~25%. When the temporal sampling
coverage increased to 25% and 60%, the uncertainties decreased to −13~15% and −5~5%.
In contrast, the uncertainties of CO2 at the same temporal sampling coverage were less
than that of NOx, with uncertainties of −2~2% at a temporal sampling coverage of 10%.
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The reason why NOx emission uncertainties significantly exceeded those of CO2 at the
same temporal sampling coverage was similar to the reasoning introduced in the Section 3.1.
The fleet compositions from 08:00–09:00 and 13:00–14:00 were used as examples. During
these periods, the vehicle type with the highest NOx emission factor was heavy-duty
old-aged vehicles using China II diesel (referred to as Type C), and the vehicle type with
the lowest NOx emission factor was light-duty new-aged vehicles using China IV gasoline
(referred to as Type D), with the former’s base emission factor being 170 times that of the
latter. From 08:00–09:00, the VKT proportions of Type C and Type D were 0.01% and 17%,
respectively, whereas from 13:00–14:00, they were 0.05% and 16%, respectively. Conse-
quently, inferring the 07:00–08:00 fleet composition from the 12:00–13:00 fleet composition
could lead to overestimation and underestimation of the traffic activity for Type C and
Type D vehicles, respectively. In contrast, the difference between the highest and lowest
CO2 emission factors for different vehicle types at 08:00–09:00 and 13:00–14:00 was only
five times. This inference would lead to a significant overestimation of emissions from
08:00–09:00 compared to the actual values.

As the temporal sampling coverage increased, the magnitude of change in the cor-
responding uncertainties gradually decreased. For instance, as the temporal sampling
coverage increased from 10% to 25%, the upper bound of NOx uncertainty decreased
by 11% points, and the lower bound increased by 8% points. However, as the temporal
sampling coverage increased from 25% to 50%, the reduction in the upper bound was only
7% points, and the increased in the lower bound was only 6% points. This reflects the
fact that the benefit of reducing uncertainty diminishes over time as temporal sampling
coverage increases. Moreover, at low temporal sampling coverage, the uncertainties exhibit
noticeable asymmetry. This asymmetry diminishes with increasing temporal sampling
coverage, becoming almost identical in absolute value from 50% onwards, with a mere
difference of 0.5% points. This is due to the non-negative characteristics of emissions and
the significant impact of outliers in fleet composition when temporal sampling coverage
is low. Therefore, the degree of overestimating emission quantification results with low
temporal sampling coverages will be greater. If the tolerance of overestimation of emission
results is lower than that of underestimation, the temporal sampling coverages should be
further improved.

These findings provide guidance for the construction of a requirement model for the
spatiotemporal sampling coverage of fleet composition. The suggestion is to use more
uncertainties data at lower, and less uncertainties data at higher sampling coverages. This
approach ensures that the model accurately represents the range of change and asymmetry
on the upper and lower bounds of confidence intervals of uncertainties.
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3.3. Construction of a Requirement Model for the Spatiotemporal Sampling Coverage of
Fleet Composition

According to the analysis detailed in the Sections 3.1 and 3.2, the variance in the
emission uncertainties between weekdays and weekends was small when considering
identical temporal or spatial sampling coverages. Therefore, data from weekdays and
weekends were simultaneously used to construct a requirement model for the spatiotempo-
ral sampling coverage of fleet composition for regional daily road traffic emissions.

Due to the significant nonlinear relationships between uncertainties and temporal
and spatial sampling coverages, this study employed multivariate nonlinear regression to
construct a spatiotemporal sampling coverage requirement model. Multivariate nonlinear
regression can flexibly model complex nonlinear relationships among variables, and offers
an objective mathematical framework [44]. Owing to the significant variation and asymme-
try in emission uncertainties at low spatiotemporal sampling coverages, three coverages
below 30% and two above 30%, namely, spatial sampling coverages of 2%, 10%, 21%, 50%,
and 79% and temporal sampling coverages of 8%, 16%, 25%, 50%, and 80%, respectively,
were selected. This selection creates 25 different spatiotemporal coverage combinations for
uncertainty calculation. The results of these calculations are shown in Table S2.

Based on the uncertainty calculations for 25 spatiotemporal sampling coverage combi-
nations, the requirement model was constructed using polynomial functions in this study.
To determine the order of the polynomial model, significance test indicators (F value and
p value) and the Bayesian information criterion (BIC) method were used. Although the
third-order model displayed the best performance for all indicators, it was nonmonotonic
within the value range, which does not comply with the data distribution pattern shown in
the Sections 3.1 and 3.2. The significance test of the second-order model yielded an F value
of 425, a p value < 0.0001, and a BIC of −344, yielding results with greater significance and
a better fit than those of the first-order model. Therefore, a second-order polynomial was
adopted as the regression model, as shown in Equation (4).

f (x1, x2) =

{
algx1 + blgx2 + clgx2

1 + dlgx2
2 + elgx1x2 + f x1, x2 ∈ (0%, 100%)

0 x1, x2 = 100%
(4)

where f (x1,x2) is the upper or lower bound for the 95% confidence interval of uncertainty;
x1 and x2 are the spatial and temporal sampling coverages, respectively; and a, b, c, d, e, and
f are the coefficients of the terms in the polynomial. Since the relationships between f (x1,x2)
and x1 and x2 are nonlinear, this study performed a logarithm transformation on x1 and
x2, thereby enabling the model to capture the relationships between f (x1,x2) and x1 and x2
more accurately.

The normalized mean squared error (MSE) and correlation coefficient (R2) are adopted
as criteria for evaluating the performance of the model. The MSE measures the average
square difference between the experimental results and model predictions, with values
closer to 0 indicating higher model precision. The R2 measures the correlation between
the experimental results and model predictions, with R2 values greater than 0.9 generally
indicating high accuracy. The results of the coefficients, R2 values and MSE values as
shown in Table 3. The R2 values of the second-order regression models were all greater
than 0.985, and the MSE values were less than 5 × 10−4. To validate the models reliability,
an additional ten sets of random spatiotemporal sampling coverage combinations and
corresponding emission uncertainties were used to test the model [45], with R2 > 0.93
and MSE < 0.0001. The aforementioned indicators suggested that the models have strong
explanatory power and can accurately fit actual data.



Sustainability 2024, 16, 3504 11 of 16

Table 3. Second-order models regression results and evaluation indicators.

f (x1,x2) Coefficient
R2 MSEa b c d e f

Upper bound of NOx uncertainty −0.026 −0.024 0.281 0.194 −0.049 0.049 0.993 4.8 × 10−4

Lower bound of NOx uncertainty 0.215 0.078 −0.037 −0.085 0.102 −0.028 0.985 2.7 × 10−4

Upper bound of CO2 uncertainty 0.004 0.002 0.030 0.025 −0.005 0.005 0.986 8.4 × 10−6

Lower bound of CO2 uncertainty 0.013 0.008 −0.007 −0.005 0.005 −0.003 0.987 2.1 × 10−6

The spatiotemporal sampling coverage requirements corresponding to different upper
and lower bounds of NOx and CO2 uncertainty predicted by the requirement model are
shown in Figure 5. Each point on the contour lines reflects a combination of spatiotemporal
sampling coverage at the same level of uncertainty. The spatial and temporal sampling
coverages interact in such a way that increasing one can reduce the minimum requirement
for the other. For instance, to maintain the upper bound of NOx uncertainty within 15%, the
recommended spatiotemporal sampling coverage should be no less than 30% for temporal
and 22% for spatial aspects. As the temporal sampling coverage increases to 35%, 45%, and
55%, the corresponding minimum spatial sampling coverages should be no less than 42%,
34%, and 31%, respectively. The contour lines were almost paralleled to the y-axis in the
area when the spatial sampling coverage was low and the temporal sampling coverage
was high. This phenomenon indicated that significant changes in temporal sampling
coverage do not greatly affect uncertainties in this region. Taking the upper bound of
NOx uncertainty as an example, when the spatial sampling coverage was 8% and the
temporal sampling coverage was 33%, the upper bound was 50%. When only the temporal
sampling coverage was increased to 100%, the upper bound decreased to 47%, a reduction
of only 3% points. A similar phenomenon was also observed in areas with low temporal
sampling coverage. This pattern indicated that compared to increasing only one type of
coverage, the combined enhancement of both spatial and temporal sampling coverages can
more effectively reduce uncertainty. The contour lines were densely distributed in areas
of low spatial and temporal sampling coverages (coverage below 30%), indicating that
the impact of spatiotemporal sampling coverage on uncertainties were significant in these
areas. This phenomenon implied that enhancing sampling coverage in areas with initially
low spatiotemporal density has a more significant impact on reducing uncertainty than in
areas with already high coverage.

Researchers can determine the spatiotemporal sampling coverage corresponding to
the upper and lower bounds of acceptable uncertainty for various gases and then select the
most stringent spatiotemporal sampling coverage for fleet composition data. For example,
to achieve the NOx uncertainties target of ±15%, the temporal and spatial sampling
coverages corresponding to the upper and lower uncertainty bounds of +15% and −15%,
respectively, were intersected. The results suggested that the recommended minimum
temporal and spatial sampling coverages should be no less than 31% and 22%, respectively.
The possible combinations of the least spatial and temporal sampling coverages included
43% and 36%, 34% and 45%, etc. Similarly, to achieve the CO2 uncertainties target of ±3%,
the recommended minimum temporal and spatial sampling coverages should be no less
than 11% and 10%, respectively. The possible combinations of the least spatial and temporal
sampling coverages included 17% and 16%, 15% and 18%, etc. These data showed that
despite a lower uncertainties target for NOx compared to CO2, calculating NOx emissions
necessitated greater spatiotemporal sampling coverage due to higher variability in NOx
emission factors among vehicle types. Based on these findings, it can be generalized that
under the same uncertainties targets, gases with larger emission factor discrepancies among
vehicle types, such as NOx, necessitate greater spatiotemporal sampling coverages than
those required for gases with smaller discrepancies, such as CO2. Therefore, sampling
efforts should be prioritized for gases with larger emission factor discrepancies.
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The framework and conclusions proposed in this study provide relevant insights on
minimum threshold of spatiotemporal sampling coverage of fleet composition in calculating
urban road traffic emissions, which assist in guiding fleet composition sampling, such
as the development of manual sampling schemes and the installation of urban traffic
cameras. Research conducted in urban areas similar to the case described in this work can
employ the function models or the framework proposed in this work to obtain guidance on
the spatiotemporal sampling coverage for fleet composition. These practices help avoid
insufficient sampling and sampling that is excessively based on mere experience, thereby
reducing uncertainty in emissions calculations. Moreover, emission data with reduced
uncertainty can more accurately depict the severity and reduction potential of regional
road traffic pollution and carbon emissions. These data thus support the selection of more
precise and appropriate emission reduction measures.

The findings of this work are based on the use of IVE models in typical small and
medium-sized Chinese city. Direct application of these results to studies in other types of
urban areas or those employing different emission models may not yield accurate outcomes,
especially in developed countries and large cities. Nevertheless, our generic framework
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lays a solid foundation for adaptation and application in diverse settings. Future research
could apply this approach in various regions and with different models to test its relevance
and adaptability, enhancing the robustness and utility of our findings in broader emission
quantification efforts.

4. Conclusions

Given the absence of studies exploring the relationship between different spatiotem-
poral sampling coverages of vehicle fleet composition and emission uncertainties, it was
difficult to determine a reasonable spatiotemporal sampling coverage to accurately quantify
regional daily road traffic emissions. In response to the aforementioned research gaps
in existing studies, this study proposed a framework to manage uncertainty in urban
road traffic emissions associated with vehicle fleet composition from the perspective of
spatio-temporal sampling coverage. This study was conducted in the core urban area of
Xuancheng, a typical small and medium-sized city in China, using the widely applied
IVE model. Initially, the respective relationships of the temporal and spatial sampling
cover-ages of fleet composition with the resulting regional daily road traffic emission
uncertain-ties were determined. Subsequently, function models were developed to explore
the determination of the spatiotemporal sampling coverage of fleet composition.

These results of emission uncertainties and function models implied that gases with
larger emission factor discrepancies between vehicle types, such as NOx, required greater
spatiotemporal sampling coverage than gases with smaller discrepancies, such as CO2.
Therefore, sampling efforts should be prioritized for gases with larger emission factor
discrepancies. Additionally, increasing sampling coverage in one dimension (either spatial
or temporal) can reduce the minimum required coverage in the other dimension. To
achieve the NOx uncertainties target of ±15%, the recommended minimum temporal
and spatial sampling coverages should be no less than 31% and 22%, respectively. The
possible combinations of the least spatial and temporal sampling coverages included
43% and 36%, 34% and 45%, etc. To achieve the CO2 uncertainties target of ±3%, the
recommended minimum temporal and spatial sampling coverages should be no less than
11% and 10%, respectively. The possible combinations of the least spatial and temporal
sampling coverages included 17% and 16%, 15% and 18%, etc. To further reduce uncertainty,
enhancing both spatial and temporal sampling coverage of the fleet composition is more
effective than enhancing one type of coverage alone.

This study provided a reference tool for determining the spatiotemporal sampling
coverage of fleet composition for cities with similar fleet composition and vehicle scales.
The tool aids in avoiding insufficient sampling, thereby reducing uncertainty in regional
daily road traffic emission quantification. This reduction in uncertainty contributes to the
development of more precise and effective emission reduction policies, ultimately leading
to a reduction in greenhouse gas and air pollutant emissions from urban road traffic and
fostering sustainable economic and social development.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su16083504/s1, Figure S1: Location of the Yangtze River Delta
and core urban area of Xuancheng; Table S1: Typical spatial and temporal sampling coverage values
and sampling schemes; Table S2: Uncertainty quantification results corresponding to spatiotemporal
sampling coverage combinations.
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Abbreviations

The following abbreviations are used in this manuscript:

ALPR Automatic License Plate Recognition
BIC Bayesian Information Criterion
CO Carbon Monoxide
CO2 Carbon Dioxide
GDP Gross Regional Product
HC Hydrocarbons
ISSRC International Sustainable Systems Research Center
IVE International Vehicle Emissions
MSE Normalized Mean Squared Error
MOVES Motor Vehicle Emission Simulator
NOx Nitrogen Oxides
PM Particulate Matter
R2 Correlation Coefficient
SO2 Sulfur Dioxide
UCR University of California, Riverside
VOC Volatile Organic Compounds
VKT Vehicle Kilometres Travelled
F value F-statistic Value
p value Probability Value
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