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Abstract: Microbial-sourced carbon is an important component of soil organic carbon (SOC) and influ-
ences SOC’s size and turnover. Soil extracellular enzymes can participate in the degradation of plants
in the soil to produce substances needed by microorganisms, which in turn affects microbial sources
of carbon. Most of the current studies focus on the effects of soil extracellular enzymes on SOC pools,
while there is a lack of clarity regarding the effects on microbial sources of carbon during SOC pool
formation. In this paper, three typical grassland types (alpine meadow, alpine grassland, and desert
grassland, respectively) on the Tibetan Plateau were selected as research objects to investigate the
effects of grassland type and soil depth on microbial-sourced carbon (amino sugars) and soil extracel-
lular enzymes (hydrolytic enzymes: β-glucosidase and cellulase; oxidative enzymes: peroxidase and
polyphenol oxidase) in the soil profiles. Our study shows that the content of amino sugars in the three
grassland types followed the order: alpine meadow > alpine grassland > desert grassland; the con-
tent of hydrolytic enzyme followed the order of alpine meadow > alpine grassland > desert grassland;
the content of oxidative enzyme followed the order of desert grassland > alpine grassland > alpine
meadow; amino sugars content showed a positive correlation with hydrolytic enzymes and a nega-
tive correlation with oxidative enzymes; and the hydrolytic enzyme was the main factor promoting
the accumulation of amino sugars. The environmental conditions of alpine meadows and alpine
grasslands are more favorable for the formation of microbial-derived carbon and have greater seques-
tration potential, while desert grasslands are not favorable for the formation of microbial-derived
carbon. The results of this study provide a reference basis for exploring the model of organic carbon
sequestration in the Tibetan Plateau.

Keywords: grassland types; amino sugar; extracellular enzymes

1. Introduction

Soil organic carbon (SOC) is the largest active carbon pool in terrestrial ecosystems,
with a storage capacity of about 1500 Pg C, which is much larger than the sum of the
atmospheric and vegetation carbon pools [1,2]. Secondly, SOC plays a central role in soil
structure formation and retention, soil nutrient cycling, and soil biodiversity nourishment,
and thus, research on SOC has been a core area in soil science [3].

As one of the largest terrestrial ecosystems, grassland has diverse ecosystem functions,
and its organic carbon stock accounts for more than 25% of the global organic carbon, but
its area accounts for only 26.91% of the total global land area, and it has huge potential for
carbon sequestration [4]. A recent study suggested that the global grassland carbon pool is
about 520 Pg C, with values of 50–120 Pg C and 279–592 Pg C for vegetation and soil carbon
stocks, respectively [5]. However, the estimation results of grassland carbon sinks are still
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characterized by a high degree of certainty, and the mechanism of SOC sequestration in
grassland ecosystems is still controversial [6,7].

With the increasing sophistication of biomarker identification techniques for molecular
characterization, researchers have reached a consensus on the formation and stabilization
of SOC with microbial-mediated soil carbon transformation and sequestration processes
as the key mechanism for long-term organic carbon accumulation [8,9]. Soil extracellular
enzymes are secreted into the soil by plant roots and soil microorganisms [10]. There are
a variety of extracellular enzymes in the soil, and different extracellular enzymes have
different functions, catalyze different reaction stages, and work together to maintain the
overall function of the ecosystem [11]. The soil microbial carbon pump proposed by Chao
Liang suggests that enzymes are capable of degrading plant-derived macromolecules into
small fragments that can be directly absorbed and utilized by microorganisms for in vivo
turnover, and that by assimilating ingested small molecular weight plant-derived carbon
matrices, soil microorganisms synthesize their biomass and contribute microbial-sourced
carbon to the soil through an iterative process of microbial cell growth, proliferation, and
residue formation and accumulation [12,13]. Most of the current studies focus on the effects
of soil extracellular enzymes on SOC pools, while there are few studies on the effects on
microbial sources of carbon during SOC pool formation [14]. Therefore, it is necessary to
carry out studies on soil extracellular enzymes in microbial sources of carbon.

The Tibetan Plateau is the largest plateau in China and the highest in the world, and
is known as the “third pole” [15]. Because of its high altitude and low temperatures, the
Tibetan Plateau stores a large amount of soil carbon, accounting for about 2.5 percent of
the global soil carbon pool [16,17]. There are three main grassland types on the Tibetan
Plateau: alpine meadow, alpine grassland, and desert grassland [18]. However, the effect
of the same grassland types on soil carbon sequestration capacity still varies in different
studies, and there is not a clear-cut result [19–21]. Therefore, clarifying the SOC formation
and stability maintenance of alpine grassland on the Tibetan Plateau is of great significance
to enhance the carbon conservation and sink capacity of the ecosystem.

In this study, three typical grassland types on the Tibetan Plateau were used to evaluate
their sequestration effects on SOC. The objectives of our study were to investigate (1) the
spatial distribution of extracellular enzymes and amino sugar content under different
grassland types and soil depths; (2) the effects of different soil extracellular enzymes on
microbial sources of carbon; and (3) the effects of basic soil physicochemical properties on
the accumulation of soil extracellular enzymes and amino sugars and the mechanism of
carbon sequestration in grassland soils.

2. Materials and Methods
2.1. Study Area

The Tibetan Plateau is located in southwestern China (between 26◦00′ and 39◦47′ N
latitude and 73◦19′ and 104◦47′ E longitude) [22]. It extends from the south of the Himalayas
South Court north to the Kunlun Mountains, Altun Shan, and Qilian Mountains, and at
the northern edge, the average elevation is more than 4000 m. It is where East Asia, South
Asia, and many other large rivers originate [18]. The average annual temperature on the
Tibetan Plateau decreases from 20 ◦C in the southeast to below −6 ◦C in the northwest,
while annual precipitation decreases from 2000 mm to below 50 mm [23]. Alpine grassland
is the main vegetation type on the Tibetan Plateau, of which there are three grassland types,
namely, alpine meadow (AM), alpine grassland (AG), and desert grassland (DG) [24].

2.2. Plant Surveys and Soil Sampling

The field survey was conducted from August to September 2021, and we chose the
eastern alpine grassland of the Tibetan Plateau as the study area. The grassland in this
region occupies a relatively large area, showing common characteristics in terms of the
combination of temperature and moisture conditions, and is located at the intersection of
warm humid and semi-arid zones, with typical grassland types of the Qinghai–Tibetan
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Plateau [25]. Soil and plant samples were collected from 21 alpine grassland sites (including
7 alpine meadows, 7 alpine grasslands, and 7 desert grasslands) (Figure 1). At each sample
point, we set up a large area (30 m × 30 m) and then randomly arranged three 1 m × 1 m
sub-areas, with the three sub-areas serving as three replicates of the sample point [26]. We
recorded the number of plant species in each subzone and used the total number of plant
species to represent species abundance at that sample site. All plants within each sampling
square were mowed flush to harvest aboveground biomass. We collected soil from two
depth bands (0–10 cm, 20–30 cm) in each subzone. Three replicate soils from the same layer
were mixed to form a composite soil. Fresh soil samples were then stored at 4 ◦C in a closed
cooler covered with ice packs and returned to the laboratory promptly after each sampling.
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Figure 1. Description of sampling sites. Red circles represent sampling sites.

All soil samples were passed through a 2 mm sieve to remove visible stones as well
as roots. The sieved soil was divided into two parts: one part was stored at 4 ◦C for soil
physicochemical properties and amino sugars, and the other part was stored at −20 ◦C for
soil extracellular enzyme activity analysis.

2.3. Soil Properties

We measured soil physicochemical properties including soil pH, total nitrogen (TN),
total phosphorus (TP), cation exchange capacity (CEC), soil moisture content, soil texture,
and electrical conductivity.

Soil pH was determined using the potentiometric method [27]. Soil total nitrogen
and total phosphorus were determined using a fully automated chemical analyzer (Smart
Chem 200, Westco Scientific Instruments, Brookfield, CT, USA) [28]. Soil cation exchange
was determined using the hexaamminecobalt(III) chloride leaching-spectrophotometric
method [29]. Soil moisture content was determined using the drying method [30]. Soil
texture was determined using a laser particle size meter (Master Sizer 2000, Malvern
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Instruments, Malvern, UK) [31]. Soil conductivity was determined using the electrode
method [32].

2.4. Determination of Soil Extracellular Enzymes

We measured the activities of soil hydrolases and oxidative enzymes. Hydrolytic
enzymes included β-glucosidase (BG) and cellulase (CB), and oxidative enzymes included
polyphenol oxidase (POX) and peroxidase (PER). The high-throughput fluorescence method
was used for the determination of soil enzyme activities [33].

Substrate solution, standard control, and soil homogenate were prepared by adjusting
the pH to 6.0 using hydrochloric acid at a concentration of 25 mM sodium maleate as
buffer. The soil stored in the refrigerator at −20 ◦C was weighed in two portions of
0.2 g into two centrifuge tubes, both of which were added with 20 mL of buffer for cell
fragmentation, and one of the solutions was poured into a round plastic box and then added
with 50 mL of buffer for the determination of hydrolytic enzyme activity; the other portion
was added with 10 mL of buffer, and then filtered through 0.45 µm filter paper to obtain
the supernatant for the determination of oxidase activity. In each microtiter plate, 125 µL
of substrate solution was added to 125 µL of soil homogenate. For each enzyme, enzyme
activity was determined at a certain substrate concentration. The fluorescence signals of the
hydrolases were read after 4 h of incubation at room temperature using an enzyme marker
(BioTek Synergy H1 microplate reader, Winooski, VT, USA) under excitation at 360 nm and
emission at 460 nm. Microtiter plate data of oxidase absorption at 410 nm were read after
24 h of oxidase incubation. Soil extracellular enzyme activity was expressed as mg g−1.

2.5. Amino Sugar Analysis

Soil amino sugars were determined using the acid hydrolysis method [34]. The main
components were glucosamine, galactose, cytosolic acid, and mannose.

Specifically, 1 g of air-dried soil was placed into a hydrolysis flask and hydrolyzed
with 10 mL of 6 M HCl at 105 ◦C for 8 h, after which we added 100 µL of inositol to the
cooled sample. The solution was then filtered into a chicken heart flask and evaporated
with a rotary evaporator at 52 ◦C. The residue was then dissolved in 5 mL of deionized
water and adjusted to a pH of between 6.6 and 6.8 using 1 M potassium hydroxide. The
precipitates were removed by centrifugation at 3000 rpm for 10 min. After freeze-drying,
the supernatant was dissolved in anhydrous methanol and centrifuged again. We then
transferred the supernatant to the derivatization flask and blow-dried the samples with
nitrogen at 45 ◦C. Next, we added 1 mL of deionized water and 100 µL N-methyl-glucamine
for freeze-drying again. After that, we added 300 µL of derivatization reagent (preparation
method: 32 mg/mL hydroxylamine hydrochloride and 40 mg/mL 4-dimethylamino)
pyridine solution, dissolved in the mixed solution of pyridine: methanol (4:1 volume ratio).
Then, the mixture was covered and sealed, violently vibrated, and heated at 75–80 ◦C for
30 min. After cooling to room temperature, we added 1 mL of acetic anhydride and heated
it at 75–80 ◦C for 20 min, then added 1.5 mL of dichloromethane. Excess derivatization
reagents were extracted with 1 M of HCl and deionized water, after which the aqueous
phase was discarded. After drying with nitrogen at 45 ◦C, the organic solution was
dissolved in the mixed solvent of ethyl acetate and n-hexane (1:1 volume ratio).

We used a Trace 1300 gas chromatographer with a TG-1 MS (30 m × 0.25 mm × 0.25 µm)
column and an FID detector (Thermo Fisher Scientific, Waltham, MA, USA) to quantify amino
sugars. The oven temperature was held at 120 ◦C for 4 min, then raised to 230 ◦C at the rate of
10 ◦C min−1, then increased to 250 ◦C at a rate of 5 ◦C min−1 for 4 min, and finally increased
to 290 ◦C at a rate of 40 ◦C min−1 for 5 min.

2.6. Parameters Related to Soil Microbial Source Carbon

Of the four amino sugars, it is not clear which microorganisms Mann and Gala
originate from. Whereas fungi produce most of the Gluc, bacteria produce a small portion
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of Gluc in addition to Mura. We used Gluc to calculate carbon from fungal sources and
Mura to calculate carbon from bacterial sources. The specific were as follows in (1) and (2):

Fungal − derived C = (Gluc/179.17 − 2 × Mura/251.23)× 179.17 × 9 (1)

Bacterial − derived C = Mura × 45 (2)

In Equation (1), it is assumed that the ratio of Mura to Gluc in bacterial cells is 1:2; 9 is
the conversion factor from Gluc to fungal-derived carbon; 179.17 is the relative molecular
mass of Gluc; and 251.23 is the relative molecular mass of Mura. In Equation (2), 45 is the
conversion factor from Mura to carbon of bacterial origin. In Equations (1) and (2), the
units of Mura and Gluc are mg g−1.

Soil microbial-sourced carbon is the sum of soil fungal-sourced carbon and bacterial-
sourced carbon, with the following formula:

Microbial C =Fungal − derived C + Bacterial − derived C (3)

In Equation (3), Microbial C: carbon of microbial origin; Fungal-derived C: carbon of
fungal origin; and Bacterial-derived C: carbon of bacterial origin, all in mg g−1.

2.7. Statistical Analysis

First, differences were tested for amino sugars and oxidases, β-glucosidase, and
cellulase. A one-way ANOVA test was used to evaluate the differences between the
three grassland types at different soil depths, and a paired t-test was used to compare
the differences between the topsoil and subsoil of each grassland type. For all tests,
p < 0.05 was significant. Next, we explored the relationship between amino sugars and
oxidase, β-glucosidase, and cellulase using linear regression. Then, we determined which
environmental parameters affected the accumulation of amino sugars with oxidases,
β-glucosidases, and cellulase. We used correlation heat maps and principal component
analysis (PCA) to assess the relationships between amino sugars, oxidases, β-glucosidases,
and cellulase with environmental parameters.

3. Results
3.1. Dynamics of Amino Sugar in Soil

As shown in Figure 2, we know that soil amino sugar content tends to decrease with
the deepening of soil depth. The amino sugar content of alpine meadows is higher than
that of alpine grassland and desert grassland. In the topsoil, both alpine meadow and
alpine grassland had significantly higher content than desert grassland (p < 0.05); in the
subsoil, alpine meadow was significantly higher than desert grassland (p < 0.05), and
alpine grassland was not significantly different from the remaining two grassland types.
Between different soil depths in the same grassland type, topsoil was significantly higher
than subsoil in both alpine meadows and alpine grasslands (p < 0.05), and there was no
significant difference in desert grasslands. The mean values of amino sugar content of the
alpine meadow, alpine grassland, and desert grassland soils were 5.13, 4.27, and 1.2 mg g−1,
respectively.

3.2. Soil Extracellular Enzyme

As shown in Figure 3, we know that all soil extracellular enzyme contents responded
to depth as well as to changes in grassland type. Oxidase (POX+PER) content tended to
increase with soil depth, and the average oxidase content of desert grassland was higher
than that of alpine meadow and alpine steppe. In the topsoil, both the desert grassland and
alpine grassland oxidase contents were significantly higher than that of alpine meadow
(p < 0.05); in the subsoil, desert grassland oxidase contents were significantly higher than
that of alpine meadow (p < 0.05). There was no significant relationship between different
soil depths in the same grassland type for any of the three grassland types in terms of
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oxidase content. The mean values of oxidase content in alpine meadow, alpine grassland,
and desert grassland soils were 0.55, 0.75, and 0.90 mg g−1, respectively.
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Figure 2. Amino sugar content of surface and subsoil of different grassland types. Differences
between grasslands at the same soil depth were tested using a one-way ANOVA test, and results are
indicated by capital letters. Differences in soil depth under the same vegetation type were tested
using a paired-sample t-test, and results are indicated by lowercase letters. The upper and lower
boundaries of the box plots represent the 25% and 75% quantile values of the data; the top and bottom
short lines of the box plots represent the maximum and minimum values of the data; and the solid
lines and black dots in the box plots represent the median and the mean, respectively. p < 0.05 are
significant differences. AM: alpine meadow; AG: alpine grassland; DG: desert grassland.

The β-glucosidase (BG) content tended to decrease with the soil depth, and the average
content of alpine meadow BG was higher than that of alpine grassland and desert grassland.
In the topsoil, the BG content of both alpine meadow and alpine steppe was significantly
higher than that of desert steppe (p < 0.05). In the subsoil, there were no significant
differences between the three grassland types. It can be observed that, between different
soil depths of the same grassland type, the topsoil BG content of alpine meadows and
alpine grasslands was significantly higher than that of the subsoil (p < 0.05); there was
no significant difference in desert grasslands. The mean values of soil BG content in
alpine meadow, alpine grassland, and desert grassland were 0.15, 0.13, and 0.04 mg g−1,
respectively.

The cellulase (CB) content tended to increase with soil depth in alpine meadows
and decrease with soil depth in alpine grasslands and desert steppes, and the average
CB content of the topsoil and subsoil in alpine meadows was higher than that in alpine
grasslands and desert steppes. In the topsoil, there was no significant difference in CB
content among the three grassland types; in the subsoil, the CB content of alpine meadow
was significantly higher than that of desert grassland (p < 0.05), and there was no significant
difference between alpine grassland and the remaining two grassland types. Between
different soil depths of the same grassland type, there was no significant difference in CB
content among the three grassland types. The mean values of soil CB content in alpine
grassland and desert grassland were 0.44, 0.34, and 0.25 mg g−1, respectively.

In order to investigate the effect of soil enzyme activities on microbial-derived carbon,
we selected oxidizing enzymes (polyphenol oxidase+peroxidase) and hydrolytic enzymes
(BG + CB) for the study, respectively. As shown in Figure 4, we know that microbial-
derived carbon showed a significant negative correlation with oxidizing enzymes (p < 0.01,
Figure 4a), a significant positive correlation with BG (p < 0.01, Figure 4b), and a positive
correlation with CB (Figure 4c).
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Figure 3. Surface and subsoil enzyme activities in different grassland types. (a) soil oxidase;
(b) soil β-glucosidase; (c) soil cellulase. Differences between grasslands at the same soil depth
were tested using a one-way ANOVA test, with results indicated by capital letters. Differences in
soil depth under the same vegetation type were tested using a paired-sample t-test, and results are
indicated by lowercase letters. The upper and lower boundaries of the box plots represent the 25%
and 75% quantile values of the data; the top and bottom shortest lines of the box plots represent
the maximum and minimum values of the data; and the solid lines and black dots in the box plots
represent the median and the mean values, respectively. p < 0.05 is significantly different. AM: alpine
meadow; AG: alpine grassland; DG: desert grassland; POX+PER: polyphenol oxidase+peroxidase;
BG: β-glucosidase; CB: cellulase.

3.3. Influence of Soil Physical and Chemical Properties on Extracellular Enzyme Activities of
Amino Sugars and Soil Enzymes

Correlation analysis showed that in the soil surface layer, the amino sugar content
was significantly positively correlated with TN, clay grain, CEC, and moisture content,
and significantly negatively correlated with pH (p < 0.05, Figure 5); the oxidase content
was significantly positively correlated with pH and significantly negatively correlated with
TN and moisture content (p < 0.05, Figure 5); the BG content was significantly positively
correlated with TN and CEC (p < 0.05, Figure 5); and the CB content was significantly
positively correlated with conductivity (p < 0.05, Figure 5).

In the subsoil, the amino sugar content showed a significant positive correlation with
TN, CEC, and moisture content (p < 0.05, Figure 5) and a significant negative correlation
with pH (p < 0.05, Figure 5); the oxidase content showed a significant positive correlation
with pH and sand (p < 0.05, Figure 5) and a significant negative correlation with TN,
conductivity, CEC, and moisture content (p < 0.05, Figure 5); the BG content was signifi-
cantly positively correlated with TN (p < 0.05, Figure 5) and negatively correlated with pH
(p < 0.05, Figure 5); and the CB content was not significantly related to the physicochemi-
cal properties.
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PCA analysis showed that in the soil surface layer, amino sugars, BG, CB, and
POX+PER were mainly affected by TN, CEC, MC, and pH, and amino sugars, BG, and CB
were significantly positively correlated with TN, CEC, and MC and negatively correlated
with pH, while the correlation was opposite for POX+PER (Figure 6a). In the subsoil, amino
sugars, BG, CB, and POX+PER were mainly affected by TN, CEC, and pH. Amino sugars,
BG, and CB showed a significant positive correlation with TN and CEC and a negative
correlation with pH, while the opposite correlation was observed for POX+PER (Figure 6b).
As shown in Figure 6, the results of PCA analysis were the same as those of correlation
analyses, which strengthened the illustration of the effect of soil physicochemical properties
on amino sugars and extracellular enzyme activities.
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Figure 4. Relationship between soil amino sugars content and soil extracellular enzyme activity.
(a) soil polyphenol oxidase+peroxidase; (b) soil BG; (c) soil CB. Solid lines indicate the linear rela-
tionship between extracellular enzyme activities and amino sugars for each soil type. p < 0.05 is
significantly different. AM: alpine meadow; AG: alpine grassland; DG: desert grassland; POX+PER:
polyphenol oxidase+peroxidase; BG: β-glucosidase; CB: cellulase.
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Figure 5. Correlation of soil microbial sources of carbon, oxidative enzymes, BG, and CB with
environmental parameters. Positive correlations are indicated in red, negative correlations in blue,
and the strength of the correlation is indicated by the color shade; the stronger the correlation, the
darker the color. An asterisk (*) indicates the significance of the correlation, with 1, 2, and 3 asterisks
denoting p ≤ 0.05, p ≤ 0.01, and p ≤ 0.001, respectively. POX+PER: polyphenol oxidase+peroxidase;
BG: β-glucosidase; CB: cellulase; TN: total nitrogen; TP: total phosphorus; EC: electrical conductivity;
Clay: clay granule; Silt: sand granule; Sand: powder granule; CEC: cation exchange capacity; MC:
moisture content.
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Figure 6. Relative importance of environmental parameters. (a) topsoil amino sugar principal
component analysis; (b) subsoil amino sugar principal component analysis. Principal component
analysis (PCA) was used to analyze the significance of environmental parameters for amino sugars,
BG, CB, and POX+PER in topsoil and subsoil. AM: alpine meadow; AG: alpine grassland; DG: desert
grassland; POX+PER: polyphenol oxidase+peroxidase; BG: β-glucosidase; CB: cellulase; TN: total
nitrogen; TP: total phosphorus; EC: electrical conductivity; Clay: clay particles; Silt: powder particles;
Sand: sand particles; CEC: cation exchange capacity; MC: moisture content.
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4. Discussion
4.1. Influence of Different Grassland Types and Soil Depth on Soil Extracellular Enzymes and
Amino Sugar Content

In all three grassland types, the soil amino sugar content was greater in the surface
layer than in the subsoil layer (Figure 2), which is consistent with the global trend of
decreasing soil amino sugar content in ecosystems with increasing soil depth [9,35]. This is
mainly due to the fact that root biomass and apoplastic material are mainly distributed in
the topsoil and carbon input decreases with deeper soil depth [36]. The higher amount of
nutrients in the topsoil stimulates microbial growth and reproduction, resulting in a faster
turnover of microbial biomass, which leads to more amino sugars in the topsoil than in the
subsoil [37].

The soil amino sugar content was as follows: alpine meadows > alpine grassland > desert
grassland (Figure 2), which may be due to the different levels of complexity of the ecosystem
structure and function of the three grassland types [38]. Compared to desert grassland, alpine
meadow and alpine grassland have higher species abundance and plant productivity, which can
increase the availability of soil-dissolved organic carbon and nutrients and stimulate microbial
activity, leading to an increase in microbial biomass and turnover of living microorganisms,
which can lead to an increase in the accumulation of soil amino sugars [38,39].

Soil hydrolase activity was higher in alpine meadows and alpine grasslands than in
desert grasslands, probably due to the higher content of soil amino sugars [14]. This finding
is consistent with previous studies which found that the soil hydrolase activity increases
with increasing soil organic matter content [40,41]. Similarly, all types of hydrolytic en-
zyme activities decreased with increasing soil depth, mainly due to the decrease in soil
carbon effectiveness [42]. In contrast, oxidase activity was highest in desert grasslands,
followed by alpine grasslands and alpine meadows. Previous studies have reported that
microorganisms can produce enzymes only in nutrient-deficient conditions to avoid the
production of relevant enzymes in nutrient-rich conditions, thus reducing manufacturing
costs [43,44]. As a result, alpine meadow and alpine steppe soils are heavily invested with
apomictic material, which produces higher levels of unstable C, resulting in lower oxidase
activity compared to desert steppe soils [11]. The oxidase content was higher in the subsoil
than topsoil, which is mainly due to the significant negative correlation between oxidase
and TN (Figure 5): as depth increases, soil TN content decreases, changing the substrate
effectiveness of the microbial community and soil properties, which in turn increases soil
oxidase content [45].

4.2. Effect of Different Soil Extracellular Enzymes on Amino Sugars

The results of the study showed a highly significant positive correlation between BG (β-
glucosidase) and amino sugars (R2 = 0.36, p < 0.01, Figure 4b), a highly significant negative
correlation between oxidative enzymes and amino sugars (R2 = 0.25, p < 0.01, Figure 4a),
and a positive correlation between CB (cellulase) and amino sugars. These results suggest
that the accumulation of soil carbon from microbial sources in alpine grasslands of the
Tibetan Plateau mainly depends on BG and oxidative enzymes.

Cellulose is preferentially degraded during the early stages of plant apoplastic de-
composition [11]. In ecological studies, the most common cellulose hydrolases are CB
and BG [11]. CB hydrolyzes fibrous dimers from the non-reducing ends of the cellulose
molecule; BG hydrolyzes oligosaccharides to monosaccharides, providing usable substrates
and energy for microorganisms, thus contributing microbial-sourced carbon to the soil
through an iterative microbial process [13,46].

4.3. Influence of Basic Physical and Chemical Properties of Soil on the Accumulation of
Extracellular Enzymes and Amino Sugar Content in Soil

The results of the study showed that TN, CEC, and pH were the main factors that
mainly affected the content of amino sugars, BG, and oxidative enzymes. N is closely
related to microbial growth and development, and only in nutrient-rich environments can
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microbes be more involved in biosynthesis than in catabolism [47]. Microbial communities
are very large and active in the soil, and they require large amounts of nutrients to maintain
normal life activities [48]. The soil cation exchange, which is a measure of the soil’s ability
to retain fertilizer, has a positive effect on vegetation productivity, which reinforces the
importance of soil nutrients in promoting the accumulation of amino sugars and BG [49,50].
Soil amino sugars and BG decreased with increasing pH in this study, which may be
attributed to the fact that higher pH reduces SOC storage and limits nutrient availability,
leading to reduced carbon inputs and resulting in a decrease in amino sugars and BG
content [51].

On the contrary, for soil oxidase, the more soil nutrients there are, when the TN and
CEC are higher, the more unstable C inputs in the soil, which will inhibit the activity of
oxidase [52]. Some studies have shown that some enzymatic reactions are very sensitive to
changes in pH and can only be carried out in a narrow range of pH; when the pH value
is lower than 5.0, the activity of oxidase will be almost completely lost, so a high pH is
more conducive to the improvement of oxidase activity and thus to the accumulation of
oxidase content [53]. Therefore, a high pH value is more favorable to increase the activity
of oxidase and thus to accumulate its content. Factors affecting soil oxidase content formed
an inverse relationship with those affecting amino sugars and BG content, reinforcing the
importance of the influence of both on amino sugar content accumulation.

4.4. Analysis of Soil Carbon Sequestration Mechanism in Alpine Grassland

Our results indicate that hydrolytic enzymes promote the accumulation of microbial-
sourced carbon and that oxidative enzymes act as inhibitors of microbial-sourced carbon
accumulation. In terms of soil properties, soil TN and soil CEC are the most important
variables controlling the distribution of hydrolytic enzymes and microbial source carbon
composition, which can increase the accumulation of microbial source carbon by increasing
the activity of hydrolytic enzymes and accelerating the microbial iterative process, illus-
trating that soil nutrients are crucial for promoting microbial source carbon. Lower pH
can favor the microbial source carbon by affecting the carbon inputs, microbial commu-
nity structure, and functioning increase in hydrolase activity. These results suggest that
hydrolytic enzymes play a dominant role in the accumulation of microbial-sourced carbon
in alpine grasslands of the Tibetan Plateau, and that soil TN, CEC, and pH are the most
important soil physicochemical properties affecting the accumulation process.

By comparing the three grassland types, we found that the ecological environments
of alpine meadows and alpine grasslands are more favorable for the accumulation of
microbial-sourced carbon, showing great potential for carbon sequestration. Although
microbial sources of carbon exist in desert grasslands, their ecological environment is
unfavorable for the accumulation of microbial sources of carbon. In the Tibetan Plateau,
the degree of desertification is gradually increasing due to grazing, climate change, and
anthropogenic activities, which is unfavorable for soil carbon sequestration [54]. Our
results demonstrate the importance of soil nutrients and pH for carbon accumulation from
microbial sources, and perhaps the application of fertilizers or changes in soil pH in desert
grasslands could improve carbon loss in desert grasslands.

The grasslands of the Tibetan Plateau are the largest alpine biota in the world, and the
flora and fauna of the Tibetan Plateau are historically linked to and similar to the Arctic,
North America, Eurasia, and even mid-latitude regions of the entire Northern Hemisphere
due to the north–south migration corridor of the Northern Hemisphere as well as the
natural and climatic continuity of North America and Eurasia [55]. Therefore, our results
not only reveal the mechanism of soil carbon sequestration in the alpine grasslands of the
eastern Tibetan Plateau, but also guide carbon sequestration studies in other regions of
the world.
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5. Conclusions

Our results show that hydrolases can promote the accumulation of soil microbial-
derived carbon. Soil nutrients and pH are the most important soil physicochemical prop-
erties affecting the accumulation process. Furthermore, alpine meadows and grasslands
exhibit greater potential for carbon sequestration. Our results demonstrate the important
role of hydrolases in carbon sequestration and reveal the effects of soil physical and chemi-
cal properties on carbon sequestration, which provides theoretical guidance for addressing
climate change and regulating soil carbon sequestration. In future research on carbon
sequestration in grasslands, the role of soil nutrients and pH should be comprehensively
considered, starting from hydrolases.
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