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Abstract: In the context of an evolving socio-economic landscape and rising living standards, the
online market for fresh products, encompassing fruits, vegetables, meats, dairy, and eggs, has seen
substantial growth, necessitating sophisticated logistics for e-commerce home delivery. This study
tackles the distinct challenges of fresh product delivery, which demand rigorous adherence to climate
conditions and product mix during transport, significantly influencing the operational strategies and
scheduling of delivery platforms. To address these challenges, a comprehensive mathematical model
was developed to optimize fresh food home delivery scheduling, focusing on reducing spoilage rates
and accommodating the dynamic impact of environmental temperature changes. The model posits
assumptions of a consistent and ample supply of fresh goods, standard initial quality loss, and efficient
porter assignment for multi-category order combinations. It introduces three objective functions,
targeting the minimization of fresh food loss, maximization of customer satisfaction, and reduction
of distributor costs. The efficacy of the model and its genetic-algorithm-based solution method was
assessed through numerical analysis and case studies, illustrating that the model enhances delivery
efficiency and service quality across varying temperature conditions. This substantiates the critical
role of environmental temperature management in optimizing fresh food delivery, offering a robust
framework for advancing logistical operations in the perishable goods sector and ensuring quality
and efficiency in fresh food e-commerce delivery.

Keywords: fresh home delivery; environmental temperature; resource scheduling; genetic algorithm

1. Introduction
1.1. Research Background

The development of digital technology for traditional retail has transformed fresh
food home delivery in China, introducing a mix of online ordering and offline delivery
that improves access to fresh products. Since EGo Fresh started in 2005, the fresh food e-
commerce sector has evolved significantly, with major platforms like Alibaba and JingDong
driving innovations in digital and management practices [1,2].

The industry has diversified since 2014, developing models like front warehouses and
community group purchasing to meet various consumer needs, pushing the fresh food e-
commerce market toward a projection of 6.8 trillion yuan by 2025 [3]. The pandemic further
accelerated this growth, as home quarantine measures and heightened health and safety
concerns increased online shopping and demand for quality fresh products. In response,
the Chinese government has prioritized food safety, issuing policies to enhance cold chain
logistics and promote logistics informatization [4]. The 14th Five-Year Plan focuses on
upgrading cold chain standards for food and pharmaceuticals, aiming to improve food
safety and consumer quality standards [5].

However, delivering fresh products at home is challenging due to the need for main-
taining freshness and transportation efficiency. Traditional delivery methods can lead
to spoilage, delays, and the reliance on delivery porters, who lack advanced cold chain
facilities and can increase losses and costs, affecting consumer satisfaction and the efficiency

Sustainability 2024, 16, 3624. https://doi.org/10.3390/su16093624 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16093624
https://doi.org/10.3390/su16093624
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su16093624
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16093624?type=check_update&version=2


Sustainability 2024, 16, 3624 2 of 25

of fresh food e-commerce businesses. This study, therefore, concentrates on analyzing how
ambient temperature affects the quality of fresh food delivery, aiming to optimize delivery
service efficiency and enhance consumer satisfaction in the fresh food e-commerce sector.

1.2. Literature Review

In academic discourse, the emphasis has been on the influence of supply chain net-
works and contemporary technological advancements in enhancing the freshness quality of
perishable products, safeguarding food safety, and achieving consumer satisfaction. Todor-
ovic et al. (2018) analyzed sustainable strategies in short food supply chains, emphasizing
the integration of business modeling and digital technologies to enhance supply chain effi-
ciency and sustainability [6]. Biuki, Kazemi, and Alinezhad (2020) developed an integrative
model for the sustainable configuration of perishable product supply chain networks, con-
sidering factors like location, routing, and inventory management to boost efficiency across
the food, pharmaceutical, and healthcare sectors [7]. Sinha and Anand (2020) introduced a
model that employs an advanced bacterial foraging algorithm to optimize the perishable
product supply chain, effectively managing resource allocation during critical scenarios,
such as military rescue operations, and underscoring the significance of adept supply chain
management in preserving product quality [8]. Additionally, the role of technological tools
has been accentuated in scholarly works. Ben-Daya et al. (2020) examined how Internet of
Things (IoT) technology can augment the traceability and monitoring of perishable goods
to enhance freshness, diminish waste, and ensure food safety [9]. Benke and Tomkins
(2017) investigated the effects of drone delivery technology on home delivery services for
fresh food products through empirical field trials and simulation analysis [10]. Haji et al.
(2020) delved into various technologies within the perishable food supply chain, such as
tracking and monitoring systems, aiming to ameliorate logistics and distribution quality
and efficiency, curtail wastage, and augment product freshness [11]. Furthermore, Pal
and Kant (2020) explored the contributions of smart sensing, communication, and control
technologies to the perishable food supply chain, emphasizing the necessity of real-time
monitoring, temperature regulation, and logistical optimization to ensure the freshness and
safety of food products [12].

In terms of consumer satisfaction with fresh home delivery services, studies such
as those by Qin et al. (2019) highlight the critical factors for success in fresh food home
delivery, including cost control, customer satisfaction, and sustainability [13]. Wang et al.
(2021) and Lim et al. (2021) provide insights into consumer preferences, underscoring the
importance of safety, quality, convenience, delivery speed, and effective error resolution as
key drivers of satisfaction [14,15]. The study by Porat et al. (2018) revealed the causes and
magnitude of fruit and vegetable losses in the retail and home segments through empirical
research and data analysis, pointing out that environmental and social factors such as
storage conditions, consumption habits, and lack of knowledge have a direct impact on the
rate of loss of fresh products [16].

1.3. Research Significance

Most of the existing studies focus on temperature regulation within cold chain logistics
for agricultural produce, with scant attention given to the direct effects of temperature
fluctuations during the actual distribution phase. Notably, the role of delivery porters in the
fresh food home delivery sector presents distinct characteristics compared to conventional
large-scale cold chain logistics operations. This study seeks to elucidate the mechanisms
through which ambient temperature variations affect the deterioration rates of fresh com-
modities, impacting the quality and efficiency of fresh food home delivery, with a particular
focus on delivery porters as pivotal logistical entities.

Building upon the foundational studies of Ndraha et al. (2019), who illuminated
the direct impact of distribution temperature on the quality of fresh products [17], and Ji
Shoufeng et al. (2023), who developed a model that integrates the perishability of fresh
products with logistical expenses, this research proposes a dynamic scheduling optimiza-
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tion framework [18]. This framework is designed to accommodate ambient temperature
fluctuations, aiming to refine distribution routes and timings to preserve the freshness and
quality of products. By integrating ambient temperature considerations and the specific
traits of various fresh product categories (such as meats, seafood, fruits, and vegetables)
into a comprehensive scheduling model, this study intends to bolster operational efficiency
and consumer satisfaction within the fresh food distribution sector. The proposed model
introduces a freshness loss rate index as a critical metric, offering a novel perspective for
optimizing scheduling decisions that are responsive to ambient temperature dynamics.

This study’s contributions are poised to enhance the resilience and quality standards of
the fresh food distribution industry, fostering improved consumer satisfaction and aligning
with the strategic objective of augmenting food safety and consumer quality standards.

2. Scenario Analysis of Fresh Product Home Delivery

Fresh home delivery encompasses a diverse range of products, including fruits, veg-
etables, meats, dairy, seafood, and frozen goods, each with specific preservation needs.
The complexity of managing these varied requirements demands precise control over
refrigeration and insulation to maintain freshness, alongside ensuring timely deliveries
and intact packaging. This necessitates a sophisticated order management and scheduling
system that can adapt to real-time environmental conditions and unforeseen changes.

The primary challenge in this sector is balancing product quality, delivery speed,
and cost efficiency. The unpredictable nature of environmental conditions significantly
impacts delivery quality. For instance, delivering temperature-sensitive items like ice cream
or yogurt in high midday heat requires not only rapid transit but also enhanced cooling
strategies. This situation demands delivery personnel capable of navigating extreme
conditions and using specialized equipment to preserve product integrity.

2.1. Demand: Influencing Factors in the Process of Fresh Product Home Delivery
2.1.1. Ambient Temperature Environments

Ambient temperature is pivotal in the storage and distribution of fresh food. High
moisture and nutrient content in items like fruits, vegetables, meats, and seafood make them
susceptible to microbial growth, which is significantly influenced by temperature. Higher
temperatures facilitate rapid microbial proliferation, hastening spoilage and reducing the
food’s shelf life. Consequently, managing temperature is essential during distribution
to slow microbial activity, including methods like refrigeration for meats and seafood.
Conversely, certain produce, such as tropical fruits, may require specific temperature
ranges to avoid damage.

In the current literature, Aung and Chang (2014) stated in their study that improper
temperature control can negatively affect food quality by leading to increased loss of
vitamin C and food spoilage [19]. Wu and Hsiao (2021) stated that proper temperature
control slows down microbial growth and reduces the risk of food spoilage and decay [20].
Some studies have pointed out the different effects of environmental weather elements
such as temperature or humidity on various types of fresh products. Likotrafiti et al.
(2013) examined the growth potential of Listeria monocytogenes in different ready-to-eat
fruit products, highlighting how storage temperature significantly affects the microbial
growth and thus the spoilage rate, which varies across different fruit types [21]. Kroft
et al. (2022) investigated the effects of temperature on the growth and survival of Listeria
monocytogenes in a variety of whole and fresh-cut fruits and vegetables during storage,
demonstrating how different types of fresh products respond to temperature changes [22].

These studies underscore that the impact of temperature on spoilage and quality
degradation vary among different types of fresh products, with specific temperature and
humidity conditions affecting each category’s shelf life and safety. In this way, Figure 1 can
be derived to plot the negative effect of temperature on the quality of fresh products based
on existing research and common sense, while the mechanism of this effect receives the
moderating effect of the fresh products category.
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Building on this, the study introduces a novel mathematical indicator, the “weather
coefficient”, rw, to quantify short-term ambient temperature trends. The weather coefficient
rw is derived from the temperature’s rate of change over time, reflecting potential shifts
towards warmer or cooler conditions. Mathematically, the weather coefficient rw can be
defined as follows:

rw =
dW
dT

where W denotes temperature and T time; positive and negative values of rw signify
increasing and decreasing temperature trends, respectively. This coefficient provides a
broad indicator of temperature dynamics, valuable for short-term forecasts, long-term
seasonal predictions, and cross-regional temperature trend analysis.

Incorporating weather coefficient rw into fresh home delivery models can significantly
refine transportation and storage strategies for temperature-sensitive goods. By anticipating
temperature fluctuations, distributors can tailor their logistics plans to maintain optimal
conditions for fresh products, potentially necessitating additional protective measures
during critical periods. Consequently, the use of rw not only minimizes the risk of spoilage
but also enhances overall transportation efficiency by enabling more informed decision-
making regarding insulation and cooling strategies.

As illustrated in Figure 2, a scholarly tailored visualization of diurnal temperature
fluctuations and the associated weather coefficients (rw) is integral to the logistical man-
agement of fresh food distribution. This self-constructed graph is predicated on the widely
recognized principle that diurnal temperatures follow a sinusoidal oscillation due to the
Earth’s axial rotation and the consequent rhythmic patterns of solar irradiation. The illus-
tration has been expressly generated to encapsulate typical temperature variations over a
daily cycle and the resultant weather coefficients (rw). The diagram is bifurcated into two
segments: the upper segment displays a sinusoidal trajectory, projecting the anticipated
ambient temperature shifts within a day, while the lower section of the diagram is derived
through the discrete differentiation of the sinusoidal curve presented in the upper section,
capturing the incremental rate of temperature change at successive points throughout the
day. This calculated derivative conveys the weather coefficients (rw) reflecting the intensity
and velocity of temperature shifts, which are instrumental for strategic planning in the
logistics of perishable goods transport.

Analyzing the weather coefficient curve reveals that positive values occur during
temperature increases (e.g., morning when the sun rises) while negative values are noted
as temperatures decrease (e.g., evening when the sun sets). These coefficients offer a
clear, intuitive method for assessing temperature trends, crucial for managing temperature-
sensitive tasks such as fresh home delivery. By leveraging this insight, planners can make
informed decisions regarding temperature control strategies and operational adjustments.
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2.1.2. Variability in Fresh Food Categories

Fresh products encompass a broad spectrum of items, each with unique preservation
challenges, sensitivity, and shelf life. These distinctions manifest not only in their physical
and chemical properties but also in how consumers perceive and judge quality. Individual
preferences vary widely, with consumers valuing different aspects of fresh products, such
as freshness, taste, and packaging integrity.

To gain insight into consumer quality preferences across various fresh food categories,
we analyzed extensive online review data, identifying key dimensions that shape consumer
evaluations. For instance, our analysis revealed that fruit and vegetable quality assessments
often hinge on perishability and sensitivity; meat and frozen seafood evaluations prioritize
freshness and preservation levels; packaging and refrigeration efficiency are critical for ice
cream and dairy products; and freshness and sensitivity are paramount for aquatic and
live poultry products.

This analytical approach not only deepens our understanding of consumer prefer-
ences but also informs recommendations for product classification, packaging design, and
delivery methods in fresh food home delivery. For highly perishable items, enhanced
packaging and expedited shipping are advisable, whereas maintaining optimal tempera-
ture and humidity is crucial for items requiring freshness. By tailoring strategies to these
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insights, distributors can more effectively satisfy consumer demands, elevating service
quality, customer loyalty, and competitive edge.

Hence, as delineated in Table 1, consumers prioritize different attributes across fresh
food categories, leading to the distinction of two specific metrics for assessing fresh food
loss: perishability (σd) and vulnerability (σf ). Perishability (σd) gauges the speed at which
fresh products degrade in unsuitable conditions, while vulnerability (σf ) measures the
likelihood of damage during handling.

Table 1. Indicator system for characterization of fresh food categories.

Measurement
Dimensions

Fresh
Properties

Weighting of Evaluations

Leafy
Vegetables

Juicy,
Thin-

Skinned
Melons

Roots
and

Tubers
Fresh
Meat

Frozen
Meat and
Poultry

Live Fish
and

Fisheries

Live
Poultry

in
Captivity

Shrimp
and

Crab
Shells

Patisserie Frozen
Dessert Note

Perishable
(σd)

Perishability 0.35 Costliness
Norm

Insulation
Level 0.1 Effectiveness

Norm
Freshness 0.15 Effectiveness

Norm

Vulnerability
(σf )

Degree of
Vulnerability 0.25 Costliness

Norm

Freshness 0.15 Effectiveness
Norm

Given these attributes, we can establish a fresh food perishability index, TPmn, corre-
lating with the characteristics of each fresh food category. This index reflects the condition
of fresh products during delivery to a specific user, focusing solely on the product’s in-
herent loss potential due to its physical and chemical properties, independent of external
environmental factors. The index, TPmn, as a fusion of perishability (σd) and vulnerability
(σf ), offers a nuanced view of each category’s preservation challenges and susceptibility
to damage.

To simplify model construction while accommodating varying consumer priorities,
this study adopts expert scoring to define the characteristics of fresh food categories within
the index TPmn. Mathematically, it is represented as follows:

TPmn = wd ∗ σdm + w f ∗ σf m

where σdm and σf m are the perishability and vulnerability scores for category m, and wd and
w f denote the respective weights of these attributes. This formula effectively combines
perishability and vulnerability scores, weighted by their importance, to quantitatively
evaluate fresh product loss rates, enhancing prediction accuracy for distribution-related
wastage and its impact on consumer satisfaction. By employing this method, distributors
can better forecast and manage product wastage, refining delivery strategies to boost
consumer satisfaction.

2.2. Supply: Impact of Porter Attributes on Delivery Scheduling

Effective fresh food delivery hinges on minimizing loss rates and maximizing efficiency
to enhance customer satisfaction and reduce operational costs for the provider. To achieve
this, delivery services must strategically allocate third-party porters, considering the nature
of various fresh food items and anticipated weather conditions. Key to this strategy is the
assessment of porter attributes and their available delivery equipment, ensuring alignment
with the specific requirements of each order.

Porters today are outfitted with specialized equipment for diverse delivery scenar-
ios. For instance, those equipped with refrigeration units are invaluable for transporting
temperature-sensitive items during hot weather. Selecting porters with advanced cooling
technology is crucial for maintaining the freshness of highly perishable goods. Additionally,
a porter’s delivery speed and order acceptance rate are crucial factors influencing overall
delivery effectiveness and product preservation.
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Assuming consistent product quality, the delivery service’s role is to meticulously
match orders to porters based on product characteristics and current weather, optimizing
service quality and cost-efficiency. As shown in Table 2, we give an example of the porter
attributes. Consider a hypothetical porter with specific attributes: load capacity wei, impact-
ing the volume of deliveries; average speed vi, which influences delivery timeliness and
temperature-sensitive product loss (faster speeds mitigate ambient temperature effects, re-
ducing spoilage); equipment cooling or insulating capabilities condi, crucial for maintaining
product quality in transit; and the cost per delivery coi, reflecting labor expenses only.

Table 2. Example of porter attributes table.

Attributes Porter 1 Porter 2 Porter 3 . . . Porter i

wei
vi

condi
coi

. . . . . .

By analyzing and selecting porters based on these attributes, a delivery service can
assign orders to the most suitable personnel. For example, orders requiring swift delivery
of refrigerated items should be assigned to quick porters with efficient cooling equipment.
Conversely, for products less affected by temperature, choosing porters with greater load
capacity but lower costs may be preferable. This strategic deployment of porters, tailored
to the nuances of each order, not only elevates the transport quality and efficiency for fresh
goods but also secures a competitive edge for the delivery service in a highly competitive
market. An illustrative table of porter attributes is presented below for reference:

3. Fresh Product Home Delivery Porter Scheduling Analysis and Metrics Characterization
3.1. Fresh Food Loss Rate Rbmn

Managing the loss rate is pivotal in fresh food home delivery, directly impacting
consumer satisfaction and operational efficiency. This study focuses on two critical aspects
to enhance the delivery scheduling model: the perishability and vulnerability of fresh food
categories and the variation in ambient temperatures during transit. The perishability
attributes indicate the potential for loss across different fresh product types, recognizing
that some items may spoil quickly in high temperatures or suffer damage from handling.
Ambient temperature changes, especially during distribution and the duration of transport,
also play a significant role in affecting loss rates.

By integrating these considerations, distributors can more precisely forecast and reduce
wastage of fresh goods, thus elevating service quality and strengthening market position.

3.1.1. Category Characteristics of Fresh Orders

Fresh products, encompassing fruits, vegetables, aquatic items, dairy, meats, and
prepared foods, exhibit distinct perishability and vulnerability characteristics. Perishability
describes the tendency of items like fruits, meats, and fish, which require refrigeration,
to spoil or degrade. Vulnerability, on the other hand, refers to the risk of damage during
transportation for delicate items such as premium fruits and dairy products. Assessing these
aspects allows for an understanding of attrition rates across different product categories.

To quantify these rates, we introduce an index, TPm, reflecting the wastage rate for
a specific category based on its perishability characteristics. This index, TPm, combines
perishability, vulnerability, and other relevant factors to determine each product’s loss
potential during delivery.
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Considering additional perishability attributes beyond perishability (σd) and vulner-
ability (σ f ), such as moisture level, compressive strength, and oxidation resistance, we
incorporate these into the category characteristic index TPm as a weighted sum:

TPm = wd ∗ σdm + w f ∗ σf m +
k

∑
i=1

wi ∗ σi

where wi represents the weight of the ith attribute and σi its score. This formulation reflects
the multifaceted nature of perishability and provides a comprehensive assessment of
wastage potential.

For an order containing multiple fresh product categories, the composite index TPmn is
derived by integrating individual category indices TPm, accounting for interactions among
different categories within an order. The overall characteristic index for order n, TPmn, is
calculated as follows:

TPmn =
n

∑
1
(ρi ∗

m

∏
j=1

σij)

where m is the number of categories in the order, σij the score of the ith category on the jth

attribute, and ρi a weighting factor reflecting the importance of each category in the order.
This comprehensive approach not only evaluates the loss potential of individual

categories but also the collective impact when combined in an order. By providing a
quantitative framework to predict and manage the overall attrition rate, TPmn aids distrib-
utors in identifying and mitigating risks in fresh food delivery, enhancing service quality
and efficiency.

3.1.2. Impact of Ambient Temperature Changes on Fresh Food Delivery

Understanding the loss rate in fresh food delivery requires consideration of both the
characteristics of the fresh food itself and the complex influence of ambient temperature
changes during transportation. The weather coefficient rw, representing the trend of
ambient temperature at the delivery time tn, and the transportation duration Tn, from the
distribution center to the consumer, are critical factors.

The weather coefficient rw indicates whether the temperature is likely to rise or fall at
a specific time tn. A positive rw suggests an increasing temperature trend, typically seen in
the morning, while a negative rw indicates a decreasing trend, common in the afternoon.
The rate of fresh food loss is thus influenced by the issuance time of the order, tn, and the
weather coefficient rw. During periods of stable high or low temperatures, rw becomes zero,
implying that the impact of weather on loss rates can be disregarded, focusing instead on
the inherent perishability of the food.

The relationship between the weather coefficient rw, transportation duration Tn, and
the resultant loss rate is not linear. Shorter Tn can mitigate losses even under rising
temperatures, while longer durations in less favorable conditions increase spoilage risk.

To quantify the effect of ambient temperature on fresh food loss rates accurately, we
introduce a new coefficient termed the “coefficient of ambient temperature change impact on
fresh food loss rate”, denoted as TRw(Tn, tn, rw). This coefficient, TRw = a(Tn) b(tn) c(rw),
encapsulates the combined effects of delivery timing, transportation length, and tempera-
ture trends on loss rates, providing a nuanced view of environmental influences on fresh
food logistics.

This model enables a more precise estimation of temperature-related losses, enhancing
the scheduling and management of fresh food deliveries to minimize spoilage and optimize
service quality.

3.1.3. Detailed Analysis of Fresh Food Loss Rate in Home Delivery

Incorporating discussions on fresh food order categories and environmental tempera-
ture fluctuations during delivery, this study develops a composite indicator for the fresh
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food loss rate Rbmn. This rate is influenced by two primary factors: the impact of fresh food
category characteristics within an order on loss rate, denoted as TPmn, and the effect of
ambient temperature changes, represented by TRw. The TPmn factor accounts for how the
perishability and fragility of different fresh food categories affect overall product loss. In
contrast, TRw combines transportation duration Tn and dispatch time tn into a function
that captures ambient temperature change impacts on loss rates. The fresh food loss rate
Rbmn is expressed as follows:

Rbmn = TPmn ∗ TRw

For instance, an order’s fresh food loss rate will depend on the collective perishability
traits of the included categories (TPmn) and the ambient temperature variations (TRw).
Specifically, TRw necessitates consideration of weather conditions at the delivery time
and anticipated transportation length. For example, orders dispatched during hot condi-
tions with lengthy transportation times imply a higher TRw and, thus, increased loss risk.
Conversely, rapid deliveries in mild conditions would lower the TRw risk.

Consider a hypothetical scenario with five different order types, as shown in Table 3,
each having unique category characteristics indices TPmn, and four potential dispatch
times. The interplay between these indices and corresponding weather coefficients (TRw)
influences the overall fresh food loss rate Rbmn as demonstrated in the table below:

Table 3. Example of order category characteristics and outgoing time weather coefficients.

Order Category
Characteristics

Weather Coefficient for Dispatch Time TRw
Fresh Food
Loss Rate

Rbmn
Heat Wave

TRw1

Hot
Spell

Cooling
Period

Low
Temperature

TRw4

TP mn1 (TP1, TR1) TP1 ∗ TR1
TP mn2
TP mn3
TP mn4
TP mn5 (TP5, TR4) TP5 ∗ TR4

This model considers both key factors—the perishable characteristics of the fresh food
category and ambient temperature changes—to calculate Rbmn. By precisely assessing these
elements, distributors can enhance their fresh food delivery services, reducing wastage,
boosting customer satisfaction, and maintaining competitive advantage.

3.2. Measuring Consumer Satisfaction Smn in Fresh Food Delivery

Consumer satisfaction, a critical metric for fresh food delivery success, influences
brand reputation and loyalty. Satisfaction hinges on delivery timeliness and the condition
of fresh products upon arrival. Shorter transportation times (Tn) typically boost satisfaction
by ensuring freshness, while extended delivery can diminish food quality, affecting the
consumer experience. Moreover, the fresh food delivery loss rate (Rbmn), indicating the
percentage of products lost or degraded during transit, directly impacts the quality and
quantity of products received by consumers, further influencing satisfaction levels.

Assuming an initial product quality (q) consistent across all categories upon entering
the distribution center, the fresh food loss rate (Rbmn) reduces quality from this baseline, af-
fecting overall consumer satisfaction. Satisfaction (Smn) is thus influenced by transportation
duration (Tn) and the loss rate (Rbmn).

We consider two scenarios for calculating satisfaction, incorporating the concept of an
expected delivery time window:

(i) On-time delivery. Here, satisfaction is a function inversely related to transportation
duration, where p is the duration–satisfaction coefficient (within [−1, 0]):

Smn = p ∗ Tn + q ∗ Rbmn = p ∗ Tn + q(TPmn ∗ TRw)
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(ii) Off-schedule delivery (early or late). Quality deterioration continues over time, raising
negotiation costs with the service provider. In such cases, satisfaction is modeled
as follows:

Smn = ε ∗ max{(αin − ltn), (αin − rtn)}

where ε is a parameter within [−1, 0], αin is the delivery completion time by porter
i to user n, and ltn and rtn represent the start and end of the consumer’s expected
delivery window, respectively.

Therefore, the consumer satisfaction function is detailed as follows:

Smn =

{
p ∗ Tn + q ∗ Rbmn, ltn ≤ αin ≤ rtn

ε ∗ max{(αin − ltn), (αin − rtn)}, ltn ≥ αin ∪ rtn ≤ αin

3.3. Analyzing Total Distributor Costs Cmni

In the unique domain of fresh food home delivery, distributors are confronted with
various cost components that are vital for maintaining service quality and competitiveness.
These costs include cold chain technology expenses, transportation and labor costs, and
compensation for any loss of freshness. Each cost directly influences the service’s quality
and efficiency, playing a pivotal role in sustaining customer satisfaction.

These are as follows:

(1) Technology costs (Cte). These costs cover all expenses related to preserving the
quality of fresh products, ensuring minimal wastage. This encompasses the upkeep
and operation of refrigeration systems, transport equipment, and technical support.
Technology costs are influenced by the porter’s equipment, where porters equipped
with advanced refrigeration systems, indicating higher technology attributes, incur
greater expenses for the distributor.

(2) Transportation Cost (Cd). This represents the porter’s labor costs per delivery. Porters
with better load capacity can transport more goods per trip, potentially reducing the
number of trips but incurring higher labor costs. However, this capability typically
leads to lower fresh food loss rates and heightened consumer satisfaction due to
decreased loss and enhanced timeliness.

(3) Compensation cost for freshness loss (Cb). This cost arises when consumer satis-
faction falls below a certain threshold, necessitating compensation for damages or
delays, such as refunds for severely damaged goods or delayed deliveries. Faster
porter speeds can diminish transportation times, reducing loss and, consequently,
compensation costs. Conversely, longer transport times increase the per-unit time loss
rate (Rbmn), raising the compensation expenses, which can be modeled as follows:

Cb = γ
TnRbmn

vi

where γ is a parameter reflecting the proportion of compensation cost in the total expense.

Combining these costs allows for a comprehensive distributor cost model, facilitating
strategic decision-making and optimization. This model aids in understanding the interplay
between different costs and their impact on the efficiency and economy of delivery services.
Through this multifaceted cost analysis, distributors can finely tune the balance between
cost and service quality, aiming for sustainability and profitability.

For a specific porter, the cost incurred by the delivery service is as follows:

Cmn = n ∗ (Cte + Cb + Cd) + coi

Hence, the proposed total cost model for distributors is expressed as follows:

Cmni = i ∗ (n ∗ (Cte + Cb + Cd) + coi)
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In order to simplify the research problem, this study builds a model based on the
following assumptions: (1) the supply of fresh food suppliers to the distributor is sufficient
and continuous; (2) when the distributor obtains fresh goods from the supplier, the initial
loss value of fresh goods is the same fixed value, and the porter will not cause loss of fresh
quality before obtaining the goods for departure; (3) the distributor assigns only one order
combination to a porter at a time, which contains multiple categories of fresh products, i.e.,
the order combination is similar to the distribution provider’s secondary combination of
user orders to maximize distribution efficiency.

4. Model Building and Numerical Analysis

In formulating this delivery scheduling model, the goal is to select appropriate porters
based on order characteristics to minimize transport loss rates, maximize service satisfac-
tion, and minimize costs. Below Table 4 is a detailed description of the parameters and
variables used in the model.

Table 4. Description of parameters and variables.

Parameters and Variables Description

i Porter index managed by the distributor
m Fresh product category index
n User order index
rw Weather coefficient indicating ambient temperature changes

tn
Dispatch time for order n after acceptance, marking

porter departure

Tn
Transport duration from order issue to user receipt, indicating

porter travel time

σ
Fresh food loss susceptibility based on product characteristics,

independent of transport time

wei
Load capacity for porter i indicating single shipment

order capacity
vi Speed of porter i

condi Insulation and refrigeration conditions for porter i
coi Cost of a single delivery for porter i

Rbmn
Fresh food loss rate, considering product category and

ambient temperature

TRw
Coefficient of ambient temperature impact on fresh food loss rate,

a function of Tmn and dispatch time tmn

TPmn
Index measuring in-order fresh product category impact on single

shipment loss rate by porter i
Cmni Total cost for distributor when scheduling deliveries to porter i

Smn
Service satisfaction of consumer m for delivery of fresh product m

by porter i

This study develops a multi-layered, time-windowed distribution scheduling opti-
mization model focusing on fresh food categories. The optimization objectives encompass
three main areas: (1) ensuring timely deliveries and maintaining fresh food quality and
quantity, thus boosting consumer satisfaction; (2) minimizing distributor costs to enhance
profitability; (3) lowering the fresh food loss rate to uphold overall logistics and distribution
quality, safeguarding food safety.

4.1. Objective Function

MinZ1 = Min
i

∑
1

wei
vi

Rbmn = TPmn ∗ TRw =
i

∑
1

m

∑
1

wei
vi

∗ ρ ∗
m

∏
1

σm ∗ f (tn, rw)# (1)

where: TRw = a(Tn) b( tn)c(rw)

MaxZ2 = Max
n

∑
1

nSmn (2)
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where: Smn =

{
p ∗ Tn + q ∗ Rbmn, ltn ≤ αin ≤ rtn

ε ∗ max{(αin − ltn), (αin − rtn)}, ltn ≥ αin ∪ rtn ≤ αin

MinZ3 = Min Cmni =
i

∑
1

n

∑
1

i ∗ (n ∗ (Cte + C b + Cd) + coi) (3)

where: Cb = γ TnRbmn
vi

.
The model comprises three objective functions, outlined from Equation (1) to Equation (3),

aimed at minimizing the fresh food loss rate, maximizing consumer service satisfaction,
and reducing the distributor’s total costs, respectively.

4.2. Constraints

This study addresses the Vehicle Routing Problem with Time Windows (VRPTW),
focusing on delivering goods from distribution centers to customers with varying demand
levels within specific timeframes. The objective is to optimize routes for distribution
personnel to fulfill customer demands efficiently under constraints, achieving minimal
distance and cost.

The VRPTW aims to balance multiple objectives under the following constraints:

(1) Time window constraint: all deliveries must be completed within the designated
time windows. Any deviation by a porter from a customer’s specified time window
(W(n)) contributes to the overall tally of time window violations, which represents
the cumulative number of instances where porters have failed to meet the time
window constraint.

(2) Porter’s cargo capacity constraint: at any given moment, the combined load of all
porters should not exceed the capacity constraints (Q(m)). This means that the sum of
all capacity violations, representing the total fresh food resources at the distributor’s
center, should be zero.

Considering the “last-mile” delivery to users, the aggregate capacity/order volume
for all porters cannot surpass the total inventory available, given the following constraints:

s.t. quan(i) =
i

∑
1

wei ∗ i ≤ Quan(i) (4)

w(n) =
n

∑
1

max{(αin − lrn), 0} ≤ W(n) (5)

where quan(i) represents the total capacity constraints exceeded during the delivery of
fresh food, and w(n) denotes the aggregate time window constraints breached by all orders.
αin indicates the time a porter i takes to deliver an order n from the distribution center to the
specified user. The term lrn refers to the duration within a user n’s designated delivery time
window. Equation (4) applies constraints to the cost variables identified in Equation (3),
while Equation (5) imposes limitations on the satisfaction metrics outlined in Equation (2).

4.3. Algorithms

This model tackles a multi-objective optimization problem with inherent constraints,
typifying an NP-hard problem. Given the complexity, exact algorithms are impractical due
to their extensive computational demand. Hence, heuristic methods, particularly stochastic
algorithms, are preferred for their ability to escape local optima and strive for a global
solution. Techniques like Simulated Annealing, Tabu Search, Genetic Algorithms, and Ant
Colony Optimization are utilized for their effectiveness [23,24]. Among these, the Genetic
Algorithm (GA) stands out for its applicability to integer programming problems involving
0–1 variables. Its advantages include not requiring function continuity or differentiation,
possessing excellent global optimization capabilities [25], and exhibiting self-organization,
adaptation, and learning traits [26,27], making it especially suitable for this model.
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The GA process involves the following, as shown in Figure 3:

(1) Initialization. The algorithm initiates with a population of potential scheduling strate-
gies, where each solution delineates a specific dispatch of porters to fresh product
orders contingent on their perishability levels. In this study, real-number encoding
is utilized to generate a set of potential solutions. The chromosome length is deter-
mined by the total decision variables, I × M, indicating the selection of fresh product
categories by porter i for order m. The population size is set at 200, providing a broad
range of solutions.

(2) Genetic operations This phase encompasses several operations to evolve the population:

a. Crossover (probability of 0.9): this operation fuses the genetic information from
pairs of parent solutions to produce offspring, aiming to amalgamate beneficial
traits for an effective match of porters to orders based on perishability.

b. Mutation (probability of 0.6): this phase involves a series of processes to dy-
namically evolve the population, including crossover, mutation, blending with
the parental population, and assessing the fitness of each individual.

c. Evaluation: following crossover and mutation, the offspring form a new popu-
lation that is assessed alongside the initial parental group, creating a diverse
genetic pool that balances stability and innovation. Mirroring the natural
selection process, the evaluation phase is crucial for ensuring that superior
individuals prevail. In this context, each chromosome is assigned a fitness value
reflecting its effectiveness in meeting the objective function. The higher the
fitness value, the higher the likelihood of that individual being carried over to
the subsequent generation. This selection is predicated on the fitness values,
where individuals are chosen to be parents for the next generation based on
their demonstrated fitness.

(3) Selection: upon calculating the fitness values for all chromosomes, selection is con-
ducted using strategies like roulette-wheel and elitism, ensuring a balanced prop-
agation of advantageous traits. The algorithm selects the most apt solutions from
the merged population, emphasizing those schedules where porters are optimally
matched with orders based on perishability, thus minimizing spoilage and maximizing
logistical efficiency.

(4) Termination: the algorithm iterates through these genetic operations until it achieves
300 iterations, a predefined threshold ensuring a comprehensive exploration of the
optimal scheduling solutions under the specified perishability considerations.

The objective functions, addressing both minimization and maximization challenges,
are converted to minimization problems for simplicity. The conversion is as follows:

MinZ1 = Min
(

∑
(

wei
vi

∗ Rbmn

))

MaxZ2
′ = Min

(
1

∑(n ∗ Smn)

)
MinZ3 = Min

(
∑(i ∗ (n ∗ (Cte + Cb + Cd) + coi))

)
To account for the scale differences between objective functions, they are made di-

mensionless, enabling the conversion of a multi-objective problem into a singular objective
function by assigning appropriate weights [28,29]. These weights adapt based on the
decision-making context. For instance, increased emphasis on the fresh food loss rate might
occur following frequent customer complaints, while strict cost control measures would
prioritize minimizing delivery costs.
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A linear weighting approach amalgamates the three objective functions into a singular
minimization problem. Assuming weights λ1, λ2

′, and λ3 (satisfying λ1 + λ2
′ + λ3 = 1), the

aggregated objective function Z can be formulated as follows:

Z = λ1 ∗ MinZ1 + λ2
′ ∗ MaxZ2

′ + λ3 ∗ MinZ3

Therefore, linearly integrating the transformed objective functions, the model’s objec-
tive function simplifies to the following:

Z = λ1 ∗ (Min (∑(wei
vi

∗ Rbmn))) + λ2
′ ∗ (Min ( 1

∑(n∗Smn)
)) + λ3

∗(Min (∑(i ∗ (n ∗ (Cte + Cb + Cd) + coi))))
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To manage constraints, a penalty function is introduced, transforming constrained
issues into unconstrained ones by incorporating a term proportional to the violation degree
into the objective function. Utilizing a quadratic penalty function,

P(x) = β ∗
m

∑
j=1

max
(
0, gj(x)

)2
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Here, β signifies a substantial positive penalty factor, and gj(x) represents the jth

constraint. If gj(x) ≤ 0, constraints are met, and the penalty is null; otherwise, a positive
penalty reflects constraint violations. For the identified constraints, the penalty function
can be detailed as follows:

P(x) = β ∗
(

max(0, quan(i)− Quan(i))2 + max(0, w(n)− W(n))2
)

Incorporating these penalty terms modifies each objective function as follows:

1. For MinZ1:

MinZ1 = Min
(

∑
(

wei
vi

∗ Rbmn

)
+ P(x)

)
2. For MaxZ2:

MaxZ2 = Max
(
∑(n ∗ Smn) + P(x)

)
3. For MinZ3:

MinZ3 = Min
(
∑(i ∗ (n ∗ (Cte + Cb + Cd) + coi)) + P(x)

)
The penalty factor β is chosen to ensure adherence to constraints throughout the

optimization, with the penalty function and parameter settings significantly influencing
the solution’s efficacy and outcome quality.

4.4. Numerical Study

Utilizing the algorithmic framework discussed, a simulation was performed to evalu-
ate porter scheduling in various delivery scenarios, considering distinct fresh food cate-
gories and ambient temperature variations. As shown in Table 5, the simulation features
four orders with unique category characteristics, each exhibiting a varied loss rate due to
the combined effects of fresh food type and temperature. These orders are denoted by TP1
to TP4, while five available porters are represented as i1 to i5. Each porter is assigned to
deliver these orders based on their specific attributes, such as speed, capacity, insulation
conditions, and cost. For simplicity, all parameters were normalized.

Table 5. Example of order loss rates in fresh home delivery.

Porter Departure
Time Temperatures

TR1 TR2 TR3 TR4

Category-Based
Orders for

Characteristics

TP1 (TP1, TR1)
TP2
TP3
TP4
TP5 (TP5, TR4)

This table integrates fresh food category traits with the ambient temperatures faced
during delivery, setting the basis for calculating order attrition rates, denoted as R1 to R4.
An optimized delivery strategy is then crafted based on each porter’s attributes.

Table 6 presents a genetic-algorithm-based optimization example for a delivery service.
The specific numerical values presented in this table are randomly generated; however,
the range and scope of these values were determined through consultations with industry
experts and internal stakeholders to ascertain the pertinent dimensions and parameters
for delivery service performance. This table details the performance metrics for differ-
ent porters (i1 to i5) handling orders with varying fresh food loss rates (R1 to R4). The
metrics include product wear rate, service satisfaction, and total service cost, providing a
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comprehensive view of each porter’s effectiveness in delivering the orders. Product wear
rate indicates the percentage of products likely to deteriorate or spoil during delivery. For
instance, porter i5 handling order R1 has a wear rate of 0.85, suggesting a high likelihood of
product spoilage, potentially due to longer delivery times or inadequate storage conditions.
Service satisfaction measures the customer’s satisfaction level with the delivery service,
factoring in timeliness, product condition upon arrival, and overall service experience. For
example, porter i5 for order R2 scores 0.85 in service satisfaction, implying a very positive
customer reception, possibly due to exceptional delivery performance. Total service cost
reflects the economic efficiency of the delivery service, encompassing fuel, labor, and other
logistical expenses. A lower score indicates a more cost-effective service. For instance,
porter i5 with order R1 shows a total cost of 0.43, denoting efficient delivery at a lower cost.

Table 6. Porter delivery service parameters case.

Orders with
Different Loss

Rates
Porters Product Wear

Rate
Service

Satisfaction
Total Service

Cost

R1

i1 0.71 0.55 0.55
i2 0.60 0.70 0.47
i3 0.71 0.69 0.49
i4 0.76 0.64 0.67
i5 0.85 0.83 0.43

R2

i1 0.54 0.63 0.56
i2 0.60 0.67 0.50
i3 0.63 0.71 0.65
i4 0.62 0.76 0.50
i5 0.76 0.85 0.57

R3

i1 0.52 0.67 0.64
i2 0.54 0.62 0.69
i3 0.48 0.66 0.73
i4 0.54 0.64 0.66
i5 0.58 0.73 0.75

R4

i1 0.57 0.68 0.69
i2 0.55 0.69 0.64
i3 0.51 0.63 0.63
i4 0.52 0.71 0.65
i5 0.70 0.80 0.55

The table facilitates a multi-dimensional evaluation of the delivery service, where
decision-makers can analyze and select the optimal porter for each order type based on a
balance of wear rate, satisfaction, and cost. For example, while porter i5 may have a high
product wear rate for R1 orders, this is counterbalanced by high service satisfaction and
low total service cost, suggesting a trade-off between the risk of product spoilage and high
customer satisfaction with cost efficiency. Next, we will use a genetic algorithm to solve
this numerical study case.

The optimization problem aims to balance the minimization of fresh loss rate, max-
imization of consumer satisfaction, and minimization of distributor costs, with weights
of 0.4, 0.4, and 0.2, respectively. In this study, the optimization problem is framed as a
multi-objective endeavor, prioritizing the minimization of fresh loss rate and the maximiza-
tion of consumer satisfaction, each assigned a weight of 0.4, alongside the minimization
of distributor costs with a weight of 0.2. This equal prioritization of fresh loss and con-
sumer satisfaction underscores the business’s strategic focus on mitigating perishable
goods’ spoilage while enhancing client contentment. The allocation of weights is a strategic
decision, reflecting a nuanced balance between maintaining product integrity and ensur-
ing high customer satisfaction. It stems from an in-depth analysis of the business model,
wherein reducing perishable losses and achieving high customer satisfaction are seen as
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crucial drivers of operational success and market competitiveness. The chosen weights,
indicative of the business’s operational focus, are substantiated by empirical insights gained
through extensive industry research and direct consultations with companies engaged
in perishable goods management. This approach is supported by the literature, such as
the study by Liang et al. (2023), which discusses the importance of balancing objectives
like fresh loss minimization and consumer satisfaction in multi-objective optimization
for perishable goods delivery [30], and the work by Bortolini et al. (2016) that examines
the design of multi-modal fresh food distribution networks, emphasizing the need for
a balanced consideration of cost and service quality [31]. These references highlight a
deliberate strategy to optimize both product quality and consumer experience in the com-
petitive landscape, confirming the relevance of the chosen weight distribution in reflecting
real-world operational priorities.

Using MATLAB_2021b, the algorithm parameters were meticulously determined
through extensive iterative processes, resulting in a population size of 200, a crossover
probability of 0.9, a mutation probability of 0.6, and a total of 300 iterations. These parame-
ters were validated for their efficacy and appropriateness in achieving optimal algorithm
performance. After 50 algorithm runs, the average iteration time was 1.77 s, indicating high
computational efficiency. Upon convergence, the optimal fitness value averaged 1.22822,
demonstrating stable results and robust algorithm performance. The best scheduling
yielded objective function values of 0.35 (fresh loss rate), 2.43 (consumer satisfaction), and
0.36 (distributor cost). Figures 4 and 5 depict the convergence of model fitness and objective
functions, with Table 7 outlining the optimal scheduling strategy.
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Orders with Different Loss Rates R1 R2 R3 R4

Porter Selection i1 i1 i2 i3
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The optimal scheduling outlined in Table 7 demonstrates the strategic selection of
porters for orders characterized by varying fresh food loss rates. This approach highlights a
meticulous pairing of porters’ unique capabilities with the specific demands of the orders.

Specifically, based on this table of results, we can examine an example of a real-world
scenario. In an urban setting characterized by a robust demand for fresh products, a
delivery firm specializing in perishable goods navigates the challenge of minimizing food
spoilage whilst adhering to stringent delivery timelines. The optimal scheduling strategy,
as delineated in Table 7, encapsulates the firm’s strategic acumen in allocating porters to
orders based on varying rates of fresh food loss, thereby optimizing service delivery. The
firm’s operational tactics are exemplified in the allocation of porter i1 to orders with loss
rates R1 and R2. This selection is predicated on i1’s demonstrated proficiency in managing
items with high perishability, such as ripe berries and leafy greens. The porter’s vehicle,
equipped with advanced cooling technologies, ensures the freshness of these goods during
transit. Additionally, i1’s adept navigation through the city’s traffic network facilitates the
expedited delivery of these perishables, minimizing time in transit and, hence, the potential
for spoilage. For orders exhibiting a loss rate R3, the company strategically selects porter
i2, who excels in servicing peripheral urban areas where longer transit times prevail. i2’s
expertise in durable packaging and rural route navigation makes him ideally suited for
transporting slightly more resilient perishables, such as whole grains and root vegetables,
ensuring their freshness upon delivery. In addressing the most susceptible orders with loss
rate R4, the firm entrusts porter i3, renowned for handling temperature-sensitive produce
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like exotic fruits. i3 leverages specialized containment systems that maintain consistent
internal conditions, counteracting external temperature variances. His comprehensive
understanding of the city’s microclimates informs the meticulous planning of delivery
routes, circumventing areas prone to thermal anomalies.

This targeted scheduling strategy, founded on a deep understanding of both porter
attributes and order needs, aims to enhance delivery efficiency and service quality. By
judiciously matching orders with the most appropriate porters, the strategy not only
curtails wastage and elevates customer satisfaction but also boosts the delivery service’s
overall operational efficiency. This meticulous resource allocation ensures optimal service
performance, leveraging advanced models and algorithms to address the challenges of
fresh home delivery under variable environmental temperatures effectively.

5. Discussion
5.1. Sensitive Analysis

Fresh food home delivery reflects the burgeoning prosperity of the new retail industry,
attracting significant attention from the logistics sector, consumers, and broader societal
stakeholders. However, the inherent challenges, particularly the stringent requirements for
storage and transportation to preserve product quality, cannot be overlooked. Traditional
distribution methods often fall short in addressing these demands, with the dynamic
changes in ambient temperature posing a notable challenge to maintaining fresh product
quality and transportation efficiency—a factor commonly underestimated.

In this section, the machine learning random forest method is utilized as a surrogate
model (or proxy model) to conduct sensitivity analysis on the original study and to assess
the outcomes using the SHAP framework. While random forests are typically employed for
predictive or classification endeavors, in this context, they serve as a proxy to emulate the
genetic algorithm’s operational dynamics. This surrogate modeling facilitates a nuanced
understanding of the impact of various input variables on the genetic algorithm’s output
(Jiang Wang et al., 2020; S.A. Naghibi et al., 2017; H Norouzi et al., 2021) [32–34].

Within the ambit of multi-objective optimization modeling, the construction of a surro-
gate model coupled with SHAP analysis necessitates a sequence of methodical procedures.
Initially, this encompasses data generation, then it transitions into surrogate modeling, and
finally culminates in conducting SHAP analysis, as depicted in Figure 6.
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Table 8. Descriptive statistics for the training dataset. 

 Iteration Feature 1 Feature 2 Feature 3 Feature 4 Fitness Value 
Count 60,000 60,000 60,000 60,000 60,000 60,000 
Mean 150.5 1.258667 1.330167 1.3746 1.384 2.555106 

Std 86.60278 0.746146 0.808435 0.863069 0.850484 0.070953 
Min 1 1 1 1 1 2.43 
25% 75.75 1 1 1 1 2.53 
50% 150.5 1 1 1 1 2.53 
75% 225.25 1 1 1 1 2.53 
Max. 300 5 5 5 5 3.12 

The Iteration column records each iteration of the genetic algorithm, serving as a 
marker to trace the algorithm’s progression and iterative dynamics, albeit not directly em-
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1. Data generation. This process initiates with the operation of a multi-objective opti-
mization model, such as a genetic algorithm, under varied parameter configurations
or weightings to produce a comprehensive dataset. This dataset comprises input
parameters and their corresponding optimization outcomes, the latter representing
the values derived from the multi-objective optimization endeavor.

2. Surrogate modeling. Subsequently, a machine learning model, akin to a random forest,
gradient boosting machine, or neural network, is selected based on its congruence
with the optimization model’s dynamics, serving as a surrogate model. This model
aims to mimic the behavioral attributes of the original multi-objective optimization
framework, trained on the dataset generated earlier, with the input parameters as
features and the optimization outcomes as target variables.

3. Conducting SHAP analysis. Upon model training, the SHAP library aids in quan-
tifying the individual impact of each input feature on each optimization objective’s
output. Through SHAP value summary and dependency plots, the critical input
parameters and their effects on the optimization results are elucidated.
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In this section, we aligned with the genetic algorithm execution detailed in the pri-
mary study, especially referencing the algorithm’s data input in Table 6, to interpret and
leverage the genetic-algorithm-generated data. Utilizing MATLAB, we exported the itera-
tive data from the genetic algorithm into a CSV file, forming the basis for the subsequent
SHAP analysis.

1. Descriptive statistics. Our dataset comprises 60,000 data entries, each including
variables such as Iteration, Feature 1, Feature 2, Feature 3, Feature 4, and Fitness Value.
The following Table 8 is the descriptive statistics chart for this dataset.

Table 8. Descriptive statistics for the training dataset.

Iteration Feature 1 Feature 2 Feature 3 Feature 4 Fitness Value

Count 60,000 60,000 60,000 60,000 60,000 60,000
Mean 150.5 1.258667 1.330167 1.3746 1.384 2.555106

Std 86.60278 0.746146 0.808435 0.863069 0.850484 0.070953
Min 1 1 1 1 1 2.43
25% 75.75 1 1 1 1 2.53
50% 150.5 1 1 1 1 2.53
75% 225.25 1 1 1 1 2.53
Max. 300 5 5 5 5 3.12

The Iteration column records each iteration of the genetic algorithm, serving as a
marker to trace the algorithm’s progression and iterative dynamics, albeit not directly em-
ployed as a predictive feature in the random forest model. Columns like Feature 1, Feature 2,
. . . Feature 4 represent decision variables optimized within the genetic algorithm frame-
work. These variables are treated as input features in the random forest model, facilitating
the construction of the model and prediction of the objective function value. Fitness Value
enables the simulation and analysis of the optimization process of the genetic algorithm.

2. Meaning of feature values. In this context, Features 1 to 4 are assigned specific busi-
ness implications, signifying the loss rates of different orders and pivotal decision
variables in the multi-objective optimization model. For instance, Feature 1 correlates
with the loss rate or related parameters of the first order, providing a quantified
depiction of its loss scenario. This not only reflects the actual physical loss but also
encompasses the comprehensive impact of order loss on aspects like cost, time, and
customer satisfaction. Similarly, Feature 2 is associated with the second order’s loss
rate or parameters, unveiling the characteristics and performance metrics of that order
within the optimization process executed by the genetic algorithm. The same applies
to Features 3 and 4. These features vividly display the loss scenarios of fresh product
orders under the combined influence of weather conditions such as temperature,
humidity, ventilation, delivery timing and duration by the delivery personnel, and
the internal variety of fresh products within the orders. Utilizing the dataset extracted
from the genetic algorithm, these features simulate varying business scenarios, afford-
ing the model an opportunity to explore the optimization landscape. In the random
forest model, these features are harnessed as input variables with the aim of predicting
an aggregated objective variable related to the order, such as total loss rate, distributor
cost, and key business performance indicators like customer satisfaction. Through
this approach, the random forest model elucidates how different order features collec-
tively impact the optimization objectives, offering a crucial perspective for a deeper
understanding of the genetic algorithm’s optimization process.

We employed the SHAP function in Python 3.11.5 to analyze a random forest surrogate
model, with X_train representing the input features and y_train the output of the opti-
mization model. The random forest regressor served as the surrogate model, instantiated
in Python as shap.TreeExplainer. Once the surrogate model was trained, we proceeded
to generate summary plots of the SHAP values. Figure 7, entitled SHAP summary plot,
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characterizes the impact of various features on the predictive output within a machine
learning model. The SHAP values are based on the Shapley values from cooperative game
theory and provide a rigorously unbiased metric on the contribution of predictions. They
calculate each feature’s contribution through its average marginal contribution [35].
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In Figure 7, the horizontal axis displays the SHAP values, quantifying how these
feature values influence the model’s output. Negative SHAP values indicate that a feature
decreases the model prediction, whereas positive SHAP values signify an increase in
predicted values. As Figure 7 shows, Feature 1 exhibits a relatively wide distribution
of SHAP values, indicating significant variability in its impact on model output across
different instances. Features 2, 4, and 3 predominantly show a propensity towards the
positive direction, suggesting they generally exert a positive influence on model output.
Notably, the majority of SHAP values for Features 2 and 4 are positive, hinting that higher
values of these features tend to increase the prediction outcome. In contrast, Feature 3 has
a minimal impact, with its SHAP values clustering near zero, signifying a relatively lower
influence on the model’s output.

5.2. Model for Combined Fresh Product Loss Rate Considering Other Weather Conditions

Building upon the previous discourse on ambient temperature, this section broadens
the scope to an integrated loss rate for fresh products. The loss rate is governed by
a complex interplay of various factors such as temperature, humidity, and ventilation
through nonlinear and dynamic interactions. For instance, high humidity may accelerate
the degradation and weight reduction of certain types of fresh products, particularly under
optimal temperature conditions or inadequate ventilation. Initially, our investigation was
solely concentrated on the impact of ambient temperature and time duration. Therefore,
to evaluate the preservation status of fresh products more precisely during delivery, we
advocate for the amalgamation of these weather elements into a comprehensive metric
known as the integrated loss rate. This facilitates a more thorough depiction of the risk of
loss for fresh products during transportation, and our preliminary model remains relevant
for subsequent solution processes.

The integrated loss rate transcends the mere cumulative average of individual factors
like temperature, humidity, and ventilation. It rather considers these factors in unison,
assessing the overall loss rate from a systemic perspective. This integrated loss rate em-
bodies a multi-tiered, multi-dimensional evaluation system. Practically, it is imperative to
consider the interplay and potential conflicts among various weather elements, as well as
the exponential effects of their collective impact, thus precluding the simplistic assignment
of weights. Incorporation of the elasticity coefficient method, an economic tool for gauging
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the influence of variations in one indicator on another, might be beneficial. Hirschberg, Lye,
and Slottje (2008) examined inferential methods for estimating elasticity, contributing to a
deeper comprehension of demand sensitivity and elasticity within economic models [36].
Another study by Chattoe, Saam, and Möhring (1997) addressed the issues and prospects
of sensitivity analysis in the social sciences, specifically highlighting the applicability of the
elasticity coefficient in quantifying the impact of variable changes within models [37]. The
quantification method for the elasticity coefficient is expressed as ω =

∣∣∣∆X
X / ∆Y

Y

∣∣∣ ∗ 100%,

where ∆X
X represents the rate of change in a specific weather condition and ∆Y

Y signifies
the change in the integrated loss rate caused by this weather condition element at the
same moment.

When multiple weather factors, including temperature, humidity, and ventilation, are
considered concurrently, the elasticity coefficient of each weather element, ωk, is defined
as ωk =

∣∣∣∆Xk
Xk

/ ∆Y
Y

∣∣∣ ∗ 100%, where ωk ranges between 0 and 1 (ωk ∈ [0, 1]) and k belongs
to the set K, representing the quantified dimensions of weather conditions. The term uk
denotes the weight of the impact of different weather elements on the integrated loss rate,
calculated based on their respective elasticity coefficients to ensure that their contribution
to the integrated loss rate is proportional to their relative change. This can be computed as
uk =

ωk
∑K

k=1 ωk
. Here, the denominator represents the sum of the elasticity coefficients of all

weather elements, ensuring that the sum of all uk equals 1, thereby facilitating the accurate
allocation of weights.

For all weather elements, the model construction adheres to the methodology outlined
in Section 3, which addresses the modeling of ambient temperature. This approach involves
defining the instantaneous state of weather elements, such as humidity and ventilation, at
the departure time tn of the delivery personnel, assessing whether conditions like increasing
humidity or improved ventilation prevail. The initial loss rate, TPmn, remains applicable
to the integrated loss rate model, signifying the baseline loss rate of the fresh product
orders without accounting for the influence of weather factors. This rate is influenced by
the departure time tn and the category m of fresh products. In this context, the integrated
loss rate model further contemplates the characteristics of fresh product categories within
each order, acknowledging that different categories are affected distinctly by temperature,
humidity, and ventilation. The considerations for temperature fluctuations presented in
Section 3.1.2 are now extended to encompass all weather elements.

Referring to the principal study, the effect of departure time and transportation du-
ration on fresh product orders, initially denoted as TRw, is here considered as TR wk for
all weather factors. Incorporating elasticity coefficients and weights into the computation
of the integrated loss rate engenders a more dynamic and realistic model that mirrors
actual conditions. Following the discussion, the integrated loss rate can be articulated
as Rbk = TPmn ∗ ∑K

k=1(uk ∗ TRwk), where TPmn represents the foundational loss rate un-
affected by weather elements and TRwk acts as the loss adjustment coefficient for each
specific weather element, reflecting its actual impact on the loss of the fresh products.

Based on this integrated loss rate model, subsequent efforts can be directed towards
employing the solution algorithm developed in this study to optimize the scheduling
of delivery personnel for fresh products. This approach facilitates a strategic allocation
of delivery resources, ensuring that perishable goods are transported efficiently while
minimizing the risk of spoilage and loss during transit.

6. Conclusions

Fresh food home delivery reflects the burgeoning prosperity of the new retail industry,
attracting significant attention from the logistics sector, consumers, and broader societal
stakeholders. However, the inherent challenges, particularly the stringent requirements for
storage and transportation to preserve product quality, cannot be overlooked. Traditional
distribution methods often fall short in addressing these demands, with dynamic changes
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in ambient temperature posing a notable challenge to maintaining fresh product quality
and transportation efficiency—a factor commonly underestimated.

In conclusion, this study delves into the impact of ambient temperature on the quality
of fresh food distribution, uniquely capturing fresh food distribution attributes against
the backdrop of ambient temperature and the demand for specific categories of products,
establishing a core metric for evaluating fresh food wastage rates.

This study developed a multi-objective fresh product delivery scheduling optimization
mathematical model, focusing on core factors directly linked to fresh product distribu-
tion. The model introduces three competing optimization goals: timely delivery to ensure
product quality and customer satisfaction, cost minimization for distributor profitability,
and reduced fresh product loss rate to maintain overall logistics quality and food safety.
Utilizing a genetic algorithm for its global search capabilities, the model addresses the
complexities of the multi-objective optimization problem effectively. Simulation results
demonstrated the model’s robustness and the algorithm’s efficiency, offering optimal
scheduling strategies that reduce loss and enhance customer satisfaction, thereby improv-
ing overall delivery service efficiency. In addition, this study continues to validate the
effectiveness of the model using a machine learning random forest alternative model as
a sensitivity test. The study also contemplates an integrated model that encompasses
weather elements such as temperature, humidity, and ventilation, rendering the model
more comprehensively applicable to real-world scenarios.

This study provides a comprehensive framework for assessing and optimizing fresh
product delivery services, marking a significant theoretical and methodological contribution
to cold chain logistics and intelligent distribution systems. However, future research
should address the study’s limitations, such as refining temperature fluctuation modeling
and extending the model’s applicability to various geographic and seasonal contexts.
Additionally, developing more efficient algorithms and conducting empirical studies will
be crucial for enhancing the model’s practical utility and validating its effectiveness in
real-world applications.
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