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Abstract: To improve the nitrogen removal and reduce the chemical oxygen demand (COD) of a full-
scale wastewater treatment plant, two sequential batch reactor devices were used to treat chemical
wastewater with biocarriers in low carbon-to-nitrogen (C/N) ratio conditions. The results showed that
the addition of biocarriers to the anoxic tank reduced the average concentration of COD in the effluent
from 98.1 mg/L to 80.7 mg/L and increased total nitrogen (TN) removal by 9.4%. Metagenomic
sequencing was performed to study the composition and function of microbial community samples
taken from anoxic sludge and anoxic-carrier biofilms in this wastewater treatment plant. The results
showed that Proteobacteria and Actinobacteria were the dominant phyla in the two samples, ensuring
their capability for organic matter removal. The anoxic-carrier biofilms were mainly enriched with
denitrifying bacteria such as Thauera (10.7%) and Comammonas (2.2%) and the anammox bacteria
Candidatus Kuenenia (0.03%). Meanwhile, the nitrogen metabolism pathway was elaborated and the
abundance of the functional genes involved in the nitrogen metabolism pathway was quantified.
In addition, results from qPCR showed increased copy numbers of denitrification and anammox
genes in the anoxic-carrier biofilms compared to those in the anoxic sludge, further confirming the
enrichment of functional bacteria.

Keywords: biocarriers; metagenomic sequencing; microbial community; nitrogen metabolism pathway

1. Introduction

The chemical industry is an integral part of modern industrial chain supply chains;
however, wastewater is usually produced by chemical processes. Chemical wastewater
has diverse sources and complex compositions. This study focused on the treatment of
wastewater from hydrogen peroxide production, which contains a variety of nitrogen-
containing pollutants and refractory organic pollutants, including harmful substances
such as ammonium salt, 2-ethylanthraquinone, trioctylphosphate, and heavy aromatic
hydrocarbons. These pollutants pose serious threats to both the ecological environment of
water bodies and public health. Therefore, the treatment of such wastewater is an important
challenge for sustainable development and water recycling.

The anoxic/aerobic (AO) process is a popular chemical wastewater treatment method
because it is simple, effective, and eco-friendly. Conventional activated sludge (CAS) is usu-
ally employed for biological nitrogen removal from sewage [1,2]. However, its performance
is often influenced by factors such as temperature fluctuations, sludge bulking, carbon
source type, and influent load, which may inhibit the growth activity of microorganisms
and lead to poor denitrification efficiency. In light of increasingly stringent wastewater
discharge standards [3], some improvements to the AO process have been proposed to
boost the efficiency of wastewater treatment. To reduce the requirement for carbon sources,
free nitrous acid (FNA) sludge treatment and dissolved oxygen (DO) control have been com-
bined to achieve partial nitrification and denitrification in an assessment of a continuous
flow system (aerobic-anoxic-aerobic process) with real wastewater [4]. Some studies have
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proposed operation modes for a step-feed anoxic/oxic (AO) process with the distribution
of the carbon source from the anaerobic zone in terms of the treatment effects on sewage
with low carbon and high nitrogen and phosphorus. At the optimal flow distribution
ratio, the highest microbial abundance and treatment removal efficiency were achieved [5].
However, these studies mainly focused on the process performance and optimization side,
while the microbial community side was overlooked to a certain extent. Therefore, there is
potential for optimizing the AO process for microbial enrichment. The moving-bed biofilm
reactor (MBBR) process has attracted considerable attention since its initial development in
Norway during the early 1990s for organic matter and nitrogen removal purposes [6]. It
has proven to be an effective treatment technology which provides a suitable environment
for the adhesion and growth of microorganisms by adding biological carriers to the system.
Thus, the MBBR system has increased the number of active microorganisms, leading to
excellent treatment efficacy [7] and high shock resistance. The combination of the MBBR
and AO processes effectively makes up for the shortcomings of CAS, offering improved
flexibility. Consequently, it has found widespread adoption in upgrades of municipal and
industrial wastewater treatment plants.

The biocarrier is the core component of the MBBR system, where microorganisms
attach and form a complex community, contributing strongly to nitrogen removal [8]. The
composition of the microbial community directly affects the nitrogen conversion efficacy.
Therefore, it is imperative to study factors affecting microbial composition and function.
Currently, sequencing technologies like qPCR and 16S rRNA have provided methods
for in-depth analysis of microbial communities [9]. However, 16S rRNA sequencing
provides little information on functional genes. Metagenomic sequencing has emerged as
an effective tool widely used for analyses of various environments like soil, laboratory-scale
wastewater systems, and municipal wastewater treatment plants. Chen [10] employed
metagenomic technology to study the mechanism of complete nitrification under conditions
of low nitrogen and DO concentrations. Employing metagenomic analysis, Zhu [11]
investigated the impact of different biocarriers on municipal sewage treatment using MBBR
systems. Therefore, metagenomic analyses are necessary tools for understanding the
bacterial composition and functional gene classes of the MBBR system.

In China, the adoption of MBBR is still in the initial stage, and there is a lack of relevant
research on both theoretical and practical aspects of the technology. In this study, MBBR
technology was applied to the traditional AO treatment process of hydrogen peroxide
wastewater to improve the denitrification and COD removal effects of the wastewater, and
this proved to be an effective biological method for the efficient treatment of hydrogen
peroxide wastewater. A laboratory-scale anoxic/aerobic moving-bed biofilm reactor (AO-
MBBR) system was built and studied with real wastewater to simulate industrial-scale
nitrogen and organics treatment. Metagenomic sequencing and qPCR were used to study
the composition of the bacterial community in different biochemical tanks, functional genes
and pathways related to nitrogen metabolism, and their effects on wastewater nitrogen
removal, providing reference data and microscopic interpretation for nitrogen removal by
AO process.

2. Materials and Methods
2.1. Reactor Setup and Operation

This study focused on the treatment of chemical wastewater from a local hydrogen
peroxide production plant (Changzhou, China). Currently, the anaerobic/anoxic/oxic
(AAO) process is used in the treatment plant for this type of wastewater. Our laboratory-
scale AO-MBBR system consists of an anoxic zone, an aerobic zone, and a sedimentation
zone, as shown in Figure 1. The effective volumes of each zone are 25, 20, and 18 L,
respectively. In the pilot experiment, biocarriers were only added in the anoxic zone.
The carriers used are short polyethylene plastic cylinders with honeycomb structures (as
shown in the inset of Figure 1). They have a density of 0.94~0.97 g/cm3, with a specific
surface area greater than 500 m2/m3 and a filling rate of 40%. The activated sludge used



Sustainability 2024, 16, 3625 3 of 13

in the experiment was from the returned sludge of the AAO process of the wastewater
treatment plant, and the anoxic carriers used were first placed in the anoxic tank of the
wastewater treatment plant for 180 days to develop mature biofilms. A mechanical agitator
promoted biological mass transfer between the activated sludge, the carrier biofilms, and
the wastewater. The temperature of the wastewater was not controlled. The experiment
lasted for 150 days in two phases. The first phase (0–54 days) was the classic AO process;
the core operational phase then began on the 54th day. The anoxic-carrier biofilms were
inoculated into the anoxic zone of the reactor in July 2022, and the DO concentrations in
the anoxic zone and the aerobic zone were maintained at 0.2–0.5 mg/L and 2.0–3.5 mg/L,
respectively. The real nitrogen-containing chemical wastewater was fed into the reactor,
and the sludge reflux ratio and nitrifying liquid reflux ratio were set at 100% and 200%
respectively, both using pump reflux. The hydraulic retention time (HRT) was about
12 h, comprising anoxic 5.5 h and aerobic 6.5 h, and the sludge retention time (SRT) was
controlled at about 16 days. The pH was 7~8, and the temperature range was 19.8~25.2 ◦C.
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Figure 1. Schematic of the anoxic/aerobic moving-bed biofilm reactor (AO-MBBR) pilot-scale reactor.
The inset shows a photo of a biocarrier.

2.2. Analytical Methods

During the operation of the reactor, daily samples were collected at the inlet and
outlet. The samples were filtered through a 0.45 µm filter before water-quality tests were
performed. The concentrations of COD, NH4

+-N, TN, NO3
−-N, and NO2

−-N were de-
termined according to the standard method [12]. These indicators were measured by a
multi-parameter water-quality analyzer [5 B-3 B (V11), Lianhua Technology, Beijing, China].
Temperature, pH, and DO were measured by a separate sensor. The data obtained were
plotted with Origin 2021, and a one-way analysis of variance was performed with SPSS 26.

2.3. Metagenomic Sequencing and Functional Analysis

The biofilm samples were analyzed with metagenomic sequencing to study differences
in microbial community composition, nitrogen transformation pathways, and metabolic
functions. The metagenomic analysis was carried out following the process of DNA
extraction, sequencing, sequence analysis, gene prediction, classification, and functional
annotation [13]. The samples of sludge and anoxic-carrier biofilms were taken out and
freeze-dried, and then the DNA of microorganisms in the samples was extracted by the
CTAB method. After the extraction was completed, the DNA samples were analyzed
by 1% agarose gel electrophoresis (AGE). The DNA samples were initially processed
with ultrasound into fragments of 350 bp. Subsequently, these fragments were refined at
their ends by adding an A-tail and connected through full-length splicing for Illumina
sequencing and subsequent PCR amplification. After library construction, the insert size of
the library was measured using a bioanalyzer (Agilent 2100, Walnut Creek, CA, USA) and
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finally sequenced with an Illumina PE 150 platform. The obtained sequencing readings
were compared to various functional databases, such as the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database, for annotation of nitrogen metabolism-related enzymes
and genes, and functional prediction.

2.4. qPCR

The different biofilm samples were taken out, and the process of collecting the biomass
was repeated three times. The two extracted DNA samples were then mixed to create
one uniform DNA sample. The concentrations of the DNA samples were measured using
NanoDrop instruments (ND-2000, Thermo, Waltham, MA, USA). To determine the vari-
ations in the abundance of denitrifying and anammox bacteria, a real-time quantitative
PCR system dyed with fluorescent dye SYBR-Green (MA-6000, Yaro, Qingdao, Shandong,
China) was used to determine the gene copy numbers of narG, nirS, nosZ, norB, hzsB, and
hdh. PCR amplification was performed in 10.8 µL of reaction mixtures consisting of 10 µL
of 2 × SYBR real-time PCR premixtures (Vazyme Biotech, Nanjing, China) and 0.4 µL of
forward and reverse primers (10 µmol/L).

3. Results and Discussion
3.1. Performance of Nitrogen and COD Removal in the AO-MBBR System

The reactor operated for over 150 days, and the removal performance of COD, NH4
+-

N, and TN is presented in Figure 2. The results of the 150-day tests show that the influent
C/N and NH4

+-N were in the ranges of 4.1~5.8 and 28.9~38.5 mg/L. In phase I (0~54 d),
the reactor was operated using the traditional activated sludge process without the addi-
tion of carriers. The removal efficiency of COD and NH4

+-N remained relatively stable
at 64.3 ± 5.7% and 93.7 ± 3.1%, respectively, indicating effective nitrification. However,
the effluent TN concentration reached 28.6 ± 6.5 mg/L, with a low removal rate of only
50.6 ± 9.8%. It has been reported that wastewater treatment systems often exhibit re-
duced nitrogen removal efficiency when the C/N ratio is low (<6) and no external carbon
source is provided for denitrification [14]. The nitrogen removal efficiency (NRE) was only
61.39 ± 10.71% in a continuous flow bioreactor with carriers in the anaerobic zone and
anoxic zone under an influent C/N ratio of 2.2 [15]. Feng et al. [16] also reported that
the NRE of different carrier mixed-membrane bioreactors in the treatment of wastewa-
ter with a low carbon–nitrogen ratio was lower than 70%. The NRE without carriers in
this study was 50.6 ± 9.8%, which was similar to the previous reports. Moreover, the
overall nitrogen removal efficiency of anoxic/oxic (AO) systems can be influenced by the
nitrate recycling ratio [17], with two-stage AO systems demonstrating higher TN removal
efficiency compared to one-stage AO systems [18]. In phase II (55–150 d), anoxic-carrier
biofilms were inoculated into the anoxic zone without altering the operational parameters.
The NH4

+-N removal rate did not change significantly, while the average effluent COD
concentration decreased from 98.1 mg/L to 80.7 mg/L, with a corresponding removal rate
of 70.1 ± 6.4%. The concentration of NO3

−-N in the effluent decreased to 18.4 ± 5.1 mg/L,
and the concentration of NO2

−-N in the effluent stabilized at 1.0 ± 0.9 mg/L, which was
significantly lower than that in the first stage. Additionally, the TN concentration in the
effluent decreased to 20.8 ± 6.2 mg/L, resulting in a 9.4% increase in the removal rate
compared to the first stage. Zhao [19] conducted a pilot study on the MBBR system with
real sewage as the research object. The TN concentration in the effluent decreased signifi-
cantly after the addition of biological carriers, reaching 9.8 ± 1.6 mg/L, and the nitrogen
removal efficiency increased significantly to reach 74.4 ± 3.5%. Overall, the addition of
anoxic carriers successfully enhanced both the nitrogen and COD removal efficiency of
wastewater treatment. To further analyze how anoxic carriers improve these efficiencies,
metagenomic sequencing was employed to investigate microbial diversity, microbial com-
munity composition, the nitrogen metabolism pathway, and functional genes present in
the anoxic sludge and the anoxic carrier.



Sustainability 2024, 16, 3625 5 of 13

Sustainability 2024, 16, x FOR PEER REVIEW 5 of 14 
 

significantly to reach 74.4 ± 3.5%. Overall, the addition of anoxic carriers successfully en-
hanced both the nitrogen and COD removal efficiency of wastewater treatment. To further 
analyze how anoxic carriers improve these efficiencies, metagenomic sequencing was em-
ployed to investigate microbial diversity, microbial community composition, the nitrogen 
metabolism pathway, and functional genes present in the anoxic sludge and the anoxic 
carrier. 

 
Figure 2. Performance of AO-MBBR: (a) Influent COD, effluent COD concentrations, and COD re-
moval rate; (b) effluent TN, NO3−-N, and NO2−-N concentrations; (c) Influent C/N, TN, and NH4+-N 
removal rates. 

3.2. Microbial Diversity Analysis 
The α-diversity index of the anoxic sludge and the anoxic carriers is presented in 

Table 1. The library coverage for both samples ranges from 99.89% to 99.95%, indicating 
the high efficiency and comprehensiveness of the sequencing technology used in repre-
senting most bacterial species. The Chao 1 index reflects microbial community richness, 
while the Shannon index demonstrates a positive correlation with species diversity, and 
the Simpson index shows a negative correlation with species diversity [20]. Regarding the 
Chao 1 index relationship among the two samples, it can be said that anoxic carriers > 
anoxic sludge, suggesting that biological carriers enhance microbial community richness. 
Regarding the Shannon index relationship among the two samples, it can be said that 
anoxic carriers > anoxic sludge, which suggests the diversity index of anoxic sludge is 
comparatively lower due to its longer microbial adaptation period. Conversely, the diver-
sity index of anoxic carriers is higher, indicating that the addition of biological carriers 
increases both species diversity and richness. 

Table 1. Comparative analysis of α diversity index. 

Sample Sobs Chao 1 Coverage Shannon Simpson 
anoxic sludge 2067 2287 99.95 3.165 0.109 
anoxic carriers 2529 2778 99.89 4.454 0.035 
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3.2. Microbial Diversity Analysis

The α-diversity index of the anoxic sludge and the anoxic carriers is presented in
Table 1. The library coverage for both samples ranges from 99.89% to 99.95%, indicating the
high efficiency and comprehensiveness of the sequencing technology used in representing
most bacterial species. The Chao 1 index reflects microbial community richness, while the
Shannon index demonstrates a positive correlation with species diversity, and the Simp-
son index shows a negative correlation with species diversity [20]. Regarding the Chao
1 index relationship among the two samples, it can be said that anoxic carriers > anoxic
sludge, suggesting that biological carriers enhance microbial community richness. Regard-
ing the Shannon index relationship among the two samples, it can be said that anoxic
carriers > anoxic sludge, which suggests the diversity index of anoxic sludge is compara-
tively lower due to its longer microbial adaptation period. Conversely, the diversity index
of anoxic carriers is higher, indicating that the addition of biological carriers increases both
species diversity and richness.

Table 1. Comparative analysis of α diversity index.

Sample Sobs Chao 1 Coverage Shannon Simpson

anoxic sludge 2067 2287 99.95 3.165 0.109
anoxic carriers 2529 2778 99.89 4.454 0.035

Figure 3 shows a Venn diagram of common or endemic species of anoxic carriers
and anoxic sludge, which can further explain their common microbial status. Despite
the species differences between the anoxic carriers and anoxic sludge samples, the total
number of OTUs reached 1256. In addition, the OTUs of the anoxic carriers were higher
than those of the anoxic sludge, reaching 3125. The main reason is that the diversity of
microorganisms changes significantly after anoxic-carrier biofilms mature.
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3.3. Microbial Community Analysis

Metagenomic analysis of microbial communities in the two samples showed that the
microorganisms in the two samples covered 51 phyla, 70 classes, 152 orders, 351 families,
and 1180 genera. The differences in the microbial communities of the two samples were
further studied at phylum and genus levels, and the effects of the biocarriers on microbial
community structure and wastewater treatment efficiency were analyzed.

Similar to findings from other studies [21], Proteobacteria and Actinobacteria were iden-
tified as the dominant phyla in both samples at the phylum level (Figure 4a). The relative
abundance of Proteobacteria was found to be approximately 83.6% in the anoxic sludge
and 67.5% in the anoxic carriers, respectively, and plays a key role in denitrification and
COD reduction. Proteobacteria are widely distributed in various laboratory and industrial
wastewater treatment systems and have been identified as the dominant bacteria [22]. Many
denitrification microorganisms belong to this phylum. Actinobacteria belong to the second
most abundant phylum, with relative abundance of 12.6% and 10.8% in anoxic sludge and
anoxic carriers respectively, mainly degrading organic matter [23]. The high abundance of
these two phyla in anoxic sludge and anoxic carriers ensures the basic capability for COD
and nitrogen removal in the process. In this study, the relative abundance of Firmicutes,
Bacteroidetes and Planctomycetes in the anoxic carriers were 5.1%, 4.5% and 0.4% respectively,
which were higher than those in the anoxic sludge. Firmicutes can degrade carbohydrates
and proteins through hydrolytic enzymes [24]; Bacteroides are beneficial for nitrogen ele-
ment absorption in sewage and play a crucial role in wastewater denitrification; Anammox
bacteria, as a subordinate genus of Planctomycetes [25], may contribute to denitrification
processes within anoxic tanks. These findings indicate that anoxic carriers enhance nitrogen
removal efficiency by enriching microorganisms associated with nitrogen metabolism.

Further analysis is performed on microbial community characteristics at the class
level (Figure 4b). At the class level, the two samples showed relatively high abundance
of Gammaproteobacteria, Actinomycetia, Alphaproteobacteria, and Betaproteobacteria. All of
them except the Actinomycetes belong to the Proteobacteria. Actinomycetes belong to the
phylum actinomycetes, and their abundance was higher in the anoxic sludge, which was
consistent with the phylum-level study. The higher abundance of Gammaproteobacteria in
anoxic sludge was 28.5%. The abundance of α-Proteobacteria in anoxic carriers was higher
at 15.9%. Some studies have confirmed that α-Proteobacteria were the dominant bacteria
in some biofilm samples, and their main function was the biodegradation of pollutants
in sewage, including COD removal, sulfur metabolism, and nitrogen removal [7]. The
abundance of β-Proteobacteria in the anoxic sludge and the anoxic carriers was 12.2% and
26.3%, respectively. Previous studies have found that β-Proteobacteria are the dominant
class of bacteria in wastewater treatment reactors and are closely related to denitrification
processes [26]. This finding suggests that the high denitrification activity of anoxic-carrier
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biofilms enhances the denitrification effect of the MBBR process. Overall, these bacteria
exhibit a high diversity in environmental adaptation and metabolism, which contributes to
the removal of various pollutants.
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Microbial species associated with nitrogen metabolism and organic degradation were
analyzed at the generic level (Figure 4c). Denitrifying bacteria are the dominant microbial
communities in anoxic sludge and anoxic carriers, mainly including Thauera and Coma-
monas, which are classified into Proteobacteria and Bacteroides. Thauera is a typical genus
of denitrifying bacteria, ubiquitous and dominant in many wastewater treatment plants,
which are involved in carbon and nitrogen metabolic pathways that enable them to remove
carbon and nitrogen from wastewater [27]. Comamonas is an effective heterotrophic den-
itrification bacterium for nitrate removal in carbon-rich environments with low oxygen
levels [28]. The relative abundance of Thauera and Comamonas in the anoxic carriers was sig-
nificantly higher at 10.7% and 2.2%, respectively, compared to the anoxic sludge (p < 0.05),
indicating that efficient enrichment of denitrifying bacteria within the anoxic carriers is
crucial for improving COD degradation efficiency as well as the total nitrogen removal
rate. In addition, Pseudomonas and Acinetobacter with high abundance were detected in the
anoxic sludge, accounting for 22.8% and 12.5%, respectively. Pseudomonas has the ability to
decompose organic compounds such as phenols and polycyclic aromatic hydrocarbons [29];
Acinetobacter is considered to be a potential phosphorus-accumulating bacteria (PAOs),
which plays a significant role in phosphate removal [24].
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In summary, most of the bacteria present within the anoxic tank exhibit organic matter
degradation abilities which ensure excellent denitrification performance along with COD
degradation capacity; however, functional bacterial enrichment related to carbon and
nitrogen metabolism through the utilization of anoxic carriers further enhances both the
total nitrogen removal rate as well as COD degradation efficiency.

3.4. Functional Annotation

The functional gene annotation of the biofilm samples was achieved by comparing
the sequenced reads with the KEGG database. The results of the annotation of the two
samples mainly comprise six pathways. The metabolism of microorganisms accounts for
69.10~73.49%, and the remaining 26.51~30.90% is shared among five pathways: genetic
information processing, environmental information processing, cellular processing, biologi-
cal systems, and human diseases. These six pathways were further expanded in the KEGG
database (Figure 5), where amino acid metabolism dominated, accounting for 12.38% to
13.01%, followed by carbohydrate metabolism, accounting for 9.24% to 11.07%. The carbo-
hydrate metabolism subsystem consists mainly of the tricarboxylic acid cycle, glycolysis,
and common pathways of carbohydrate transport, which are widely observed in activated
sludge and utilized for microbial energy production and cellular synthesis processes [30].
Additionally, cofactors and subpathways of vitamin metabolism, nucleotide metabolism,
energy metabolism, translation, membrane transport, and signal transduction are also
critical. In conclusion, the complex metabolic pathway is consistent with the diversity of
microorganisms in wastewater treatment plants, and the addition of anoxic carriers does
not change the metabolic pathways of microorganisms.
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3.5. KEGG Nitrogen Metabolic Pathways and Functional Genes

By summarizing the genes related to nitrogen metabolism reported in the literature,
the corresponding nitrogen cycle pathway was constructed [31] (refer to Figure 6). In the
AO process, the nitrogen removal process is mainly divided into two parts: nitrification
and denitrification. Nitrification includes ammonia oxidation and nitrite oxidation; denitri-
fication mainly involves the step sequence NO3

−-N→NO2
−-N→NO→N2O→N2 [32,33],

where each step is controlled by different reductases.
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To better understand nitrogen transformation through different pathways, the relative
abundances of key enzyme genes were obtained by metagenomic sequencing. The assem-
bled sequence data were imported into the KEGG database for functional annotation at
the KO (KEGG Orthology) level. Subsequently, the annotated genes were compared with
those encoding key metabolic enzymes in the nitrogen metabolic pathway map00910. A
total of 788 genes were identified to be functionally associated with nitrogen metabolism,
accounting for 0.107% of the anoxic sludge and 0.111% of the total genes. Finally, the
relative abundance of functional genes involved in nitrogen metabolism was calculated
(see Table 2). The results showed that the relative abundance of denitrifying genes (narG,
napA, nirS, norB, nosZ) was the highest, which was consistent with the high abundance of
denitrifying bacteria obtained by sequencing. The next genes were nitrogen-fixing genes
(nifD) and nitrification genes (amo, hao). Finally, nitrate reduction genes (nirB, nrfA) and
anammox genes (hzsB, hdh) were identified. Among them, the enzyme genes controlling
denitrification were highly enriched in the anoxic-carrier biofilms, and nitrate reductase
and nitrite reductase had a high abundance (narG 2011 hits, nirS 1345 hits), which was
consistent with the results of qPCR (see Figure 7) and explains the cause and mechanism
of the decrease in NO3

−-N concentration in the effluent. Besides, a low abundance of
ammoxidation enzyme genes (amo 232 hits, hao 325 hits) was detected in the anoxic sludge
because the growth of nitrifying bacteria was inhibited in the anoxic environment; similar
patterns of functional genes were also observed by Guo et al. [31].

In addition to the denitrification genes, Candidatus Kuenenia and its functional genes
(hzsB, hdh) were also detected in the anoxic sludge and the anoxic carriers. Metagenomic
analysis showed that the relative abundance of anammox bacteria in the anoxic carriers
(0.03%) was higher than that in the anoxic sludge (0.0016%), which was consistent with the
difference of Planctomycetes found at the phylum level and the gene abundance measured
by qPCR (see Figure 5). Gong et al. [34] successfully initiated the anammox process using
flocculated sludge as the inoculum and biocarriers for the rapid cultivation and enrichment
of anammox bacteria, achieving a TN removal rate of 66.7% on day 64. Furthermore, qPCR
results showed that the copy number of the nitrate reductase gene (narG) in the anoxic
carriers was significantly higher than that in the anoxic sludge, which may promote the
enrichment of anammox bacteria in anoxic carriers. Nitrite nitrogen, as the matrix for
anammox, probably originates from denitrification and dissimilatory nitrate reduction
processes, as it is difficult to accumulate by nitrification in an anoxic zone. To sum up,
these findings suggest that adding biocarriers to the anoxic tank enriched denitrification
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bacteria and anammox bacteria effectively, thus improving the removal rate of COD and
TN. The analysis of the nitrogen metabolism pathway suggested that the nitrogen removal
efficiency of the wastewater treatment plant could be further improved by strengthening
the partial denitrification with anammox (PD/A) coupling technology.

Table 2. Abundance of key enzymes associated with nitrogen metabolism.

Pathway Gene Anoxic Sludge Anoxic Carriers

Nitrogen fixation nif D 1092 915

Nitrification
amo 232 102
hao 325 189

Denitrification

narG 497 2011
napA 371 634
nirS 360 1345
norB 315 1745
nosZ 113 550

Dissimilatory nitrate
reduction

nirB 598 665
nrf A 298 230

Assimilatory nitrate
reduction

nasA 114 102
nirA 0 0

Anammox
hdh 38 156
hzsB 63 278
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Figure 7. Comparison of the abundance of anammox and denitrification genes in anoxic sludge and
anoxic carriers.

3.6. Engineering Potential and Future Trends of AO-MBBR System

Previous studies of the treatment of chemical wastewater using the AO-MBBR process
have mainly focused on the aerobic zone, as it has shown higher rates of organic matter
removal and nitrification efficiency [35,36]. In contrast, there have been few studies that
have applied carrier biofilms to the anoxic zone to enhance the nitrogen removal efficiency
of industrial wastewater treatment plants. Furthermore, the microbial composition and the
mechanism of nitrogen conversion in anoxic-carrier biofilms are not fully understood. This
study aimed to address these gaps by combining the AO process with the MBBR system to
evaluate nitrogen metabolism in anoxic carriers. A comprehensive analysis of microbial
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communities, nitrogen metabolism pathways, and functional genes was conducted. The
results demonstrated that anoxic-carrier biofilms facilitate efficient nitrogen and organic
matter removal. Additionally, this study highlights the presence and potential contribution
of anammox. Considering the comprehensive nitrogen removal requirements of wastewater
treatment plants, the combination of PD/A and AO-MBBR is a promising option for facility
upgrades; however, further research is needed to address controllable issues. Key factors
affecting PD/A include carbon source type, nitration reflux ratio, and C/N ratio in AO-
MBBR systems. Moreover, studying microbial pathways such as phototrophic nitrite
oxidation and complete ammonia oxidation (comammox) should also be considered when
investigating denitrification reactions [37].

4. Conclusions

This study proposed the use of an AO-MBBR system in the treatment of chemical
wastewater from the production of hydrogen peroxide. A comparative analysis of the diver-
sity and composition of the microbial community, and the abundance of functional bacteria
in anoxic sludge and anoxic carriers, was performed using metagenomic sequencing and
qPCR. Additionally, quantitative analysis was performed on the functional genes involved in
nitrogen metabolic pathways. Based on these findings, we draw the following conclusions:

(1) The presence of anoxic carriers in the AO-MBBR system alters the microbial commu-
nity composition and improves the abundance of microorganisms associated with
carbon and nitrogen metabolism in anoxic sludge. This enhances the reduction of both
nitrogen and COD. The main dominant phyla in the MBBR system are Proteobacteria,
Actinobacteria, Firmicutes, and Bacteroidetes. The dominant classes are Gammaproteobac-
teria, Actinomycetia, Alphaproteobacteria, and Betaproteobacteria. The dominant genera
include Pseudomonas, Thauera, and Comamonas.

(2) Metagenomic sequencing analysis showed that the relative abundance of functional
genes that control the denitrification pathway is the highest among the six nitrogen
cycle pathways, indicating that denitrification plays a dominant role in systematic
nitrogen removal. In addition, metagenomic analysis revealed significantly higher
abundances of denitrification functional genes (narG, napA, nirS, norB, nosZ) and
anammox genes (hzsB, hdh) in the anoxic carriers compared to those found in the
anoxic sludge, indicating the presence of anammox processes.

(3) Through enrichment of the denitrifying and anammox bacteria, anoxic carriers effec-
tively increase total nitrogen removal. However, further investigation is required to
determine the contribution from each of the bacteria types. We hope that the results of
this study will provide important data for a better understanding of nitrogen removal
mechanisms within AO-MBBR systems, paving the way for industrial adoption of
this technology in the treatment of chemical wastewater.
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