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Abstract: A methodology that could reduce computational cost and time, combining computational
fluid dynamics (CFD) simulations, neural networks, and genetic algorithms to determine a diffuser-
augmented wind turbine (DAWT) design is proposed. The specific approach used implements a
CFD simulation validated with experimental data, and key parameters are analyzed to generate
datasets for the relevant mathematical model established with the backpropagation neural network
algorithm. Then, the mathematical model is used with the non-dominant sorting genetic algorithm
II to optimize the design and improve the DAWT design to overcome negative constraints such as
noise and low energy density. The key parameters adopted are the diffuser’s flange height/angle,
the diffuser’s length, and the rotor’s axial position. It was found that the impact of the rotor’s axial
position on the power output of the DAWT is the most significant parameter, and a well-designed
diffuser requires accelerating the airflow while maintaining high-pressure recovery. Introducing a
diffuser can suppress the wind turbine’s noise, but if the induced tip vortex is too strong, it will have
the opposite effect on the noise reduction.

Keywords: wind energy; power augmentation; wind turbine aerodynamic; noise reduction

1. Introduction

With the rapid increase in global energy demand and growing concerns for environ-
mental sustainability, research on and application of renewable energy sources, e.g., solar,
hydro, biomass, and wind energy [1,2], have become central issues in technology. The main
advantage of renewable energy resources over conventional fossil resources involves the
former’s significantly fewer environmental impacts (EIs), specifically during the operation
phase [2]. However, relevant concerns should still be taken into account. For example,
solar energy gained by using photovoltaic solar panels harnesses sunlight to generate
electricity and is suitable for decentralized installations. Resource availability, land use
requirements, and intermittency are often considered. Hydroelectric dams utilize flowing
water to generate electricity and provide reliable baseload power. Concerns regarding EIs,
such as habitat disruption and sedimentation, must be addressed. Biomass energy involves
the combustion of organic materials such as wood or agricultural residues to produce heat
or electricity. While biomass can be a renewable energy source, its sustainability depends
on responsible forestry practices and the avoidance of competition with food production.
Wind energy is generally regarded as a clean and sustainable source of electricity produc-
tion. The potential EIs of wind turbine installations include wildlife habitat fragmentation;
noise; visual and aesthetic pollution; the carbon footprint of its manufacture, transportation,
and installation; and land use. Nevertheless, solar and wind energy are now competitive
with conventional sources and command a high percentage of the investments in renewable
power nowadays [3]. Additionally, from a techno-economic point of view, wind energy is
the most mature form of renewable and clean energy [4].
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Thus, wind energy has garnered extensive attention among these sources due to its
wide availability and environmentally friendly attributes, which have emerged as pivotal
drivers for energy transition [5–7]. For example, the total global installed capacity of wind
turbines is 906 GW, and it shows nearly 9% growth, i.e., 77.6 GW in 2022, as reported
by the Global Wind Energy Council (GWEC) in 2023 [6,7]. However, to fully unlock the
potential of wind energy, numerous technological challenges must be addressed, and one
such challenge lies in simultaneously enhancing the energy conversion efficiency of wind
turbines while mitigating their impact on the environment, particularly concerning noise
emissions [7–9]. As Nazir et al. [4] pointed out, noise pollution is the most critical impact
of wind turbines on the environment. The wind turbines’ noise can be divided into two
main types, i.e., aerodynamic and mechanical. Aerodynamic noise, the dominant one, is
generated by airflow flowing through its components, e.g., the turbine blade, and produces
a characteristic howling sound. Mechanical noise mainly comes from the generating
equipment, such as the gearbox and linkages. Those noises can be minimized during the
design phases of the blade, tower, and associated components [4,10].

Wind turbines can be principally classified into horizontal axis wind turbines (HAWTs)
and vertical axis wind turbines (VAWTs), based on the orientation of the rotor’s rotational
axis relative to the ground. The former has a rotor with a rotational axis parallel to
the ground, while the latter’s is vertical. Generally speaking, HAWTs perform better at
extracting wind power than do VAWTs; therefore, most commercial wind turbines are
based on HAWTs [9]. When a diffuser is added to a HAWT, the resulting design is referred
to as a diffuser-augmented wind turbine (DAWT), also known as a wind lens or shrouded
wind turbine. The DAWT has a diffuser-type structure resembling a funnel, which can be
modified by adding a broad-ring flange around the exit point (Figure 1). This design allows
for the collection and concentration of the approaching wind, creating a wind-lens effect.
Compared to traditional turbines, it has been proven that the DAWT can generate higher
power given a specific turbine diameter and wind speed [11–13].

Sustainability 2024, 16, x FOR PEER REVIEW 2 of 32 
 

techno-economic point of view, wind energy is the most mature form of renewable and 
clean energy [4].  

Thus, wind energy has garnered extensive attention among these sources due to its 
wide availability and environmentally friendly attributes, which have emerged as pivotal 
drivers for energy transition [5–7]. For example, the total global installed capacity of wind 
turbines is 906 GW, and it shows nearly 9% growth, i.e., 77.6 GW in 2022, as reported by 
the Global Wind Energy Council (GWEC) in 2023 [6,7]. However, to fully unlock the po-
tential of wind energy, numerous technological challenges must be addressed, and one 
such challenge lies in simultaneously enhancing the energy conversion efficiency of wind 
turbines while mitigating their impact on the environment, particularly concerning noise 
emissions [7–9]. As Nazir et al. [4] pointed out, noise pollution is the most critical impact 
of wind turbines on the environment. The wind turbines’ noise can be divided into two 
main types, i.e., aerodynamic and mechanical. Aerodynamic noise, the dominant one, is 
generated by airflow flowing through its components, e.g., the turbine blade, and pro-
duces a characteristic howling sound. Mechanical noise mainly comes from the generating 
equipment, such as the gearbox and linkages. Those noises can be minimized during the 
design phases of the blade, tower, and associated components [4,10]. 

Wind turbines can be principally classified into horizontal axis wind turbines 
(HAWTs) and vertical axis wind turbines (VAWTs), based on the orientation of the rotor’s 
rotational axis relative to the ground. The former has a rotor with a rotational axis parallel 
to the ground, while the latter’s is vertical. Generally speaking, HAWTs perform better at 
extracting wind power than do VAWTs; therefore, most commercial wind turbines are 
based on HAWTs [9]. When a diffuser is added to a HAWT, the resulting design is referred 
to as a diffuser-augmented wind turbine (DAWT), also known as a wind lens or shrouded 
wind turbine. The DAWT has a diffuser-type structure resembling a funnel, which can be 
modified by adding a broad-ring flange around the exit point (Figure 1). This design al-
lows for the collection and concentration of the approaching wind, creating a wind-lens 
effect. Compared to traditional turbines, it has been proven that the DAWT can generate 
higher power given a specific turbine diameter and wind speed [11–13]. 

 
Figure 1. Illustration of the principal components and geometric parameters of the studied diffuser-
augmented wind turbine with inlet shroud. 

Figure 1. Illustration of the principal components and geometric parameters of the studied diffuser-
augmented wind turbine with inlet shroud.



Sustainability 2024, 16, 3648 3 of 31

Consequently, the Levelized Cost of Energy (LCOE) for the unit may be reduced
compared to an unshrouded generator if the cost of the diffuser is less than that of making
a larger rotor to provide the equivalent power output [14,15]. Even if this technology is
not significantly cheaper than non-ducted techniques, it still finds suitable niche appli-
cations, such as in the urban environment, due to its better suitability for smaller-scale
applications [15,16]. A review article [17] highlights that conventional commercial wind
turbines are typically designed to perform efficiently at high wind speeds, making them
unsuitable for low-wind speed regions such as urban areas. Hence, it is necessary to
enhance wind energy technology to make it suitable for low-wind speed regions [7]. The
DAWT holds the potential to meet this demand, especially when utilizing small-scale wind
turbines based on this design [18], and it offers a promising option for renewable energy
generation, but requires careful design and implementation for optimal performance [16],
so its improvement can become a topic worth studying.

Abe and Ohya [19] used numerical simulation methods to develop a small HAWT
below 1.5 kW and employed a load instead of using the rotor effectiveness to analyze the
flow field around a flanged diffuser. The geometric research parameters included flange
height and diffuser opening angle. The results of the research show that avoiding the
separation of the flow field in the diffuser and maintaining its high pressure–recovery
coefficient tends to improve the performance of a wind turbine equipped with a flanged
diffuser. Experiments and numerical simulations, a numerical approach similar to that
used in Ref. [18], were employed by Abe et al. to analyze the flow field characteristics of the
HAWT with/without a flanged diffuser [20]. After their research, they found that the flange
diffuser will not only accelerate the approaching wind speed and thus increase the wind
turbine’s power output, but also cause the rapid collapse of the blade tip vortex structure.
They also showed that the computational results reasonably agree with the corresponding
experimental data.

The velocity field of a HAWT with long and compact diffusers was measured using
particle image velocimetry (PIV) to observe flow characteristics and flow acceleration
phenomena [21]. Their study found that the flow field patterns were similar for both types
of diffusers, and vortices behind the flange caused the flow acceleration phenomenon in
both kinds. Ohya and Karasudani [14] experimentally measured and studied the power
output of wind turbines with different flanged diffusers, also known as wind lenses,
and conducted flow visualization observations. For the sake of practical application,
considering the structure strength, they developed a compact-type flanged diffuser by
evaluating different diffuser shapes, lengths, and heights. Their research revealed that
the sectional shape of the diffuser with a cycloid curve exhibits the best performance, and
that, under the same wind speed and wind turbine rotor diameter, employing wind-lens
technology with proper geometric dimensions could increase the power of wind turbines by
2 to 3 times, compared to bare wind turbines. Flow visualization observations also showed
that adopting wind lenses induces airflow acceleration, primarily due to low-pressure
vortices arising behind the edges.

To find the influences of flange heights and lengths, Jafari and Kosasih [22] used
numerical simulation to analyze the performance of wind turbines with simple frustum
diffusers. Their results indicate the significant effects of these diffusers’ parameters on
power augmentation, especially for the ratio of flange height to rotor diameter of 0.05–0.15.
Additionally, flow separation inside the diffuser reduces power gain, which can be miti-
gated by increasing the length of the diffuser. Roshan et al. [23] used numerical simulation
to explore the effects of using a stepped configuration on the diffuser duct of a DAWT
and changing the relative position of the wind turbine rotor. The study’s results showed
that placing the wind turbine rotor at the inlet section performs better, and implementing
a stepped diffuser duct can increase the turbine’s efficiency in capturing energy from
the wind. El-Zahaby et al. [24] used numerical simulation to explore the influence of the
diffuser flange angle (θ) used in a DAWT. The results of their research showed that an
optimal value for the flange angle (θ = 15◦) can accelerate flow at the diffuser entrance,
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thereby increasing the generated power by 5%, compared to the one with θ = 0◦. The
research article by Ohya et al. [11] reported that wind lens technology can improve the
quietness of wind turbines due to the cancellation of the blade tip vortex, reducing the
noise. Review papers also pointed out that the shroud of the DAWT suppresses vortices
generated from the turbine blades within the diffuser shroud, and consequently, it can
enhance the aerodynamic performance [18,25] and decrease the noise of wind turbines [25].
In addition, adding a diffuser helps wind turbines to be applied in low-wind speed urban
environments [16,26]. Heikal et al. [27] used numerical simulation to explore the effects
of diffuser flange angle and inner flange depth on DAWT performance. The results of the
research show that the effect of the flange angle will change with the tip speed ratio, and
the impact of the inner flange depth is negative. They also concluded that the size and
location of the vortex downstream of the diffuser flange significantly impact the power
output of a DAWT.

The numerical study of Klistafani and Mukhsen [28] on DAWTs with various diffuser
structures revealed that a curved diffuser provides better approaching wind flow accelera-
tion than a flat diffuser due to more prominent vortices formed downstream. Numerical
and experimental studies were carried out by Anbarsooz et al. [29] to analyze the maximum
possible velocity increment of a flanged converging–diverging duct without considering the
rotor. They revealed that adding a converging section to the flanged diffuser can enhance
the approaching wind flow acceleration. Arifin et al. [30] numerically and experimen-
tally studied the effects of changes in diffuser length and opening angle on a horizontal
wind turbine. Their results showed that installing a diffuser with a specific length and
opening angle can increase the generated power, resulting in values 1.6–2.1 times higher
than one without a diffuser. Watanabe and Ohya [31] presented a simple theory that
two performance coefficients, i.e., the flange’s back-pressure coefficient and the diffuser
pressure recovery coefficient, can be used to predict the performance of DAWTs. They also
indicated that the power output of the DAWT depends on the diffuser shape, length, and
flange height.

The influences of rotor axial position, diffuser length, and opening angle on the power
generation of DAWTs were numerically studied by Ramayee and Supradeepan [32]. Their
parametric studies showed that the optimal diffuser opening angle is a function of its
length, so it should not be fixed and has to be kept as a variable when changing the
diffuser length. They also pointed out that the power output of a DAWT depends on
the diffuser length and angle, rotor axial position, and tip clearance between the blade
and diffuser duct. Hashem et al. [33] used a numerical approach to assess the effect of
design parameters, including the diffuser shape, length, area ratio, and flange height, on
power augmentation. Their results affirm that diffusers with a cycloidal profile and small
length could perform better while maintaining large flange heights. Jauhar et al. [34]
numerically performed a parametric study on the effects of diffuser opening angle, flange
height, and rotor axial position on a DAWT. They indicated that the power output of the
DAWT varies with its diffuser design and the resulting back pressure. Based on their
results, it can be determined that a coupling effect exists among the parameters, and
a proper combination is needed to achieve the best performance. Mutasher et al. [35]
numerically conducted parametric studies, including diffuser opening angle, inlet nozzle
length, and flange angle, to optimize the geometric dimensions of the converging–diverging
duct without considering the rotor. Their results demonstrate a remarkable increase in
the approaching wind speed by implementing the optimized diffuser and establish the
necessity of adding an inlet shroud.

Noise emissions are one of the major issues for the wind turbine industry, especially
for small-scale wind turbines, which are primarily installed in urban areas [36], where wind
energy is a prominent alternative renewable energy source [37].
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Aeroacoustic noise assessment for DAWTs was conducted numerically by Hashem et al. [38],
work in which the Ffowcs-Williams–Hawkings (FW-H) equation and its integral solution were
used to predict the noise radiating to the far field. The results indicated that the sound pressure
level increases with increasing flange height, and a diffuser’s shape with a cycloid curve was rec-
ommended for less noise generation, a determination which was suggested to be computationally
optimized by a genetic algorithm (GA) to reduce the noise emitted by small-scale application
of DAWTs, making them more suitable for residential areas. It is worth mentioning that this
study compared the noise emitted from the wind turbine with and without the diffuser and
revealed that the DAWT generates higher noise intensity, a finding which is not consistent with
the findings of other studies [11,25]. Lattice-Boltzmann Very-Large-Eddy Simulations (LB-VLES)
were implemented for the solution of the flow field and the FW-H acoustic analogy was used for
the far-field noise by Avallone et al. [39] to investigate the effects of varying tip clearance ratios
on the aeroacoustics of a DAWT. They found that it strongly affects the far-field noise, which
increases in smaller tip clearance ratio cases due to earlier flow separation along the suction side
of the diffuser.

In recent years, the rapid advancements in computational fluid dynamics (CFD)
and machine learning (ML) have presented novel opportunities for optimizing wind
turbines. Applying CFD techniques to analyze the aerodynamics of wind turbines
enables a deeper understanding of fluid dynamics within the wind field, thus en-
abling precise predictions of turbine performance [40,41]. Such a statement is evi-
dent from the review of the above papers, and it can be found that most of the above
studies were conducted using computational fluid dynamics (CFD), such as Abe and
Ohya [19], Abe et al. [20], Jafari and Kosasih [22], Roshan et al. [23], El-Zahaby et al. [24],
Heikal et al. [27], Klistafani and Mukhsen [28], Anbarsooz et al. [29], Arifin et al. [30],
Ramayee and Supradeepan [32], Hashem et al. [33], Jauhar et al. [34], Mutasher et al. [35],
Hashem et al. [38], Avallone et al. [39], etc.; and the review paper by Agha et al. [42] also
emphasized that CFD plays a vital role in the design and performance improvements
of the DAWT. The reason is that CFD applications are increasingly widespread with
the advancement of computer hardware. Meanwhile, experimental testing results are
realistic but time-consuming, require costly investment, and are subject to experimental
constraints. In contrast, CFD simulation is more time-efficient, with the advantages of
cost-effectiveness and the ability to simulate various working conditions. Thus, CFD
simulations and experimental measurements complement each other and have become
indispensable tools for scientific research.

Concurrently, ML offers a more intelligent approach capable of autonomously learning
patterns from extensive datasets to optimize control strategies and the operational efficiency
of wind turbines [43,44]. Bin Abu Sofian et al. [45] mentioned that ML applications for
wind energy generation are vital for sustainable energy production because ML is helpful
in design, optimization, cost reduction, and, most importantly, improving wind energy’s
efficacy, including advancing energy storage. Nikolić et al. [46] used the adaptive neuro-
fuzzy (ANFIS) method with MATLAB/Simulink to estimate the impacts of diffusers on
wind turbine performance. The data source used to train the ANFIS network was composed
of CFD simulation results. Its input values included wind speed, number of blades, and
presence of the diffuser; its output values include power coefficient, torque coefficient, and
rotational speed of the rotor. The study results show that the predicted values are consistent
with the experimental values, and the authors also suggest that other computing methods
can be used to examine the same topic. Based on CFD simulation results, Liu et al. [47] used
GA to optimize the diffuser profile to achieve velocity augmentation and drag reduction
goals for DAWTs. The research procedure was to approximate the diffuser profile with a
polynomial expression, use CFD to simulate the velocity augmentation and drag reduction,
and then use GA to optimize the diffuser’s profile. Then, CFD calculation and GA operators
are repeated until no better solutions are available. The results of their research show that
the optimized diffuser can improve the velocity increase by 50% and reduce drag by 49%. In
addition, this paper also mentions some simplification steps the research has taken, e.g., the
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CFD simulation was performed in a two-dimensional manner, and the outer boundary
layers of the diffuser and the inner rotor blades are ignored.

Oka et al. [48] used the non-dominated sorting genetic algorithm II (NSGA-II) com-
bined with a quasi-three-dimensional aerodynamic design method, including meridional
viscous flow analysis and two-dimensional blade element designs, to optimize DAWT
iteratively. The results of the research show that the optimized design’s power coefficient
was significantly improved, after being verified by experiments and numerical simulations.
It is worth mentioning that since the meridional viscous flow analysis cannot directly
evaluate the power coefficient as the objective function, it was replaced by an equivalent
parameter defined in this study. In combination with CFD simulation results, Khamlaj
and Rumpfkeil [49] employed a multi-object genetic algorithm (MOGA) to simultaneously
enhance power production, reduce drag, and increase thrust for DAWTs. This research
utilized a piece-wise quadratic polynomial to define the diffuser shape, and the power,
thrust, and drag coefficients were simulated by CFD. The rotor is modeled by incorporating
the blade element method into the CFD approach to reduce the computational cost. The
results of the research show that the proposed methodology can accurately predict the
performance of DAWTs and achieve the optimization purposes. Leloudas et al. [50] used
a two-dimensional CFD model with a differential evolution (DE) algorithm, assisted by
artificial neural network meta-models, to optimize the DAWT diffuser. The procedure is
implemented iteratively while the DE algorithm interacts with the parameterization (mesh
deformation tool based on free-form deformation technique), CFD, and post-processing
software. The objective function included the maximum average speed increase ratio
without considering the rotor blades but considering geometric constraints and minimum
resistance, and the results of the research show that the resulting designs can meet high-
velocity acceleration and drag reduction requirements. A single-objective optimization
design of DAWT with convergent–divergent ducts was conducted by Rahmatian et al. [51],
who employed the response surface method (RSM) and GA incorporated with CFD for
the study. In this research, 79 geometrical models defined using the design of experiments
(DOE) were examined using CFD in the first step. Then, the simulated results were cou-
pled with the RSM and GA to optimize the duct geometry with an objective function
of maximum velocity at the duct throat. A HAWT was placed inside the optimal duct
for performance evaluation in the second step. The results showed that the wind speed
increases by 2.18 times, and the corresponding power coefficient increases by 3.94 times at
the throat inside the optimized DAWT. In addition, this study indicated that the adding
duct might break the vortices behind the turbine, reducing the noise level generated by
the rotor. Shambira et al. [52] utilized RSM and a two-dimensional CFD model to develop
and optimize the design of a DAWT equipped with a concentrator at the inlet without
considering the rotor. The objective function was the throat velocity, and six geometrical
parameters, including diffuser and concentrator angles and lengths, throat length, and
flange height were considered in this research. This study utilized the central composite
design to schedule 86 cases of different concentrator–diffuser geometrics for the CFD analy-
sis, and RSM was employed to investigate the interactions of geometrical parameters and
objective function by proposing a reduced quadratic model. It was found that the lengths
of the concentrator and diffuser have the highest impacts on the throat velocity, and the
optimized design displays a 1.953-fold increase in inlet wind speed at the throat position of
the duct.

Based on the above literature review, the key points can be summarized as follows:
1. The DAWT is suitable for low-wind speed urban areas, and its technology is still worthy
of further research [15,17,42]. 2. Compared with parametric studies on DAWTs, papers
on its optimization study are relatively rare. 3. Research on combining CFD and ML for
the DAWT is sparse. According to the literature reviewed in this study, Nikolić et al. [41],
who employed the ML algorithm (ANFIS) to estimate the rotor performance of DAWT,
did not conduct further optimization research and suggested trying other algorithms
to examine the same topic. Optimization studies of DAWTs [47–52] all have their own
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compromised simplifications, mainly due to the high computational cost of CFD simulation.
Therefore, for the sake of optimization, partial simplification is necessary. However, if
an alternative approach could be adopted, i.e., using CFD simulation results to train ML
algorithms to derive the corresponding mathematical model first and then incorporate
it with the optimization algorithm, such a way could significantly reduce computational
costs. 4. CFD, artificial neural network (ANN) algorithm, and genetic algorithm are reliable
tools but rarely used together to study DAWTs. 4. The critical parameters of DAWT design
include diffuser flange height/angle, diffuser profile/length/opening angle, rotor axial
position/tip clearance, etc.. 5. Currently, there is a limited amount of research on the
numerical simulation of DAWT noise, and the literature reviewed in this study indicates
inconsistent assessments of this technology’s impact on noise.

According to the above summaries, this study intends to take small DAWTs suitable
for urban area applications and with market potential as its research object, and develop a
methodology that synergistically applies the CFD and ML techniques to simultaneously
analyze and optimize the aerodynamic performance and noise characteristics and confirm
its feasibility. We try to explore the augmentation of power output while minimizing
noise generation during turbine operation. This endeavor contributes to enhancing the
comprehensive utilization of wind energy and holds significant potential for mitigating the
environmental impacts of wind power on surrounding areas.

This research reviews the current applications of CFD and ML techniques in wind tur-
bine optimization, highlighting their integration potential. Subsequently, we introduce our
chosen methods and optimization strategies, providing pertinent background knowledge.
We then showcase optimization results based on CFD and ML techniques, offering detailed
analyses of their effects and implications. Ultimately, we summarize the contributions
of our research and discuss prospective directions for developing this interdisciplinary
field. Based on the results obtained, we have confidence that our efforts can contribute
to elevating the efficiency and sustainability of wind turbines, thus paving the way for a
cleaner and more reliable energy supply.

2. Methodology

The research methods adopted in this study include CFD, ML algorithm—backpropagation
neural network (BPNN), multi-objective genetic algorithm—NSGA-II, and experimental mea-
surements. In this study, the reasons for selecting BPNN and NSGA-II as the implemented
models can be described as follows:

• BPNN algorithm: ML is a branch of artificial intelligence. In the modern era of
software, ML depends on the prediction of datasets based on various algorithms for
different software modules. A neural network is an ML model that implements a
learning/training rule, i.e., when the input nodes are activated, synaptic weights are
updated and forwarded to output nodes. Different training algorithms are available,
like backpropagation, genetic, and krill herd algorithms [53]. The BPNN is such an
ML model, one inspired by the biological neural network, and it is one of the oldest
supervised-learning multilayer feed-forward neural network algorithms [54], having
been proposed by Rumelhart, Hinton, and Williams in 1986 [55]. As introduced
in the 1980s, it quickly became a focal point in neural network research due to its
outstanding learning capability and adaptability [56]. Due to its backpropagating
ability, it is highly suitable for problems with no relationships between the outputs
and inputs [54]. Its flexibility, learning, and powerful fitting capabilities make it a
robust tool for addressing complex problems [54,56]. Lillicrap et al. [57] pointed out
that neural networks trained with backpropagation of error are at the heart of the
recent successes of ML, including state-of-the-art speech and image recognition and
language translation. In addition, backpropagation of error even underpins recent
progress in unsupervised learning problems such as image and speech generation,
language modeling, and other next-step prediction tasks. Over the years, BPNN has
been proven to be the best algorithm among the multilayer perceptron algorithms [58].
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Thus, the multilayer perceptron neural network trained with BPNN is the most popular
and widely used network paradigm employed by engineering applications to solve
practical problems, and it has demonstrated exceptional performance [53,54,56,59,60].
Inevitably, the traditional BPNN algorithm has some shortcomings, such as low
convergence speed and an easy fall to the local minimum, but some remedies have
been proposed to solve these problems [61]. In this study, the BPNN model is selected
based on the abovementioned survey and then employed on the MATLAB platform,
which will promptly update the latest modifications to the model.

• NSGA-II algorithm: Inspired by Darwin’s theory of species evolution, John Holland
proposed the genetic algorithm (GA) in 1975, which is widely used in various fields,
including artificial intelligence, logistics distribution, and engineering science applica-
tions. It can be employed as an optimization algorithm that simulates the biological
evolution process for multi-objective optimization problems (MOPs) [62]. In the real
world, it is challenging to determine optimal solutions over MOPs with multiple
conflicting objectives in complex systems. In such a situation, it is impossible to com-
pute a single optimal solution. Therefore, the most common solution concept is to
compute a set of Pareto optima, solutions that cannot be improved in one objective
without accepting a worsening in others, and then let a decision-maker select the final
solution based on their preference [63]. As a mainstream method for solving MOPs,
the development and application of evolutionary algorithms (EAs) has attracted thou-
sands of researchers since the 1950s [64]. EAs profit from their general ability to work
with sets of solutions, are the standard approach to MOPs, and have many successful
applications [63]. The NSGA-II algorithm, a model initially proposed by Deb et al. [65]
in 2002, is considered the most prominent multi-objective EA [63,66] with the most
popular GA framework [64], and has served as a powerful decision-space exploration
engine, based on GA, used to solve MOPs [67]. So far, it has been cited more than
50,000 times on Google Scholar [68] and is becoming one of the most widely used
algorithms for solving MOPs in various applications in different fields [12,68–70]. It
has been verified that the Pareto frontier obtained by the NSGA-II algorithm is evenly
distributed and has good convergence and robustness. [71]. We take advantage of its
high competence, efficiency, and strength in dealing with most MOPs and adopt it in
this research.

Firstly, based on the bare wind turbine (BWT) experimental results presented in
the literature [72], CFD numerical simulation validation is carried out, and then the
Taguchi orthogonal array [73] is implemented for planning the design parameters (flange
height/angle, diffuser length, and rotor axial position, as shown in Figure 1), before pro-
ceeding to the numerical simulations. The obtained simulation datasets are used as the
training, validation, and testing data of the BPNN to establish a predictive mathematical
model (the input values are the design parameter conditions, the output values are the
objective functions, i.e., the power and noise generated by the wind turbine), and finally
will be used with the NSGA-II algorithm, which takes the BPNN mathematical model as its
fitness function, to optimize the design of the DAWT to obtain the optimal combination of
each parameter. This research will then construct the solid model and conduct numerical
simulations based on the obtained optimized combinations by comparison and analysis
with the selected performance evaluation indicators (generated power/noise value) and
flow/acoustic characteristics. Finally, 3D printing will be employed to produce a scaled-
down model of the optimized DAWT configurations for qualitative experimental testing to
confirm their effectiveness. The research flowchart is shown in Figure 2, and the details of
each method are described as follows:
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2.1. Computational Fluid Dynamics (CFD)

This research employs the CFD software ANSYS Fluent 2023 R2 to study the three-
dimensional flow and acoustic fields. In this study, the SST k-ω turbulence model is used
as a closure for the Reynolds-averaged Navier–Stokes (RANS) equations, for this model
accounts for turbulent shear stress transport, exhibits good performance in near-wall
boundary layers [35], and is reliable in predicting flow separation under adverse pressure
gradients [34]. Thus, it gains a broad consensus as to its suitability for wind turbine
applications [23,27–33,35]. For aeroacoustic simulation, the Ffowcs-Williams–Hawkings
(FW-H) formulation is adopted, as it is the most general form of Lighthill’s acoustic analogy
and is capable of predicting sound generated by equivalent acoustic sources such as
dipoles and quadrupoles of the far-field noise, and then is commonly used to simulate the
aeroacoustic noise emitted from shrouded wind turbines [38,39]. The governing equations,
including the RANS equations, SST k-ω turbulence model [74], FW-H equation [75], and
broadband noise source models [76,77], used for these simulations are listed as follows:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (1)

∂

∂t
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∂
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ρuiuj
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∂p
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µ

(
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∂

∂xj

(
−ρu′

iu
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)
(2)

where δij =

{
0 if i ̸= j
1 if i = j

, ui = ui + u′, ui is the velocity component, ui is the average velocity,

u′ is the velocity fluctuation, µ is the dynamic viscosity, ρ is the density, p is the pressure,

−ρu′v′ is the Reynolds Stress, based on the Boussinesq assumption −ρui
′u′

j = µt

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

(
ρk + µt

∂ul
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)
δij, and µt =

ρk
ω is the turbulent viscosity that can be obtained through solv-

ing the following k-ω equations.
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where β∗ = β∗
i [1 + 1.5F(Mt)], fβ∗ =

 1 χk ≤ 0
1+680χ2

k
1+400χ2

k
χk > 0

, χk =
1

ω3
∂k
∂xj

∂ω
∂xj

, χω =

∣∣∣∣ΩijΩjkSki

(0.09ω)3

∣∣∣∣,
β = 0.072

[
1 − 1.5β∗i

0.072 F(Mt)
]
, fβ = 1+70χw

1+80χw
, β∗

i = 0.09
[

4/15+(Ret/8)4

1+(Ret/8)4

]
, Ret =

ρk
µω , M2

t = 2k
γRT ,

F(Mt) =

{
0 Mt ≤ 0.25
M2

t − 0.252 Mt > 0.25
, Ωij =

1
2

(
∂ui
∂xj

− ∂uj
∂xi

)
, and Sij =

1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

1
a2

0

∂p′

∂t2 −∇2 p′ = ∂2

∂xi∂xj

[
TijH( f )

]
− ∂

∂xi

{[
Pijnj + ρui(un − vn)

]
δ( f )

}
+ ∂

∂t{[ρ0vn + ρ(un − vn)]δ( f )}
(5)

where Tij = ρuiuj + Pij − a2
0(ρ − ρ0)δij is the Lighthill stress tensor, H(f ) is the Heaviside

function, Pij = pδij − µ
(

∂ui
∂xj

+
∂uj
∂xi

− 2
3

∂uk
∂xk

δij

)
is the compressive stress tensor, un is the

velocity component normal to the surface, vi is the surface velocity component, vn is the
surface velocity component normal to the surface, a0 is the far-field sound speed, δ(f ) is the
Dirac delta function, and p′ is the sound pressure at the far field (p′ = p − p0).

PA = αρ0

(
u3

l

)
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√
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where αε = 0.1, I
(→

y
)
=

Ac

(→
y
)

12ρ0πa3
0

[
∂p
∂t

]2
. Equation (6) is Proudman’s formula, which indicates

the quadrupole source strength related to turbulent shear stress and can be used to calculate
the acoustic power. Equation (7) is the boundary layer noise source model, which can
simulate the dipole source strength related to pressure fluctuations and can be used to
calculate the acoustic surface power.

Regarding numerical methods, Fluent’s solver uses a finite-volume-based technique,
and the governing equations with appropriate boundary and initial conditions are con-
verted into a system of algebraic equations and solved numerically by the algebraic multi-
grid solver. The convection and diffusion terms of the governing equations are all calculated
using the second-order upwind and central difference schemes, respectively, to ensure
calculation accuracy, and the coupling between pressure and velocity is achieved using the
coupled algorithm.

2.2. Backpropagation Neural Network (BPNN)

The BPNN is a supervised learning algorithm that can achieve the desired target
output value by continuously adjusting the weights and biases of the network based on
the error between the predicted output and actual output. Its architecture is shown in
Figure 3, in which the network structure consists of input, hidden, and output layers, and
it optimizes weights through the backpropagation algorithm, i.e., it learns by calculating
the output layer’s errors to find the hidden layers’ errors.

The neurons in the hidden layer of BPNN can be expressed as netj = f
(

I
∑

i=1
wij × neti

)
,

and the neurons in the output layer can be expressed as netk = f

(
J

∑
j=1

wjk × netj

)
, where f is

the activation function, and the Sigmoid function f (x) = 1
1+e−x is generally selected. This

function can transform any value in the domain to a number between 0 and 1, net is the
neuron, and wij is the weight between neurons i and j. BPNN uses the least-squares method
for weight adjustment, and its process is as follows: 1. randomly initialize the weights;
2. use the current weights to calculate the output value; 3. calculate the difference, i.e., error,
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between the output value and the target value; 4. re-adjust the weights; 5. repeat steps
2.~4. until convergence.
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The error E between the output value and the target value is defined as E = 1
2

K
∑

k=1
(Dk − netk)

2,

where Dk is the target value of the kth neuron in the output layer. The weight is adjusted according
to the two formulas wij = wij + η × δj × neti and wjk = wjk + η × δk × netj, where η is the

learning rate between 0 and 1, δk = (Dk − netk)× [netk × (1− netk)], and δj =
K
∑

k=1

(
δk ×wjk

)
×
[
netj ×

(
1− netj

)]
.

2.3. Multi-Objective Genetic Algorithm-NSGA-II

For a problem in which m objectives are to be minimized simultaneously, the mathe-
matical model can be described as follows:

F(x) = min[ f1(x), f2(x), · · · , fm(x)] x ∈ Ω (8)

where fi(x) is the i-th objective function to be minimized, x is the solution vector, and Ω is
the solution space. Usually, the objective functions are contradictory, i.e., the improvement
of one objective function requires the improvement of another objective function to be
lowered as a price. If a and b are two sets of feasible solutions to the above m objective
minimization problem, then if ∀i fi(a) ≤ fi(b) and ∃j : f j(a) < f j(b) is satisfied; a can be
said to dominate b (a ≻ b). Any feasible solution in the solution space, if other feasible
solutions do not dominate it, is called a non-dominated solution, also called a Pareto-
optimal solution. This solution is not unique but belongs to the Pareto-optimal set. The
solutions in this set are indistinguishable, and the line connected in the solution space is
called the Pareto front. Therefore, solving multi-objective optimization problems aims to
find the complete Pareto front.

This study uses the NSGA-II algorithm proposed by Deb et al. [67], which is based
on the concept of elitism, to conduct multi-objective optimization. The characteristic
element of the algorithm is that the solutions in the solution set are sorted and grouped
into non-dominated solutions, thereby forming several levels of Pareto fronts and adding
the concepts of crowding distance and ranking to avoid falling into a local optimal solution
and reduce computational complexity. The process of NSGA-II is roughly the same as
that of traditional genetic algorithms. It requires basic operation steps such as selection,
crossover, and mutation to generate offspring populations and join them with the parent,
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perform non-dominated sorting, and calculate the crowding degree of the parameters at
the non-dominated level. Finally, based on the non-dominance relationship and crowding
degree, the better chromosomes are selected to enter the next generation until the stopping
criteria are met. The flowchart of NSGA-II is shown in Figure 4.
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2.4. Experimental Setup and Measurement

In this study, 3D printing is used to establish a series of scaled-down basic and
optimized DAWT models with a scale factor of 4/27 by considering the dimension of
the wind tunnel test section, and wind tunnel experiments are conducted for effective-
ness verification (Figure 5). The related equipment includes a power generator, electrical
load, multimeters (current and voltage measurement), and the wind tunnel (including
hot-wire speedometers, data acquisition systems, and experimental control software).
For the experiments, the accuracies of the instruments used to measure the voltage and
electric current are ±0.01 (brand/model: Pro’sKit/MT-1210) and ±0.025 (brand/model:
ANENG/DT9205A), respectively. The following equations can be adopted to obtain the
uncertainty of the measurement:

W = VI (9)

δWV =
∂W
∂V

δV = IδV , δWI =
∂W
∂I

δI = VδI (10)

uW,V =
δWV
W

=
∂W
∂V

δV
W

=
V∂W
W∂V

δV
V

=
V
W

I
δV
V

=
δV
V

= uV (11)

uW,I =
δWI
W

=
∂W
∂I

δI
W

=
I∂W
W∂V

δI
I
=

I
W

V
δI
I
=

δI
I
= uI (12)

uW =
(

u2
W,V + u2

W,I

)1/2
=
(

u2
V + u2

I

)1/2
=
[
(±0.01)2 + (±0.025)2

]
= 2.7% (13)

where W is the power output, V is the voltage, I is the electric current, ui is the relative
uncertainty of item i, and ui,j is the relative uncertainty of i in the result due to uncertainty
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in j. According to the above calculation, the uncertainty of the measured power output
uW is 2.7%.
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3. Results and Discussion
3.1. Numerical Validation

This study selects a two-blade design rotor proposed by Singh and Ahmed [72], which
has lower construction costs and is suitable for low-wind speed applications. Its blade
airfoil is an AF300, specially developed for low Re wind-turbine applications [78], as shown
in Figure 6a. Figure 6 also displays the blade chord length and twist angle distributions of
the rotor designed by Singh and Ahmed [72], which are used for constructing the blade
solid model. The specifications of the rotor are presented in Table 1. The constructed rotor
is placed in a size-verified computational domain (7D × 7D × 15D in x, y, and z directions,
where D is the rotor diameter) with the origin located at the center of the rotor and its
distance from the bottom ground is 4.5 m, as shown in Figure 7. The corresponding
boundary conditions for the computational domain are also annotated in this figure. In
addition, Figure 7 shows the receptor position for noise monitoring, where it is placed
on the ground 5.635 m behind the wind turbine to comply with the international IEC
61400 standard [79], which specifies the angle between the line connecting the center of
the wind turbine and the monitoring point along the ground is determined to be within
25◦ to 40◦. A grid independence test proceeded, the predicted power variation was lower
than 4%, and a grid number of about 9 × 106 was employed for the following simulations.
Figure 8 displays the mesh distribution around the rotor blade and the corresponding
y+ values, whose maximum value is lower than 10. The predicted turbine power of the
BWT with design rotational speed (ω = 500 rpm) under various wind speeds (U = 5–7 m/s)
is compared with the experimental data presented by Sign and Ahmed [72], as shown
in Figure 9. It can be found that the order of magnitude and trend of the predictions are
generally consistent with the experimental data but are slightly overpredicted. The reason
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may be that the numerical simulation does not consider the energy conversion losses of the
generator, so the predicted values are somewhat higher than the experimental values.
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Table 1. Rotor specifications.

Diameter Hub Diameter Twist Angle Rotor Solidity Design Rotational
Speed

D = 1.26 m H = 0.13 m β = 20◦ − 3◦ = 17◦ σ = 8.27% ω = 500 rpm
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After validating the employed numerical procedure, diffusers will be introduced to
enclose the rotor to form the DAWTs for subsequent evaluations under a wind velocity
of U = 7 m/s. In this study, the diffuser profile of a cycloidal cure is used, following the
recommendation of Ohya et al. [14]. The advantages of this implementation include the
various inlet shrouds that will be introduced as the diffuser length changes, that various
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blade tip clearances will be introduced as the rotor axial position changes, and that various
diffuser opening angles will also be introduced as the diffuser length and rotor axial position
change. Adding an inlet shroud for the DAWT is recommended by researchers [29,35],
who pointed out it can increase the approaching wind flow acceleration. Consideration
of the tip clearance in the design of a DAWT is recommended by researchers [32,39],
who point out that it is related to the aerodynamic and acoustic characteristics of the
DAWTs. Diffuser opening angle was taken as a design parameter in studies performed
by researchers [19,30,32,34], who revealed its significant effects on DAWT performance.
In the summary of the papers surveyed, some key parameters regarding DAWT design
have been collected, such as diffuser flange height/angle, diffuser profile/length/opening
angle, rotor axial position, and blade tip clearance. The selected parameters adopted in this
study are the diffuser’s flange height/angle, length, and rotor axial position, as indicated
in Figure 1. After the cycloidal curve has been chosen as the diffuser profile, accompanied
by the variations of selected parameters, the unselected parameters can also be included,
and their effects can be involved. Table 2 shows the parameter ranges used in this study,
specified according to the surveyed DAWT research works listed in Table 3. It can be found
that the parameter ranges adopted all fall into the same order of magnitude as those used
in other works. It is necessary to mention that the compact-type diffuser used by Ohya and
Karasudani [14] was also utilized in this study to consider the structure’s strength.

Table 2. Parameters and parameter ranges used in this study.

Flange Height Flange Angle Diffuser Length Rotor Axial Position

h/D= 0.05–0.25 θ= −15◦–15◦ Lt/D = 0.132–0.223 Five specific positions 1

1 The positions are indicated in Figure 1 and fall inside the range of adopted diffuser lengths.

Table 3. Parameter ranges used in the surveyed research works.

Flange Height
h/D

Flange Angle
θ

Diffuser Length
Lt/D

Rotor Axial Position
z/D

0.05–0.2 [14] −25◦–25◦ [24] 0.1–0.4 [14] 0.04–0.16 [32]

0–0.05 [19] −15◦–15◦ [27] 0.1–0.4 [22] 0.4–0.8 [34]

0.025–0.35 [22] −15◦–0◦ [35] 0.5–1.25 [30]

0.05–0.2 [33] 0.013–0.556 [32]

0–0.3 [34] 0.1–0.371 [33]

3.2. Optimized Results Obtained by Taguchi Method

Since the Taguchi orthogonal array, a powerful statistical tool used in optimization
processes [73], has been implemented to plan the design parameters to be utilized with the
numerical simulations, the parameter ranges shown in Table 2 are divided into five levels
for the DOE, as shown in Table 4. Thus, the Taguchi orthogonal array of L25(54) is yielded,
creating 25 different geometric designs for the diffuser, so that the CFD simulations can be
used to produce datasets for ML. At this step, a set of optimized parameters can also be
gained using the Taguchi method for single-objective optimization. The Taguchi method
uses a signal-to-noise (S/N) ratio, which renders a design quality and response graph to
obtain the optimal parameters. Based on the 25 sets of generated power data from the CFD
simulations, the corresponding S/N ratios can be calculated via Equation (14) for the cases
of larger-the-better (LTB) characteristics.

S/N = −10 log[(MSD)] = −10 log

[
1
n

(
n

∑
i=1

1
y2

i

)]
(14)

where MSD is the mean square deviation indicating the average quality loss, n is the
number of experiments, and yi is the i-th experiment quality characteristics. Figure 10
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displays the response graph of the SN ratio for the LTB analysis of DAWT-generated power.
Consequently, an optimized parameter combination can be obtained, as shown in Table 5,
and labeled as DAWT-Taguchil, alongside an original design labeled as DAWT-Origina.
The original one is set as level 1 of the studied parameters for reference. Figure 10 also
indicates that the impact of the rotor’s axial position on the power output is the most
significant, followed by the diffuser length, flange angle, and flange height.

Table 4. Levels of parameters in the Taguchi design.

Levels Flange Height
h/D

Flange Angle
θ

Diffuser Length
Lt/D

Rotor Axial Position
Labeled Number

1 0.05 15◦ 0.132 1

2 0.1 10◦ 0.152 2

3 0.15 0◦ 0.183 3

4 0.2 −10◦ 0.211 4

5 0.25 −15◦ 0.223 5
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Table 5. Parameter combinations for different diffuser designs according to different optimization
algorithms or goals.

Case Flange Height,
h/D

Flange Angle,
θ

Diffuser
Length, Lt/D

Rotor Axial
Position

DAWT-Original 0.05 15 0.132 1

DAWT-Taguchi 0.1 15 0.152 4

DAWT-NSGA-II-A 0.13 2.4 0.181 3.5

DAWT-NSGA-II-B 0.06 −8 0.149 4.3

DAWT-NSGA-II-C 0.07 13.7 0.185 1.4

3.3. Optimized Results Obtained by Multi-Objective Optimization

Before multi-objective optimization, besides the 25 datasets scheduled by the Taguchi
orthogonal array, 45 randomly generated cases among the adopted parameter ranges
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(Table 2) are also used to conduct the CFD simulations prepared for BPNN training. The
division between training and testing datasets was critical in effectively validating the
BPNN model, and the detailed explanations are as follows:

• Training dataset: The training set comprises a subset of the generated datasets obtained
from the CFD simulations. This dataset trains the neural network model using the
backpropagation algorithm. During training, the neural network learns the underlying
patterns and the relationships between the input parameters (flange height/angle,
diffuser length, rotor axial position) and the corresponding outputs (power output and
generated noise of the DAWT). The Levenberg–Marquardt algorithm was employed
in this phase to obtain a lower mean squared error [61].

• Validation dataset: This dataset, separate from the training dataset, tunes hyperpa-
rameters and assesses the model’s performance during training. After each epoch of
training iterations, the model’s performance is evaluated on the validation dataset to
monitor the model’s generalization ability and prevent overfitting.

• Test dataset: This dataset, separate from the training and validation datasets, is used
to evaluate the final performance of the trained model and assess how well the trained
model generalizes on unseen data.

Once the model is trained and tuned using the training and validation datasets, it is
evaluated on the test dataset to estimate its performance in real-world scenarios. The results
obtained from the test dataset provide an unbiased estimate of the model’s performance
and help in making decisions about deploying the model in practical applications. In
summary, the training dataset is used for model learning, the validation dataset is used for
hyperparameter tuning and model evaluation during training, and the test dataset is used
for final model evaluation to assess its performance on unseen data. Thus, the training
dataset helps the model learn the proper patterns, the validation dataset helps developers
fine-tune the model correctly, and the test dataset provides trustworthy metrics to deploy
the predictions confidently.

The ratio of training, validation, and test datasets is 8:1:1. In our methodology, the
activation functions used in the hidden and output layers of the neural network are
hyperbolic tangent sigmoid and positive linear transfer functions, respectively. After
evaluation, one hidden layer, eight neurons, and a learning rate 0.01 were adopted. Thus,
we can accurately assess its ability to predict DAWT performance beyond the training data.

Based on the CFD results, Figure 11 displays the regression plot of the BPNN training,
in which the input values are the design parameter conditions, the output values are the
power and noise generated by DAWTs; it can be observed that the correlation coefficients R
of the model training set, validating set, and testing set (the degree of fit of the data, the
closer to 1, the better the degree of fit) are 0.99812, 0.99978, and 0.99915, respectively; all are
greater than 0.99, which indicates that the overall estimation accuracy of the BPNN model
is good.

This study employs the NSGA-II algorithm on the MATLAB platform, in which
the GA operators include intermediate crossover, Gaussian mutation with a 100 initial
population, 0.8 crossover rate, and a 300 maximum-number-of-generations adopted. Take
the trained BPNN model as the fitness function of the NSGA-II algorithm for multi-objective
optimization, and then the Pareto front can be obtained, as shown in Figure 12. There are
Pareto-optimal solutions along the Pareto front, and different ones are chosen for various
goals and labeled as NSGA-II-A, NSGA-II-B, and NSGA-II-C, among which NSGA-II-A
focuses on power output, NSGA-II-C focuses on noise reduction, and NSGA-II-B focuses
on both to achieve a compromise. Their corresponding parameter combinations are also
listed in Table 5. Table 6 displays the comparison of power and noise values predicted by
BPNN and CFD for the cases after the completion of the multi-objective optimization, while
the other cases (DAWT-Original and DAWT-Taguchi) are included in the datasets primarily
used for constructing the BPNN model, and thus their predicted values are not available. It
can be found that the maximum error is almost less than 3%, except for the noise prediction
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of DAWT-NSGA-II-C, which is overpredicted but associated with the correct trend; the
accuracy of the BPNN model is acceptable.

Sustainability 2024, 16, x FOR PEER REVIEW 20 of 32 
 

 
Figure 11. Regression-effect diagram of BPNN model training. 

 
Figure 12. Pareto front obtained by NSGA-II algorithm. 

Table 6. Comparison of values of power and noise predicted by BPNN and CFD for the cases after 
completion of multi-objective optimization. 

Case Prediction Power (W) Noise (dBA) 

DAWT-NSGA-II-A 
BPNN 154.51 46.91 
CFD 154.44 47.2 
Error 0.04% 0.6% 

DAWT-NSGA-II-B 
BPNN 151.08 44.92 
CFD 151.85 43.7 
Error 0.5% 2.7% 

DAWT-NSGA-II-C 
BPNN 135.41 42.39 
CFD 134.26 38.4 
Error 0.8% 9.4% 

  

Figure 11. Regression-effect diagram of BPNN model training.

Sustainability 2024, 16, x FOR PEER REVIEW 20 of 32 
 

 
Figure 11. Regression-effect diagram of BPNN model training. 

 
Figure 12. Pareto front obtained by NSGA-II algorithm. 

Table 6. Comparison of values of power and noise predicted by BPNN and CFD for the cases after 
completion of multi-objective optimization. 

Case Prediction Power (W) Noise (dBA) 

DAWT-NSGA-II-A 
BPNN 154.51 46.91 
CFD 154.44 47.2 
Error 0.04% 0.6% 

DAWT-NSGA-II-B 
BPNN 151.08 44.92 
CFD 151.85 43.7 
Error 0.5% 2.7% 

DAWT-NSGA-II-C 
BPNN 135.41 42.39 
CFD 134.26 38.4 
Error 0.8% 9.4% 

  

Figure 12. Pareto front obtained by NSGA-II algorithm.

Table 6. Comparison of values of power and noise predicted by BPNN and CFD for the cases after
completion of multi-objective optimization.

Case Prediction Power (W) Noise (dBA)

DAWT-NSGA-II-A
BPNN 154.51 46.91

CFD 154.44 47.2

Error 0.04% 0.6%

DAWT-NSGA-II-B
BPNN 151.08 44.92

CFD 151.85 43.7

Error 0.5% 2.7%

DAWT-NSGA-II-C
BPNN 135.41 42.39

CFD 134.26 38.4

Error 0.8% 9.4%
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Table 7 shows the generated power and noise of various designs and their corre-
sponding performance coefficients associated with the diffuser, i.e., backpressure, pressure
recovery coefficients, and inflow velocity ratio, as proposed by Watanabe and Ohya [31];
their definitions are indicated in Equation (15).

Cpb =
pb − pa

1
2 ρU2

, K =
u1

U
, Cp2 =

p2 − pa
1
2 ρU2

, Cpd =
Cp b − Cp2

K2 (15)

where pa is the atmospheric pressure, pb is the back pressure behind the diffuser, p2 is
the pressure behind the rotor, u1 is the wind speed in front of the rotor, and U is the
upstream wind speed. Watanabe and Ohya [31] indicated that the back-pressure coefficient
is significant for the performance of DAWTs and pointed out that a lower Cpb and a higher
Cpd are desired for a high-performance DAWT. In addition, Table 7 displays the tip clearance
for various designs, and it can be found that its original value of 10 mm will change with
the selected parameter combinations during the optimization process, as mentioned before.
Table 7 also displays these tip clearance values as divided by the rotor radius, which fall
within a reasonable range, as presented in the literature [32,39].

Table 7. Generated power and noise associated with various designs, and their corresponding
performance coefficients.

Case Tip Clearance
(mm)

Power
(W)

Noise
(dBA) Cpb

2 Cpd
3 K 4

BWT — 98.12 44.24 — — 0.875

DAWT-Original 10 (1.6%) 1 135.31 43.3 −0.778 0.366 0.975

DAWT-Taguchi 25.7 (4.1%) 152.08 45.8 −0.98 0.211 1.14

DAWT-NSGA-II-A 14.1 (2.2%) 154.44 47.2 −0.924 0.304 1.142

DAWT-NSGA-II-B 37.8 (6%) 151.85 43.7 −0.974 0.224 1.149

DAWT-NSGA-II-C 21.7 (3.4%) 134.26 38.4 −0.834 0.311 1.006
1 The value in the parentheses indicates the tip clearance divided by the rotor radius. 2 Back-pressure coefficient
[31]. 3 Pressure recovery coefficient [31]. 4 Inflow velocity ratio [31].

3.4. Flow and Acoustic Fields: Analysis and Comparison

Table 7 shows that the generated power of the DAWTs is at least 37% higher than that
of a BWT, which demonstrates the effectiveness of DAWT technology, and the sequence
of magnitude, from high to low, is DAWT-NSGAII-A, DAWT-Taguchi, DAWT-NSGAII-
B, DAWT-Original, DAWT-NSGAII-C, and BWT. In contrast, some of the noise levels
generated by DAWTs are lower than that of a BWT, but some are greater, and the sequence
of magnitude, from low to high, is DAWT-NSGAII-C, DAWT-Original, DAWT-NSGAII-B,
BWT, DAWT-Taguchi, and DAWT-NSGAII-A. It should be noted that A-weighting [80],
an effort to account for the relative loudness perceived by the human ear, is applied to
measure the sound levels of noise in this study.

It can be found that DAWT-NSGAII-A, which focuses on power output, achieves
the best power output values with the highest noise level. Meanwhile, DAWT-NSGAII-B
considers both output power and noise reduction; although it is slightly lower in power
output than DAWT-Taguchi, it exhibits better noise-reduction performance. Moreover,
its noise level is lower than that of BWT, unlike DAWT-Taguchi, which exceeds that of
BWT. As for DAWT-Taguchi, its performance is quite reasonable, considering that its
optimization is aimed at power output. After all, its configuration is optimized for power
output, so its noise-reduction performance can be expected. As for DAWT-NSGAII-C,
which emphasizes noise reduction, although its power output is the lowest, it still exceeds
that of the BWT, and its noise reduction performance is quite good. The above results
demonstrate the considerable success of ML optimization. Using the optimization results
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mentioned above, this study will analyze the flow and acoustic fields to understand their
relevant characteristics better.

The comparison of pressure distributions (Figure 13) shows that the bare wind tur-
bine exhibits fewer pronounced pressure gradients than the wind turbine with a diffuser.
Consequently, it cannot form an adequate pressure difference around the rotor to drive the
flow field to increase the airflow speed. Conversely, the diffuser’s placement can generate
more distinct pressure gradients around the rotor, thus augmenting airflow velocity, and
assisting the rotor’s work. Such phenomena are consistent with their power output values.
Notably, the diffuser designed by ML (DAWT-NSGAII-A) creates the most pronounced
pressure gradient (Figure 13d), as expected.
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The inflow velocity ratio (K) indicated in Table 7 displays a magnitude sequence of
DAWT-NSGAII-B, DAWT-NSGAII-A, DAWT-Taguchi, DAWT-NSGAII-C, DAWT-Original,
and BWT, which is not consistent with their sequence as to power output, i.e., DAWT-
NSGAII-A, DAWT-Taguchi, DAWT-NSGAII-B, DAWT-Original, DAWT-NSGAII-C, and
BWT. The reason why DAWT-NSGAII-B exhibits the highest K but produces less output
power than DAWT-NSGAII-A and DAWT-Taguchi can be determined by observing the
axial pressure and velocity distributions shown in Figures 13 and 14. Because its rotor
axial position is the closest to the diffuser exit (Table 5), the high-velocity region behind the
diffuser exit is closer to the rotor (Figure 14e) and this makes it exhibit the highest K, and so
demonstrate the lowest Cpb (Table 7). However, such a geometric arrangement causes it
to have the poorest Cpd and exhibit a weaker pressure gradient near the rotor (Figure 13e).
Such flow characteristics are helpful to noise reduction and enable DAWT-NSGAII-B to
balance both design objectives. Similar phenomena, e.g., higher K does not produce higher
power output, can be observed with the DAWT-Original and DAWT-NSGAII-C, but another
reason causes this. The rotor axial positions of both designs are not too different (1 and 1.4,
as indicated in Table 5). Because K is an area-averaged value, it cannot reflect the different
space distributions of the flow field. By observing Figure 14b,f, it can be determined that
the high-velocity regions of both DAWT-Original and DAWT-NSGA-II-C are closer to the
diffuser peripheral and farther from the rotor. Based on the observation of pressure and
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velocity fields, it can be concluded that adding a diffuser enhances the mass flow rate of
the airflow that passes through the rotor, and increases its power output.
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Figure 15 shows the Y-component vorticity and velocity vector distributions. By
comparing the strengths of the vorticity, it is easy to determine that DAWT-NSGAII-A
and DAWT-Taguchi both exhibit stronger vortices, producing higher power output. Both
designs implement higher flange heights and rotor axial positions closer to the diffuser exit,
resulting in the flow structures shown in Figure 15. Such a design can augment the power
output but increase the noise intensity due to the strong vortices produced.

Figures 16 and 17 show the original noise spectrum and the one processed with A-
weighting. In terms of noise, the frequency range audible to the human ear is from 20 Hz
to 20 kHz. Observing these figures shows that adding a diffuser can suppress the noise in
the frequency band of 200 Hz to 800 Hz. But suppose the added diffuser produces strong
vortices in the flow field. In that case, the noise in the lower frequency band of 80 Hz to
200 Hz will be raised, resulting in a negative effect on noise reduction, i.e., not suppressing
the noise, but intensifying it. This observation might explain why inconsistency assessment
exists in the literature [11,25,38,51] discussing the addition of a diffuser that may suppress
or intensify the noise.

Figure 18 shows the isosurface of acoustic power with 20 dB and acoustic power
contour on the Y-Z plane (X/D = 0). This physical quantity is calculated by Equation (6)
and is related to turbulent shear stress in the flow. It can be found that the most vital region
of acoustic power for the DAWT is near the space between the blade tip and the diffuser’s
inner wall, as shown in Figure 18. By comparing Figures 15c–e, 16c–e and 17c–e, it is evident
that the tip vortices generated in those DAWTs induce more substantial turbulence, causing
locally higher turbulent shear stress, which intensifies the noise in a lower frequency band.
This interpretation can be further verified by observing the turbulent kinetic energy (TKE)
distribution displayed in Figure 19 (the intensity of TKE isosurface is 4 m2/s2), which has
almost the same form as the acoustic power distribution. Figure 20 displays the acoustic
surface power, calculated by Equation (7), which is related to the pressure fluctuations in
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the flow field. Observing this figure shows that the intensity of acoustic surface power on
the blade surface is almost the same for all cases, including the BWT. It can be inferred that
the primary noise source is the pressure fluctuation produced by the rotating blade, and the
imposition of a diffuser will mitigate its contribution to the overall noise in the frequency
band of 200 Hz to 800 Hz.
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By further observing Table 5, it can be determined that the case with the highest diffuser
flange height is DAWT-NSGA-II-A, which is optimized for focusing on the power output,
while the lowest one is DAWT-Original, the case of the original design. This observation
implies that the higher the flange height, the more power output may be obtained if
the effects of the other parameters and structural strength problems are not considered.
According to the pressure, velocity, and vorticity fields displayed (Figures 13–15), a higher
diffuser flange height will induce a larger recirculation zone with lower pressure and
stronger vorticity, shifting the recirculation zone away from the rotor. It also can be noted
that the higher flange height makes the noise spectrum around the frequency band of
80–800 Hz more intense, especially 200–800 Hz (Figure 17), accompanied by more acoustic
power (Figure 18) and acoustic surface power (Figure 20), which are caused by the strongly
induced vortices and fluctuating pressure among the region of the blade tip and the flange’s
rear part.

Table 5 also shows that the only one with a negative flange angle is DAWT-NSGA-II-B,
which makes the air flow more smoothly through the device. Interestingly, compounded
with other parameters, the negative flange angle can compromise power output and noise
generation. In such a way, it exhibits a relatively good back-pressure coefficient but a poor
pressure recovery coefficient (Table 7). It helps accelerate the flow, with a more substantial
pressure difference with strong induced vortices but with less slow pressure recovery as it
flows downstream. This phenomenon is evident in its intensified noise spectrum around
the frequency band of 80–200 Hz, as shown in Figure 17e, originating from medium-strong
vortices, and less acoustic surface power means fewer pressure fluctuations, as shown
in Figure 20e.

It is worth mentioning that with the cycloidal diffuser profile adopted, as both param-
eters change, i.e., diffuser length and rotor axial position, the effects of tip clearance, adding
of inlet shroud, and diffuser opening angle are involved implicitly. In such a situation,
the studied design parameters interact intricately, making conducting systematic analyses
using conventional parametric studies hard. The proposed methodology provides a feasible
approach to overcome this difficulty.

Figure 21 displays the power coefficients (Cp) of the DAWTs analyzed in this study
and compares them with the ones of typical BWTs presented in Ref. [8]. The definition of
Cp is shown in Equation (16).

Cp =
P

1
2 ρU3 Ad

(16)

where P is the power output of DAWT, and Ad is the cross-section area of the diffuser. It
can be found that the optimized designs proposed in this study provide reasonable power
performance. By inspecting the definition presented in Equation (16), it can be recognized
that DAWTs implemented with high flange height will decrease their Cp value if their
output power increases cannot compensate for the increased area. Figure 22 shows the
experimental measurement results of the scaled-down DAWT models manufactured by 3D
printing. It can be found that the sequence of the magnitudes of measured output power
almost displays the same trend as the full-scale CFD simulations of the optimized designs.
Thus, this can verify the effectiveness of the optimization methodology proposed in this
study even though all the results presented in this paper are achieved without considering
the manufacturing costs, structural strength, energy conversion efficiency of the electric
generator, friction loss of the gearbox, and bearing power loss. In addition, both the
BPNN and NSGA-II algorithms are potent tools for predictive and optimization modeling.
However, they also have certain limitations; e.g., BPNN may suffer from issues about
local minima, overfitting, gradient vanishing/exploding, hyperparameter sensitivity, etc.;
NSGA-II may encounter problems with convergence, premature convergence, scalability,
parameter sensitivity, etc. In summary, while both BPNN and NSGA-II offer valuable
capabilities for optimization and modeling tasks, researchers and practitioners should
be mindful of their limitations and employ them with careful and deliberate testing and
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evaluation, using the latest-version models and suitable platforms, to address specific
challenges effectively.
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4. Conclusions

This study synergistically implements validated CFD and ML techniques to optimize
a two-blade DAWT suitable for low-wind speed area applications. The research parameters
include the diffuser’s flange height/angle, the diffuser’s length, and the rotor’s axial
position. The primary conclusions of this study are as follows:
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1. This study successfully integrates CFD, BPNN, and NSGA-II to conduct multi-objective
optimization of DAWT, using output power and noise as objective functions. Perfor-
mance evaluation and verification are carried out for the optimized designs. Finally,
the diffuser configurations that meet different requirements for power and noise
are proposed.

2. The influence of design parameters can be evaluated through the Taguchi method.
It was found that the impact of the rotor’s axial position on the power output of
DAWT is the most significant, followed by those of the diffuser length, flange angle,
and height.

3. When employing a cycloid diffuser profile, varying the design parameters, i.e., flange
height/angle, diffuser length, and rotor axial position, allows for the indirect incor-
poration of additional parameters, i.e., tip clearance, diffuser opening angle, and the
adding of inlet shroud, allowing these values to be optimized together.

4. It was evident that a well-designed diffuser requires the acceleration of airflow while
maintaining high-pressure recovery.

5. Under the conditions of this study, introducing a diffuser can reduce the noise in the
frequency band of 200 Hz to 800 Hz, but if the induced tip vortex is too strong, it will
have the opposite effect on the noise reduction. This finding can be used to interpret
the positive and negative impacts on noise of installing a diffuser.

6. The flange height should not be too high or too low. If it is too low, it will not be able to
generate a vortex with sufficient strength behind it to accelerate the airflow inside the
diffuser, which will provide limited help to the power output. However, if the flange
is too high, it will cause the recirculation zone to be far away from the rotor inside the
diffuser, resulting in limited benefit to power output. Moreover, if the flange height
is too high, it would lead to structural damage and deformation, resulting in higher
maintenance costs and making it unsuitable for practical applications.

7. An appropriate flange angle can induce vortices to drive and accelerate airflow within
the diffuser. Negative flange angles balance power and noise demands, resulting in
smoother flow fields with weaker pressure fluctuations and lower noise levels.

8. If the diffuser length is too long, it is unsuitable for practical applications because it
can cause the DAWT to be too heavy for placement in elevated locations. Additionally,
excessive length can hinder the vortices generated by the flange from influencing the
flow field near the rotor inside the diffuser.

9. The rotor should ideally be positioned behind the throat (approximately halfway
between the throat and the outlet) to receive the accelerated flow field induced by
the vortices generated by the flange, thereby enhancing its power output. Placing
the rotor near this position between the throat and the outlet yields better results for
maximizing power output. However, positioning the rotor in front of the throat is
more effective for noise reduction.

Author Contributions: Conceptualization, P.-W.H., J.-H.W. and Y.-J.C.; methodology, P.-W.H.;
software, J.-H.W.; validation, P.-W.H. and J.-H.W.; formal analysis, P.-W.H. and J.-H.W.; inves-
tigation, P.-W.H. and J.-H.W.; resources, P.-W.H. and Y.-J.C.; data curation, P.-W.H. and J.-H.W.;
writing—original draft preparation, P.-W.H. and J.-H.W.; writing—review and editing, P.-W.H.; visu-
alization, P.-W.H.; supervision, P.-W.H.; project administration, P.-W.H.; funding acquisition, P.-W.H.
and Y.-J.C. All authors have read and agreed to the published version of the manuscript.

Funding: We would like to thank The National Science and Technology Council, Taiwan, for financing
the development of this research, with project number 110-2221-E-035-051.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are included in the article; further
inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.



Sustainability 2024, 16, 3648 29 of 31

References
1. Gayen, D.; Chatterjee, R.; Roy, S. A review on environmental impacts of renewable energy for sustainable development. Int. J.

Environ. Sci. Technol. 2024, 21, 5285–5310. [CrossRef]
2. Sayed, E.T.; Wilberforce, T.; Elsaid, K.; Rabaia, M.K.H.; Abdelkareem, M.A.; Chae, K.J.; Olabi, A.G. A critical review on

environmental impacts of renewable energy systems and mitigation strategies: Wind, hydro, biomass and geothermal. Sci. Total
Environ. 2021, 766, 144505. [CrossRef] [PubMed]

3. Darwish, A.S.; Al-Dabbagh, R. Wind energy state of the art: Present and future technology advancements. Renew. Energy Environ.
Sustain. 2020, 5, 7. [CrossRef]

4. Nazir, M.S.; Ali, N.; Bilal, M.; Iqbal, H.M.N. Potential environmental impacts of wind energy development: A global perspective.
Curr. Opin. Environ. Sci. Health 2020, 13, 85–90. [CrossRef]

5. Joselin Herbert, G.M.; Iniyan, S.; Sreevalsanc, E.; Rajapandian, S. A review on wind energy technologies. Renew. Sustain. Energy
Rev. 2007, 11, 1117–1145. [CrossRef]

6. Hutchinson, M.; Zhao, F. GWEC|Global Wind Report 2023; Global Wind Energy Council: Brussels, Belgium, 2023.
7. Kassa, B.Y.; Baheta, A.T.; Beyene, A. Current trends and innovations in enhancing the aerodynamic performance of small-scale,

horizontal axis wind turbines: A review. ASME Open J. Eng. 2024, 3, 031001. [CrossRef]
8. Burton, T.; Jenkins, N.; Bossanyi, E.; Sharpe, D.; Graham, M. Wind Energy Handbook, 3rd ed.; John Wiley & Sons, Ltd.: West Sussex,

UK, 2021.
9. Alabdali, Q.A.; Bajawi, A.M.; Fatani, A.M.; Nahhas, A.M. Review of recent advances of wind energy. Sustain. Energy 2020,

8, 12–19.
10. Jianu, O.; Rosen, M.A.; Naterer, G. Noise pollution prevention in wind turbines: Status and recent advances. Sustainability 2012, 4,

1104–1117. [CrossRef]
11. Ohya, Y.; Karasudani, T.; Nagai, T.; Watanabe, K. Wind lens technology and its application to wind and water turbine and beyond.

Renew. Energy Environ. Sustain. 2017, 2, 2. [CrossRef]
12. Nunes, M.M.; Brasil Junior, A.C.P.; Oliveira, T.F. Systematic review of diffuser-augmented horizontal-axis turbines. Renew. Sustain.

Energy Rev. 2020, 133, 110075. [CrossRef]
13. Ilhan, A.; Sahin, B.; Bilgili, M. A review: Diffuser augmented wind turbine technologies. Int. J. Green Energy 2022, 19, 1–27.

[CrossRef]
14. Ohya, Y.; Karasudani, T. A shrouded wind turbine generating high output power with wind-lens technology. Energies 2010, 3,

634–649. [CrossRef]
15. Watson, S.; Moro, A.; Reis, V.; Baniotopoulos, C.; Barth, S.; Bartoli, G.; Bauer, F.; Boelman, E.; Bosse, D.; Cherubini, A.; et al.

Future emerging technologies in the wind power sector: A European perspective. Renew. Sustain. Energy Rev. 2019, 113, 109270.
[CrossRef]

16. Calautit, K.; Johnstone, C. State-of-the-art review of micro to small-scale wind energy harvesting technologies for building
integration. Energy Convers. Manag. X 2023, 20, 100457. [CrossRef]

17. Al-Quraishi, B.A.J.; Asmuin, N.Z.B.; Mohd, S.B.; Abd Al-Wahid, W.A.; Mohammed, A.N.; Didane, D.H. Review on diffuser
augmented wind turbine (DAWT). Int. J. Integr. Eng. 2019, 11, 178–206. [CrossRef]

18. Aravindhan, N.; Bibin, C.; Kumar, R.A.; Kalyan, K.S.; Balaji, K.S.; Kugan, R.; Rajesh, K.; Arunkumar, S. Performance analysis of
various types of ducted wind turbines—A review. Mater. Today Proc. 2023, 80, 188–194. [CrossRef]

19. Abe, K.I.; Ohya, Y. An investigation of flow fields around flanged diffusers using CFD. J. Wind. Eng. Ind. Aerodyn. 2004,
92, 315–330. [CrossRef]

20. Abe, K.; Nishida, M.; Sakurai, A.; Ohya, Y.; Kihara, H.; Wada, E.; Sato, K. Experimental and numerical investigations of flow
fields behind a small wind turbine with a flanged diffuser. J. Wind. Eng. Ind. Aerodyn. 2005, 93, 951–970. [CrossRef]

21. Toshimitsu, K.; Nishikawa, K.; Haruki, W.; Oono, S.; Takao, M.; Ohya, Y. PIV measurements of flows around the wind turbines
with a flanged-diffuser shroud. J. Therm. Sci. 2008, 17, 375–380. [CrossRef]

22. Jafari, S.A.H.; Kosasih, B. Flow analysis of shrouded small wind turbine with a simple frustum diffuser with computational fluid
dynamics simulations. J. Wind Eng. 2014, 125, 102–110. [CrossRef]

23. Roshan, S.Z.; Alimirzazadeh, S.; Rad, M. RANS simulations of the stepped duct effect on the performance of ducted wind turbine.
J. Wind. Eng. Ind. Aerodyn. 2015, 145, 270–279. [CrossRef]

24. El-Zahaby, A.M.; Kabeel, A.E.; Elsayed, S.S.; Obiaa, M.F. CFD analysis of flow fields for shrouded wind turbine’s diffuser model
with different flange angles. Alex. Eng. J. 2017, 56, 171–179. [CrossRef]

25. Amano, R.S. Review of wind turbine research in 21st Century. J. Energy Resour. Technol. 2017, 139, 050801. [CrossRef]
26. Natesan, M.; Jeyanthi, S.; Sivasathya, U. A review on design of augmented wind turbine blade for low wind speed urban area.

Int. J. Mech. Eng. Technol. 2017, 8, 685–691.
27. Heikal, H.A.; Abu-Elyazeed, O.S.M.; Nawar, M.A.A.; Attai, Y.A. On the actual power coefficient by theoretical developing of the

diffuser flange of wind-lens turbine. Renew. Energy 2018, 125, 295–305. [CrossRef]
28. Klistafani, Y.; Mukhsen, M.I. Development of a shrouded wind turbine with various diffuser type structures. IOP Conf. Ser. Mater.

Sci. Eng. 2019, 676, 012040. [CrossRef]
29. Anbarsooz, M.; Mazloum, M.; Moghadam, D.G. Converging-diverging ducts for efficient utilization of low-grade wind energy:

Numerical and experimental studies. J. Renew. Sustain. Energy 2020, 12, 023304. [CrossRef]

https://doi.org/10.1007/s13762-023-05380-z
https://doi.org/10.1016/j.scitotenv.2020.144505
https://www.ncbi.nlm.nih.gov/pubmed/33421793
https://doi.org/10.1051/rees/2020003
https://doi.org/10.1016/j.coesh.2020.01.002
https://doi.org/10.1016/j.rser.2005.08.004
https://doi.org/10.1115/1.4064141
https://doi.org/10.3390/su4061104
https://doi.org/10.1051/rees/2016022
https://doi.org/10.1016/j.rser.2020.110075
https://doi.org/10.1080/15435075.2021.1914628
https://doi.org/10.3390/en3040634
https://doi.org/10.1016/j.rser.2019.109270
https://doi.org/10.1016/j.ecmx.2023.100457
https://doi.org/10.30880/ijie.2019.11.01.021
https://doi.org/10.1016/j.matpr.2022.11.240
https://doi.org/10.1016/j.jweia.2003.12.003
https://doi.org/10.1016/j.jweia.2005.09.003
https://doi.org/10.1007/s11630-008-0375-4
https://doi.org/10.1016/j.jweia.2013.12.001
https://doi.org/10.1016/j.jweia.2015.07.010
https://doi.org/10.1016/j.aej.2016.08.036
https://doi.org/10.1115/1.4037757
https://doi.org/10.1016/j.renene.2018.02.100
https://doi.org/10.1088/1757-899X/676/1/012040
https://doi.org/10.1063/1.5142843


Sustainability 2024, 16, 3648 30 of 31

30. Arifin, F.; Kusumanto, R.D.; Bow, Y.; Rusdianasari; Taqwa, A.; Susandi, A.; Herlambang, Y.D.; Wang, M.W.; Sitompul, C.R. Study
the effect diffuser length and degree to horizontal wind turbine. In Proceedings of the 4th International Conference on Applied
Science and Technology on Engineering Science (iCAST-ES 2021), Samarinda, Indonesia, 23–24 October 2021.

31. Watanabe, K.; Ohya, Y. A Simple theory and performance prediction for a shrouded wind turbine with a brimmed diffuser.
Energies 2021, 14, 3661. [CrossRef]

32. Ramayee, L.; Supradeepan, K. Influence of axial distance and duct angle in the improvement of power generation in duct
augmented wind turbines. J. Energy Resour. Technol. Trans. ASME 2022, 144, 091302. [CrossRef]

33. Hashem, I.; Hafiz, A.A.; Mohamed, M.H. Characterization of aerodynamic performance of wind-lens turbine using high-fidelity
CFD simulations. Front. Energy 2022, 16, 661–682. [CrossRef]

34. Jauhar, T.A.; Hussain, M.I.; Kiren, T.; Arif, W.; Miran, S.; Lee, G.H. Effect of flanged diffuser divergence angle on wind turbine:
A numerical investigation. PLoS ONE 2023, 18, e0287053. [CrossRef]

35. Mutasher, S.A.; Ahmed, H.M. CFD analysis of brimmed diffuser augmented wind turbine. In Proceedings of the 2023 IEEE
8th International Conference on Engineering Technologies and Applied Sciences (ICETAS), InterContinental Bahrain, Manama,
Bahrain, 25–27 October 2023.

36. Göçmen, T.; Özerdema, B. Airfoil optimization for noise emission problem and aerodynamic performance criterion on small scale
wind turbines. Energy 2012, 46, 62–71. [CrossRef]

37. Reja, R.K.; Amin, R.; Tasneem, Z.; Ali, M.F.; Islam, M.R.; Saha, D.K.; Badal, F.R.; Ahamed, M.H.; Moyeen, S.I.; Das, S.K. A review
of the evaluation of urban wind resources: Challenges and perspectives. Energy Build. 2022, 257, 111781. [CrossRef]

38. Hashem, I.; Mohamed, M.H.; Hafiz, A.A. Aero-acoustics noise assessment for wind-lens turbine. Energy 2017, 118, 345–368.
[CrossRef]

39. Avallone, F.; Ragni, D.; Casalino, D. On the effect of the tip-clearance ratio on the aeroacoustics of a diffuser-augmented wind
turbine. Renew. Energy 2020, 152, 1317–1327. [CrossRef]

40. Sanderse, B.; van der Pijl, S.P.; Koren, B. Review of computational fluid dynamics for wind-turbine wake aerodynamics. Wind
Energy 2011, 14, 797–819. [CrossRef]

41. Rehman, S.; Alam, M.M.; Alhems, L.M.; Rafique, M.M. Horizontal axis wind turbine blade design methodologies for efficiency
enhancement—A review. Energies 2018, 11, 506. [CrossRef]

42. Agha, A.; Chaudhry, H.N.; Wang, F. Diffuser augmented wind turbine (DAWT) technologies: A review. Int. J. Renew. Energy Res.
2018, 8, 1369–1385.

43. Marugán, A.P.; Márquez, F.P.G.; Perez, J.M.P.; Ruiz-Hernández, D. A survey of artificial neural network in wind energy systems.
Appl. Energy 2018, 228, 1822–1836. [CrossRef]

44. Elyasichamazkoti, F.; Khajehpoor, A. Application of machine learning for wind energy from design to energy-Water nexus:
A Survey. Energy Nexus 2021, 2, 100011. [CrossRef]

45. Bin Abu Sofian, A.D.A.; Lim, H.R.; Siti Halimatul Munawaroh, H.; Ma, Z.; Chew, K.W.; Show, P.L. Machine learning and the
renewable energy revolution: Exploring solar and wind energy solutions for a sustainable future including innovations in energy
storage. Sustain. Dev. 2024, 1–26. [CrossRef]
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