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Abstract: To monitor the Ecological Environment Quality (EEQ) of the Jiaodong Peninsula and
provide a scientific basis for ecological environment governance and sustainable development in
the region, this study evaluates the EEQ of Jiaodong using the Remote Sensing-based Ecological
Index (RSEI) model and analyzes its spatiotemporal evolution patterns, building upon single-factor
correlation analysis using the Random Sample Consensus (RANSAC) algorithm, using GeoDetector
to analyze the driving mechanisms of human activities and natural factors in EEQ. The results
indicate the following: (1) The average RSEI values for 2000, 2010, and 2020 are 0.60, 0.57, and 0.66,
with Good or Excellent areas accounting for 56.48%, 51.02%, and 67.17%. From 2000 to 2020, RSEI
strong improvement areas were predominantly distributed in the eastern hilly areas of the Jiaodong
Peninsula. The RSEI of the Jiaodong Peninsula showed significant spatial autocorrelation. (2) The
RANSAC algorithm effectively reduces noise interference in remote sensing data, thereby improving
the accuracy of single-factor correlation analysis. (3) In 2000, the importance of natural factors exceeds
that of human activity factors. The Standardized Precipitation Evapotranspiration Index (SPEI) is
the most important driving factor; while in 2010 and 2020, human activity factors surpass natural
factors in importance, with the Land Use Composite Index (LUCI) being the most significant driving
factor. The driving factors exhibited double-factor and nonlinear enhancement. The most significant
interaction factors affecting the EEQ of the Jiaodong Peninsula in 2000, 2010, and 2020 are SPEI∩GDP,
LUCI∩SPEI, and LUCI∩GDP.

Keywords: EEQ; RSEI; RANSAC; GeoDetector; Jiaodong Peninsula

1. Introduction

In recent years, under the influences of human activities and climate change, the ex-
haustion of natural resources, environmental pollution, biodiversity decline, and the rising
frequency of extreme weather events like droughts and floods have posed serious threats
to the balance of ecosystems and the sustainable development of human society [1–4].
Based on diverse research perspectives including ecosystem services [5], ecological vul-
nerability [6], ecological security patterns [7], and ecological carrying capacity [8], the
monitoring and assessment of changes in Ecological Environment Quality (EEQ) and its
driving mechanisms have become essential for governments and ecological conservation
organizations to formulating ecological conservation policies.

Xu H. Q. [9] introduced the Remote Sensing Ecological Index (RSEI), which evaluates
EEQ by integrating four indicators—wetness, greenness, heat, and dryness—through
principal component analysis (PCA). Compared to methods using single indicators such
as the normalized difference vegetation index (NDVI) [10] or Leaf Area Index (LAI) [11]
for assessing EEQ, the RSEI contain more comprehensive information. The RSEI has been
widely applied in evaluating EEQ in urban ecosystems [12,13], natural ecosystems [14,15],
and key ecological conservation areas [16] at different scales.
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There are two limitations that can impact the assessment results of RSEI. First, the
underlying data of RSEI rely on remote sensing images, where variations in sensors and
acquisition times can lead to pseudofluctuations. Challenges like cloud cover, periodic
stripes, bright lines, and spots make significant noise interference, substantially influencing
the results of the driving analysis [17,18]. Second, ecosystems, especially urban ones, are
influenced by the combined effects of natural, social, and economic factors [19]. Natural
and human factors are interwoven in ecosystem components, integrated in structure,
coupled in processes, complementary in functions, and synergistic in services. Therefore,
traditional correlation analysis and regression analysis have limitations in quantifying the
contributions of driving factors to EEQ and their interactions.

The Jiaodong Peninsula, characterized as a complex coastal ecosystem, benefits from
favorable climatic conditions and abundant natural resources, experiencing significant
human activity. Over the past two decades, the region has become one of the fastest-
growing urban agglomerations in northern China, associated with increasing vulnerability
to coastal erosion, fragmented landscapes in ecological source areas, and declining bio-
diversity [20,21]. According to Huang et al., there was a significant decrease of 16.8% in
the ecological resilience of the Shandong Peninsula region from 2000 to 2018 [22]. Intense
human activities [23,24] and extreme weather events [25] have posed significant challenges
to the ecological balance of the Jiaodong Peninsula. Using RSEI to assess the historical
and current status of the EEQ in Jiaodong Peninsula, exploring the driving mechanisms of
human activities and natural elements, is crucial for formulating targeted local ecological
conservation policies and enhancing the resilience of the complex coastal ecosystem of the
Jiaodong Peninsula to disturbances.

To overcome the issues associated with conducting ecological assessments based on
remote sensing images, this research using the Random Sample Consensus Algorithm
(RANSAC) proposed by Fischler and Bolles in 1981 to address the impact of remote sensing
noise on correlation analysis. RANSAC exhibits strong robustness to noisy data, and
has been widely applied in measurement engineering, image matching, and point cloud
orientation [26,27]. GeoDetector is a statistical method for detecting spatial differentiation
and revealing the driving forces behind it [28], which can identify the interactions between
driving factors and has been well applied in the analysis of EEQ driving factors [29,30].

The objectives of this study are (1) to evaluate the EEQ of the Jiaodong Peninsula
from 2000 to 2020 using the RSEI model and analyze spatial clustering characteristics
through LISA clustering; (2) to comprehensively analyze the relative contributions of
human activities and natural factors to EEQ using RANSAC and GeoDetector, providing
references for promoting the green and high-quality growth of the Jiaodong Peninsula
urban agglomeration.

2. Materials and Methods
2.1. Research Area

The Jiaodong Peninsula is located in the eastern coastal region of the Shandong
Peninsula, China (118◦10′–122◦42′ E, 35◦04′–38◦23′ N), situated between the Bohai Sea and
the Yellow Sea (Figure 1). It encompasses five cities—Weifang, Qingdao, Rizhao, Yantai,
and Weihai—comprising 41 districts and counties. With a land area of approximately
52,000 km2 and a population of around 32.43 million permanent residents, the urbanization
rate stands at 67%, contributing to a regional GDP of approximately 3.1 trillion yuan.
The Jiaodong Peninsula urban agglomeration experiences a temperate monsoon climate
with distinct maritime characteristics, featuring four distinct seasons and concurrent rainy
and hot periods. The topography of the Jiaodong Peninsula predominantly consists of
low mountains and hills, with vegetation primarily comprising deciduous broadleaved
forests and areas of artificial vegetation. As one of China’s most developed regions, the
Jiaodong Peninsula urban agglomeration holds significant importance in the national
strategic framework for ecological protection and high-quality development within the
Yellow River Basin.
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Figure 1. Location of Jiaodong Peninsula.

2.2. Data Sources and Processing

The Landsat images dataset for growing seasons (June to September) of the years
2000, 2010, and 2020, collected and processed by the Google Earth Engine platform (https:
//developers.google.com/earth-engine/datasets, accessed on 18 January 2020) was used
to calculate the RSEI. The selected images are complete and free from gap-filling. The
CFMASK algorithm available on the GEE platform was used for cloud masking, the
permanent water area band from the JRC Global Surface Water Distribution dataset was
used for water masking. The Landsat images of the study area were mosaicked and RSEI
was calculated using median fusion. The spatial resolution of the output remote sensing
images is 30 m. Details of Landsat images are shown in Table 1.

Table 1. Landsat images information.

Year Source Dates of the Landsat Images (M-D) The Maximum Cloud Amount

2000 Landsat 5/7

Landsat 5: 6-4, 6-6, 6-11, 6-13, 7-22, 7-24,
7-31, 8-14, 9-8, 9-10, 9-15, 9-17, 9-26

40%Landsat 7: 6-5, 6-12, 6-28, 6-30, 7-14,
7-21, 7-30, 8-01, 8-06, 8-17, 8-22, 9-9,

9-16, 9-18

2010 Landsat 5 6-7, 6-25, 7-11, 8-3, 8-17, 8-19, 8-25, 9-11,
9-13, 9-26 20%

2020 Landsat 8 6-4, 6-25, 6-27, 7-15, 7-20, 7-29, 8-28,
8-30, 9-06 20%

This study selected six driving factors, encompassing both natural and human activity
elements, as independent variables. The data sources used for computing these variables
are shown in Table 2.

https://developers.google.com/earth-engine/datasets
https://developers.google.com/earth-engine/datasets
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Table 2. Data sources for driving factors.

Data Source Spatial Resolution URL

Land Cover
30m annual land cover and its

dynamics in China from
1990 to 2019

30 m
https://zenodo.org/records/

4417810, accessed on 18
January 2024

Population Density WordPop 1 km https://www.worldpop.org/
Gross Domestic Product

(GDP)
Resource and Environmental

Science and Data Center 1 km https://www.resdc.cn/

Precipitation The National Tibetan Plateau
Data Center 1 km https://data.tpdc.ac.cn/

Temperature The National Tibetan Plateau
Data Center 1 km https://data.tpdc.ac.cn/

Evaporation The National Tibetan Plateau
Data Center 1 km https://data.tpdc.ac.cn/

2.3. Method
2.3.1. Construction of RSEI

This study evaluates the EEQ of the Jiaodong Peninsula from 2000 to 2020 based on the
RSEI. According to Xu’s [9] framework, principal component analysis (PCA) is employed
to combine four ecological indicators (wetness, greenness, heat, and dryness), with the
first principal component (PC1) utilized to construct RSEI. The weights of each indicator
are objectively determined based on their contributions to PC1, which rely on the data
characteristics of each study area rather than subjective factors [31].

RSEI = [ f (Wetness, Greenness, Heat, Dryness)] (1)

Explanation and details of the four indicators, computed using related thematic remote
sensing indices/algorithms, are listed as follows:

(1) Wetness indicator: Wet component, applying the tasseled cap transformation to
the original landsat date [32,33], can effectively reflect soil and vegetation moisture
information. The formula is as follows:

WET = α1βblue + α2βgreen + α3βred + α4βnir − α5βswir1 − α6βswir2, (2)

where βblue, βgreen, βred, βnir, βswir1, and βswir2 represent the reflectance values of
the blue, green, red, near-infrared, short-wave infrared 1, and short-wave infrared
2 bands, respectively. α is a weight coefficient. For Landsat TM data, these coefficients
are 0.0315, 0.2021, 0.3012, 0.1594, 0.6806, and 0.6109 [34]. For Landsat-8 OLI data,
they are 0.1511, 0.1973, 0.3283, 0.3407, 0.7117, and 0.4559 [35].

(2) Greenness indicator: This indicator can reflect the vegetation coverage and growth
conditions of study area. Greenness is expressed by Normalized Difference Vegeta-
tion Index (NDVI) [36]. The formula is as follows:

NDVI =
βnir − βred
βnir + βred

, (3)

(3) Heat indicator: This component, expressed by Land Surface Temperature (LST),
reflects the surface temperature of urban underlying surfaces, which is directly
related to the quality of human habitation and energy consumption [37]. The formula
is as follows:

LST =
T

1 + (λT/δ) ln(ϵ)
, (4)

where λ is the central wavelength of the thermal infrared band, δ = 1.438 × 10−2 m·k,
and ϵ is the ground emissivity. L = gain × DN + bias and T = K2

ln(K1/L+1) , where
gain, DN, and bias represent the gain value of the thermal infrared band, the

https://zenodo.org/records/4417810
https://zenodo.org/records/4417810
https://www.worldpop.org/
https://www.resdc.cn/
https://data.tpdc.ac.cn/
https://data.tpdc.ac.cn/
https://data.tpdc.ac.cn/
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grayscale value of the pixel, and the bias value of the thermal infrared band; K1
and K2 are calibration parameters.

(4) Dryness indicator: This component is used to reflect the built area of the region [38].
The normalized difference built-up and soil index (NDBSI) can be represented by
synthesizing the bare soil index (SI) and the impervious built-up index (IBI). The
formula is as follows:

NDBSI =
SI + IBI

2
, (5)

SI =
(βswir1 + βred)− (βnir + βblue)

(βswir1 + βred) + (βnir + βblue)
, (6)

IBI =
2βswir1

βswir1+βnir
− [ βnir

βnir+βred
+

βgreen
βgreen+βswir1

]

2βswir1
βswir1+βnir

+ [ βnir
βnir+βred

+
βgreen

βgreen+βswir1
]
, (7)

Four indicators are normalized according to Formula (8) to remove dimensional
inconsistencies.

BIi =
Bi − Bmin

Bmax − Bmin
, (8)

BIi represents the normalized indicator, Bi represents the original indicator, and Bmax and
Bmin are the maximum and minimum values of the indicator.

It is generally considered that principal components with contribution values ex-
ceeding 70% are sufficient for constructing an effective RSEI model [35]. Table 3 presents
the results of PCA. The contribution values of the first principal component (PC1) for
all three years exceed 70%, indicating that PC1 can be used to construct RSEI in the
Jiaodong Peninsula.

Table 3. Principal component analysis for 2000, 2010, and 2020.

Year Indicator PC1 PC2 PC3 PC4

2000

NDVI 0.74 0.25 0.63 −0.04
WET 0.23 0.69 −0.52 0.45

NDBSI −0.50 0.68 0.29 −0.45
LST −0.39 0.01 0.50 0.77

Eigenvalue 0.02 0.00 0.003 0.002
Percentage 0.76 0.01 0.14 0.09

2010

NDVI 0.74 0.61 0.28 0.07
WET 0.28 −0.65 0.70 −0.13

NDBSI −0.60 0.42 0.66 0.17
LST −0.09 0.20 0.05 −0.97

Eigenvalue 0.03 0.01 0.00 0.00
Percentage 0.81 0.11 0.05 0.01

2020

NDVI 0.57 0.07 0.29 0.71
WET 0.26 −0.13 0.09 −0.56

NDBSI −0.59 0.17 −0.39 0.42
LST −0.49 −0.97 0.86 0.01

Eigenvalue 0.05 0.00 0.01 0.00
Percentage 0.88 0.01 0.10 0.02

Transform PC1 to RSEI0,

RSEI0 =

{
PC1, Vgreenness, Vhumidity > 0
1 − PC1, Vgreenness, Vhumidity ≤ 0,

(9)

where Vgreenness and Vhumidity represent the normalized greenness and humidity components.
RSEI0 is normalized (Equation (8)) to obtain the final RSEI.



Sustainability 2024, 16, 3676 6 of 19

2.3.2. Classification of RSEI

This study categorizes RSEI into five levels, defined as follows: Worst (0–0.2), Poor (0.2–0.4),
Moderate (0.4–0.6), Good (0.6–0.8), and Excellent (0.8–1). RSEI changes are divided into four
categories using a two–level boundary: Serious degradation (−1–0.4), Light degradation
(−0.4–0), Light improvement (0–0.4), and Strong improvement (0.4–1).

Based on the classification of ecological environmental quality, the spatial variations
of different RSEI levels are analyzed using standard deviation ellipses and directional
distribution in ArcGIS 10.8. Further details on the methodology can be found in the study
by Zhang et al. [39].

2.3.3. Spatial Autocorrelation of RSEI

Study area was divided into a grid of 1 × 1 km grids to calculate the average value of
RSEI, using Global and Local Moran’s Index to analyze the spatial clustering of RSEI.

(1) Global Moran’s I Index:

I =
n
S0

×
∑n

i=1 ∑n
j=1 ωijZiZj

∑n
i=1 Z2

i
, (10)

(2) Local Moran’s I Index:

Ii =
Zi
S2

n

∑
j ̸=i

ωijZj, (11)

where n is the number of regions, ωij represents the spatial weight matrix corre-
sponding to the weight values between regions, S0 is the total sum of spatial weight
matrix weight values, Zi = (yi − ȳ), S2 = 1/n∑n

i=1(yi − ȳ), Zj = (yj − ȳ), yi and yj
are the values of the analysis indicator in regions i and j, and ȳ is the average value
of the analysis indicator.

When Moran’s Index is greater than 0, it indicates positive spatial autocorrelation,
meaning that similar attribute values tend to cluster together in space. Conversely, when
Moran’s Index is less than 0, it indicates negative spatial autocorrelation, suggesting a
tendency for dissimilar attribute values to be dispersed across space. The magnitude of
Moran’s Index reflects the strength of spatial autocorrelation, with larger absolute values
indicating stronger correlation.

The first component (Zi/S2) of the Local Moran’s Index (Equation (11)) is plotted
on the horizontal axis, representing the deviation of the region from the overall regional
mean. The second component (∑n

j ̸=iωijZj) is plotted on the vertical axis, representing the
difference between the local area and its surrounding areas compared to the regional mean.
The four quadrants of this plot represent four types of spatial clustering patterns: High–
High Cluster (H-H), High–Low Cluster (H-L), Low–High Cluster (L-H), and Low–Low
Cluster (L-L). The LISA cluster map depicts significant clustering patterns on the map at a
given level of significance, demonstrating the spatial aggregation and dispersion within
the geographic region. In this study, the LISA cluster maps were generated using the LISA
analysis tool in ArcGIS 10.8.

2.3.4. Selection and Calculations of Driving Factors

Human activities and natural factors collectively impact EEQ dynamics [40]. The
significance of human activities [41–43] and natural factors [44–47] for EEQ varies notably
across different research scales. Anchored in the natural environment and socio-economic
context of the Jiaodong Peninsula, we identify six driving factors as independent vari-
ables, using RSEI as the dependent variable to explore the driving mechanisms (Table 4).
Considering spatial heterogeneity, data compatibility, and computational sample sizes, all
data are resampled to a resolution of 5 km. Figure 2 illustrates the distribution of each
driving factor.
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Figure 2. Driving factors of RSEI in Jiaodong peninsula. Factor abbreviations are listed in Table 4.
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Table 4. Driving factors for RSEI.

Factor
Type Indicator Factor

Name Description Raw Data (Table 2) Calculation

Human X1 LUCI

The Land Use Intensity Compos-
ite Index reflects the extent of hu-
man development and utilization of
land in a region, serving as a cru-
cial indicator for measuring both
the depth and breadth of land use
within an area.

Land Cover

The methodology followed the re-
search of Lili Pu et al. [48] and the
weights of land use categories are
listed in Table 5.

Human X2 PD Population Density reflects the pop-
ulation aggregation situation. Population Density

Human X3 GDP Gross Domestic Product reflects
socio-economic activities. Gross Domestic Product

Nature X4 SPEI

The Standardized Precipitation
Evapotranspiration Index reflects
drought conditions by measuring
the difference between precipitation
and potential evapotranspiration.

Precipitation,
Evaporation

The methodology was referenced
from the study conducted by
Vicente-Serrano et al. [49].

Nature X5 AMP
Annual Mean Precipitation reflects
the impact of precipitation in
climate change.

Precipitation

Nature X6 AMT
Annual Mean Temperature re-
flects the impact of temperature in
climate change.

Temperature

Table 5. The weights of land use categories.

ID Category Weight

0 nodata mask-out
1 Cropland 2
2 Forest 1
3 Shrub 1
4 Grassland 1
5 Water 1
6 Snow/Ice 1
7 Barren 2
8 Impervious 3
9 Wetland 2

2.3.5. RANSAC

Because of the differences in resolution and quality among remote sensing images
from different years and sensors, the constructed RSEI image and the images of driving
factors inevitably contain noisy data. Directly using linear regression in correlation analysis
may lead to significant errors. To explore the relationship between RSEI and the six factors
more accurately, this study employs the RANSAC algorithm to calculate the correlation
between driving factors and RSEI, and compares with Ordinary Least Squares (OLS).

The RANSAC algorithm is a classic method for fitting models, used to estimate
mathematical model parameters from data containing noisy data. Currently, there are no
applications of the RANSAC algorithm in the field of ecological assessment. The solving
process of the RANSAC algorithm is as follows:

(1) First, randomly select a set of inlier points from the dataset (the number of which
should ensure that all model parameters can be estimated) and calculate a set of
model parameters.
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(2) Use the obtained model to test all the other data points. If a point’s error falls
within the specified error threshold, it is considered an inlier point; otherwise, it is
considered an outlier. Keep only the model with the highest number of inlier points
up to this point and record it as the best model.

(3) Repeat steps 1 and 2 for a sufficient number of times (i.e., reaching the preset iteration
limit). Assuming the inlier rate in the dataset is w, the minimum number of iterations
k required to obtain a set of inlier points with at least one common inlier at a certain
confidence level z is determined by the formula:

k =
log(1 − z)

log(1 − wn)
, (12)

Use RANSACRegressor function from the scikit-learn library (version 4.1.2) in Python 3.11
to perform inlier–outlier estimation with parameters “loss=squared_error, min_samples=1000”.

2.3.6. GeoDetector

The GeoDetector is a comprehensive tool for revealing the correlation and variation
patterns between dependent and independent factors in spatial data. In this study, the
dependent factor is RSEI and the independent factors consist of six driving factors. The
driving factors are reclassified into five categories of equal frequency.

The GeoDetector includes four modules: the factor detector, risk detector, interaction
detector, and ecological detector. The factor detector assesses the influence strength of
driving factors on EEQ, while the interaction detector explores the combined effect of any
two factors on EEQ.

In the factor detector, a higher q-value indicates a stronger impact of the driving factor
on RSEI. The calculation formula for the q-value is

q = 1 − 1
Nδ2

L

∑
h=1

Nhδ2
h, (13)

where h = 1, . . . , L; L represents the number of categories for the driving factor; Nh and N
denote the sample sizes in different categories and the entire region, respectively; δ2

h and δ2

represent the variances of RSEI in different categories and the entire region, respectively.
The interaction between two factors can be identified by comparing the q-values of

single and double factors. The results of factor interaction detection are classified into
5 categories based on the magnitudes of the q-values for single and double factors (Table 6).

Table 6. Factor interaction detection results.

Interaction Judgemental Model

Nonlinear deceleration q(X1 ∩ X2) < min(q(X1), q(X2))
Linear deceleration min(q(X1), q(X2)) < q(X1 ∩ X2) < max(q(X1), q(X2))

Bilinear enhancement q(X1 ∩ X2) > max(q(X1), q(X2))
Mutually independent q(X1 ∩ X2) = (q(X1) + q(X2))

Nonlinear enhancement q(X1 ∩ X2) > (q(X1) + q(X2))

3. Results
3.1. Spatial and Temporal Evolution of RSEI

Figure 3 illustrates the distribution and proportional areas of RSEI levels across the
Jiaodong Peninsula. In 2000, the average RSEI value was 0.60. By 2010, it decreased
to 0.57, indicating a 5% decline. However, by 2020, the average RSEI value had risen
to 0.66, representing a notable increase of 15.79%. Over the years 2000, 2010, and 2020,
areas classified as “Good” and “Excellent” predominated, with proportions of 56.48%,
51.02%, and 67.17%. The proportion of areas classified as “Moderate” increased in 2010 but
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decreased below the 2000 level by 2020. Conversely, the proportions of “Worst” and “Poor”
levels decreased annually, comprising 26.43%, 23.79%, and 19.31% of the total area.

From 2000 to 2010, regions experiencing a strong improvement in RSEI were primarily
concentrated in the eastern hilly areas of the Jiaodong Peninsula, while areas exhibiting
serious degradation were mainly observed in Weifang and Qingdao. From 2010 to 2020,
regions showing a strong improvement in RSEI were predominantly distributed in the
eastern hilly areas of the Jiaodong Peninsula, with fewer areas demonstrating serious
degradation, which were scattered.

Figure 3. Spatial distribution of RSEI levels in Jiaodong Peninsula.

Using the standard deviation ellipse and centroid migration analysis method, this
study investigates the spatial distribution characteristics of different levels of RSEI across
the Jiaodong Peninsula (Figure 4). The major axis of the standard deviation ellipse indicates
the primary direction of RSEI distribution across various levels, while the minor axis
signifies the extent of RSEI distribution. The distribution direction of each level of RSEI is
consistent, trending from southwest to northeast. For the Good and Excellent levels, the
major axis elongates and the minor axis shortens, with the centroid shifting towards the
northeast. For the Moderate level, the sizes of the major and minor axes of the standard
deviation ellipse remain stable, with minimal changes in the centroid position. For the
Worst and Poor levels, the major axis of the standard deviation ellipse shortens, the minor
axis widens, and the centroid shifts towards the southwest.
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Figure 4. Standard deviation ellipse analysis and centroid migration for different levels of the RSEI.

At the urban scale, the rankings of average RSEI values in 2000 were as follows:
Rizhao > Weifang > Qingdao > Yantai > Weihai. In 2010, the rankings were: Rizhao >
Weifang > Qingdao > Yantai > Weihai. By 2020, the rankings changed to: Rizhao > Weihai >
Yantai > Qingdao > Weifang.

Figure 5 illustrates the proportional distribution of RSEI levels across the five cities
of the Jiaodong Peninsula urban agglomeration. The proportions of Good and Excellent
areas increased to over 65% in each city, with Rizhao notably reaching 73.85% by 2020.
The Moderate areas witnessed an increase in all cities by 2010 followed by a subsequent
reduction by 2020. Except for Weifang, the proportions of the Worst and Poor areas reached
their lowest levels by 2020.

Figure 5. The percentage of RSEI levels area in cities from 2000 to 2020.

3.2. Spatial Disparity Analysis of RSEI

The LISA cluster map of RSEI is shown in Figure 6.
2000: H-H clustering areas are primarily located in the mountainous and hilly regions

of Rizhao and Weifang cities in the western part of the Jiaodong Peninsula, as well as the
Mount Lao district of Qingdao. L-L cluster areas are concentrated in the coastal urban
areas and bay regions of each city, with significant L-L clustering also observed in the
mountainous and hilly areas of the western part of the Jiaodong Peninsula, especially in
Weihai city.

2010: H-H cluster areas remained prominent in the mountainous and hilly terrains of
Rizhao and Weifang cities, as well as in the Mount Lao district of Qingdao, albeit with a
noticeable decrease in spatial extent. L-L cluster areas continued to appear along the coastal
urban zones of each city, although their overall coverage decreased. Notably, clustering
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within the urban precincts of Weifang and Qingdao expanded during this period, contrast-
ing with the general trend. Other regions did not exhibit significant clustering tendencies.

2020: H-H cluster areas were predominantly distributed in hilly terrains, while the
coverage of L-L cluster areas along the coastline notably diminished in Weihai and Yantai
cities. L-L cluster areas primarily in the urban zones of Qingdao, Weifang, and the bays
of Jiaozhou and Laizhou. The majority of remaining regions did not exhibit pronounced
clustering patterns.

Figure 6. LISA cluster map of RSEI.

3.3. Single-Factor Correlation Analysis Based on RANSAC

In Figure 7, the black and red lines represent the results of least squares (OLS) and
RANSAC fitting, respectively. The gray points in the figure denote the inliers fitted by the
RANSAC algorithm, while the blue points represent the corresponding outliers or noise
points. The coefficient of determination (R2) is used to assess the fitting performance of
the algorithms. The R2 values of the RANSAC algorithm consistently exceed those of the
OLS method, suggesting the superior capability of the RANSAC algorithm in capturing
the influence of factors on the evolution of RSEI.

RANSAC analysis reveal a negative correlation between human activities and RSEI,
while the association between natural factors and RSEI demonstrates interannual variations.

The negative correlation between LUCI and RSEI reached its lowest point in 2000
but increased annually thereafter. By 2020, it reached a peak with an R2 value of 0.56, the
highest among all impact factors.

The R2 for PD and RSEI was relatively low in 2000, reaching its peak in 2010 at 0.25. By
2020, the R2 value for POP ranked second among all impact factors. The negative impact
of population aggregation and urbanization on EEQ has become increasingly apparent.

The correlation between GDP and RSEI peaked in 2010. In contrast, the correlation
between GDP and RSEI weakened in 2020 compared to PD.

In 2000, SPEI exhibited a positive correlation with RSEI, highlighting the importance
of agricultural drought on EEQ. However, this correlation turned negative by 2010 and
became inconspicuous by 2020.

AMP exhibits a positive correlation with RSEI, with its R2 value in 2000 only slightly
lower than that of SPEI. However, by 2010, the correlation between AMP and RSEI was
relatively low. In 2020, the R2 of AMP reached the highest level among the natural factors.

In 2000, there was a positive correlation between AMT and RSEI, although with a low
level of correlation. In 2010 and 2020, AMT showed no significant correlation with RSEI.
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Figure 7. RANSAC and OLS fitting results of RSEI. Factor abbreviations are listed in Table 4.
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3.4. Driving Force Analysis Based on GeoDetector

Table 7 displays the statistical results of GeoDetector’s factor detector.
2000: Natural factors have a greater impact on RSEI compared to human activities.

SPEI ranks higher than AMP, with AMT following as the third most influential factor.
2010: Human activities exert a stronger influence on RSEI than natural factors. LUCI

had the strongest influence on RSEI evolution. GDP and SPEI are ranked second and third
in terms of their importance to RSEI.

2020: Human activity factors dominate the top three spots in the ranking of factor impor-
tance. The q-value of LUCI reaching 0.45, with POP’s importance surpassing that of GDP.

Table 7. q statistic result of GeoDetector.

Factor
2000 2010 2020

q p q Ranking q p q Ranking q p q Ranking

X1 0.048 0.000 5 0.191 0.000 1 0.450 0.000 1
X2 0.037 0.000 6 0.095 0.000 4 0.232 0.000 2
X3 0.168 0.000 4 0.179 0.000 2 0.104 0.000 3
X4 0.222 0.000 1 0.161 0.000 3 0.033 0.000 6
X5 0.189 0.000 2 0.033 0.000 6 0.063 0.000 5
X6 0.170 0.000 3 0.088 0.000 5 0.069 0.000 4

The interaction detector results exhibited double-factor and nonlinear enhancement
among driving factors (Figure 8).

2000: The SPEI∩GDP interaction, followed by AMP∩GDP, had the greatest impact on
EEQ, with a q value reaching 0.358.

2010: The LUCI∩SPEI interaction, followed by LUCI∩AMT, had the greatest impact
on EEQ, with a q value reaching 0.383.

2020: The LUCI∩GDP interaction, followed by LUCI∩AMT, had the greatest impact
on EEQ, with a q value reaching 0.494.

The double-factor and nonlinear enhancement among human factors gradually inten-
sified, reaching its peak in 2020, while, among nature factors, it decreased annually in 2000,
2010, and 2020.

Figure 8. q values of interaction detector. Factor abbreviations are listed in Table 4.

4. Discussion
4.1. Impact of Natural Factors on EEQ

According to previous studies, the impacts of human activities and natural factors on
ecosystems exhibit significant spatial variations [50,51]. In 2000, natural factors outweighed
human activity factors in influencing EEQ; SPEI was the predominant determinant of EEQ
in the Jiaodong Peninsula (Table 7). The results of the correlation analysis showed that,
as SPEI values rise, indicative of alleviation of agricultural drought conditions, RSEI will
correspondingly increase (Figure 8).
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During 1999–2000, northern China experienced extreme drought disaster due to
anomalous circulation over the Eurasian continent [52,53]. During this period, the SPEI
values were at their lowest in the eastern Jiaodong Peninsula, indicating the most severe
drought conditions. This inhibited vegetation growth and resulted in a significant decline
in NDVI, which contributed the most to RSEI (Figure 2 and Table 3). In 2010 and 2020, no
extreme drought events occurred, leading to a notable enhancement in EEQ within the
eastern hilly regions (Figures 3 and 4). It should be noticed that the importance of SPEI
exhibited a gradual decline in 2010 and 2020 compared to 2000 (Figure 8 and Table 7),
potentially attributed to advancements in agricultural management practices, including
irrigation technology. Hossain et al. [54] propose that, due to disparities in plant drought
resilience and agricultural management practices like irrigation, mild drought may not
necessarily elicit significant impacts on the ecological environment, indicating that positive
human activities can counteract the negative impacts of natural factors. Hua et al. [55]
observed that, even in areas with the same land cover type, the eastern regions exhibit
higher sensitivity of vegetation activity to drought compared to western regions due to
differences in climate and hydrological characteristics. This explains the concentration
of L-L cluster areas of RSEI in the eastern regions of the Jiaodong Peninsula in 2000
(Figures 3 and 5).

Compare to SPEI, the importance of AMP and AMT is relatively minor (Table 7), This
could be attributed to moderate precipitation and temperature changes, which may not
significantly affect enzyme activity within plant tissues. Vegetation exhibits significant
decline only when conditions exceed their adaptive range [56,57]. Interaction detection
results indicate significant enhancement effects for SPEI∩AMT and AMP∩AMT (Figure 8).
Prolonged drought leads to insufficient soil moisture replenishment and exacerbated
transpiration due to high temperatures, both of which have detrimental effects on the
ecological environment.

With global warming, studies suggest an increased frequency of extreme weather
events in the Jiaodong Peninsula [58]. Extreme droughts, floods, frosts, and other natural
disasters can lead to reduced vegetation coverage, decreased crop yields, and other ecologi-
cal issues [59]. Governments should pay attention to enhancing climate event monitoring
and warning capabilities, controlling greenhouse gas emissions, and building infrastruc-
ture to address climate change. These efforts are necessary to improve climate disaster
management and respond promptly to potential ecological risks.

4.2. Impact of Human Activities on EEQ

With the development of the social economy, the impact of human activities on EEQ
has gradually increased. In 2010, with favorable natural conditions, the EEQ of the Jiodong
Peninsula reached 0.57 (Figure 3). L-L cluster areas were primarily in the urban zones of
cities and the coastal zone (Figure 6). LUCI, followed by GDP, became the most significant
influencing factor (Table 7). Industrialization and urbanization led to excessive population
concentration in cities, resulting in a reduction in per capita natural and social resources,
creating immense pressure on the ecological environment of the Jiaodong Peninsula, and
even brought about higher risks to life safety [60].

With the increasing awareness of sustainable development and the growing need
for a better urban living environment, Shandong Province and the five cities of Jiaodong
Peninsula have formulated a series of targeted ecological protection policies over the past
20 years. By 2020, with favorable natural conditions, the EEQ of the Jiaodong Peninsula
had increased to 0.67. However, in the urban zones of Weifang City and coastal ecological
sources such as Jiaozhou Bay, the L-L cluster areas continued to increase (Figure 6). The
interaction effect of land use with other driving factors reached its peak in 2020 (Figure 8).

To mitigate the negative effects of human activities on the complex coastal ecosystem
of the Jiaodong Peninsula, we propose the following recommendations: (1) In urban zones
where L-L cluster areas are mainly concentrated, human activities should be regulated and
more green spaces should be planned within the cities to control the expansion of urban
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areas. (2) In hilly regions, human intervention should be reduced to maintain the integrity
of natural landscapes and protect natural resources such as forests and farmland. Attention
should be paid to natural restoration in important natural reserves or ecological sources like
Lao Mountain, and artificial intervention methods such as cloud seeding can be employed
if necessary. (3) In important coastal areas like Jiaozhou Bay and Laizhou Bay, strict
regulations should be imposed on excessive development activities such as artificial land
reclamation. More ecological enhancement projects such as increasing the area of wetland
parks should be implemented. (4) Balancing urban and rural development and providing
fair access to education and healthcare are effective in easing urban population pressure.

4.3. Limitations and Prospects

Compared to single-factor analysis, RSEI can provide richer information on the ecolog-
ical environment. However, RSEI is only applicable to terrestrial areas, and indicators such
as the distribution of water resources and environmental pollution cannot be incorporated
into the assessment method, indicating a need to enrich the dimensions of RSEI. In future
research, we should consider incorporating carbon emissions and environmental pollution
factors into the assessment system to construct a more comprehensive ecological remote
sensing assessment method.

This research using Landsat data with a spatial resolution of 30 m for the years 2000,
2010, and 2020. Therefore, we are unable to provide the nuanced changes over a twenty-year
period of EEQ. Due to challenges in obtaining annual data on land cover and GDP, we were
unable to investigate the temporal lagged effects of driving factors at a consistent temporal
resolution. In the future, with improved data availability, we will consider extending the
research to include historical data or future projections.

5. Conclusions

This study utilized RSEI to evaluate EEQ and employed standard deviation ellipses,
centroid migration, and LISA clustering methods to assess the spatiotemporal distribution
changes and spatial clustering effects of EEQ in the Jiaodong Peninsula for the years 2000,
2010, and 2020. To mitigate noise interference in remote sensing images, we applied the
RANSAC algorithm, resulting in single-factor correlations between human and natural
factors and RSEI. Additionally, GeoDetector was utilized to quantify the contributions of
human and natural factors to EEQ and their interactions during the same years.

The results indicate that the Jiaodong Peninsula generally exhibits favorable EEQ,
with average RSEI values of 0.60, 0.57, and 0.65 for 2000, 2010, and 2020, with Good and
Excellent level areas comprising the largest proportion. For Good and Excellent RSEI levels,
the centroid shifted towards the northeast. The cluster map of RSEI revealed that H-H
cluster areas were primarily located in hilly regions, while L-L cluster areas were mainly
found in urban and coastal areas around Laizhou Bay and Jiaozhou Bay.

The driving analysis results revealed that, in 2000, the significance of nature factors
exceeded that of human factors. SPEI emerged as the predominant determinant of EEQ,
with a q value reaching 0.222. However, in 2010 and 2020, the negative effects of hu-
man factors gradually intensified, with LUCI identified as the most influential driving
factor, having q values of 0.191 and 0.450. The driving factors exhibited double-factor and
nonlinear enhancement. The most significant interaction factors affecting the EEQ of the
Jiaodong Peninsula in 2000, 2010, and 2020 were identified as SPEI∩GDP, LUCI∩SPEI, and
LUCI∩GDP.

Governments and environmental protection agencies should implement measures
such as improving climate disaster management, increasing urban green space planning,
strengthening coastal ecological enhancement projects, and protecting critical ecological
sources to enhance the resilience of the complex coastal ecosystem, promoting the sustain-
able development of the Jiaodong Peninsula.
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