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Abstract: Tools for robust identification of crop diseases are crucial for timely intervention by farmers
to minimize yield losses. Visual diagnosis of crop diseases is time-consuming and laborious, and
has become increasingly unsuitable for the needs of modern agricultural production. Recently,
deep convolutional neural networks (CNNs) have been used for crop disease diagnosis due to their
rapidly improving accuracy in labeling images. However, previous CNN studies have mostly used
images of single leaves photographed under controlled conditions, which limits operational field
use. In addition, the wide variety of available CNNs and training options raises important questions
regarding optimal methods of implementation of CNNs for disease diagnosis. Here, we present an
assessment of seven typical CNNs (VGG-16, Inception-v3, ResNet-50, DenseNet-121, EfficentNet-B6,
ShuffleNet-v2 and MobileNetV3) based on different training strategies for the identification of wheat
main leaf diseases (powdery mildew, leaf rust and stripe rust) using field images. We developed
a Field-based Wheat Diseases Images (FWDI) dataset of field-acquired images to supplement the
public PlantVillage dataset of individual leaves imaged under controlled conditions. We found that a
transfer-learning method employing retuning of all parameters produced the highest accuracy for
all CNNs. Based on this training strategy, Inception-v3 achieved the highest identification accuracy
of 92.5% on the test dataset. While lightweight CNN models (e.g., ShuffleNet-v2 and MobileNetV3)
had shorter processing times (<0.007 s per image) and smaller memory requirements for the model
parameters (<20 MB), their accuracy was relatively low (~87%). In addition to the role of CNN
architecture in controlling overall accuracy, environmental effects (e.g., residual water stains on
healthy leaves) were found to cause misclassifications in the field images. Moreover, the small
size of some target symptoms and the similarity of symptoms between some different diseases
further reduced the accuracy. Overall, the study provides insight into the collective effects of model
architecture, training strategies and input datasets on the performance of CNNs, providing guidance
for robust CNN design for timely and accurate crop disease diagnosis in a real-world environment.

Keywords: wheat leaf diseases; deep learning; scene labeling; convolutional neural networks; trans-
fer learning

1. Introduction

Wheat is one of the most cultivated crops and is the most important food grain for
humans [1]. The 2020 World Population Data Sheet (https://interactives.prb.org/2020
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-wpds/, accessed on 16 June 2022) indicates that world population will exceed nine billion
people by 2050, representing an increase of more than 25% from 2020. Wheat supply must
therefore increase to meet this global demand. However, wheat leaf diseases can seriously
affect yield and are a major threat to food security worldwide [2]. Infected wheat leaves
often show symptoms that are used by experienced agricultural experts to determine the
type of disease afflicting the plant. However, the traditional visual method of diagnosis is
time-consuming and laborious, requiring highly trained experts who are inherently limited
in their ability to cover large regions [3].

With the development of computer vision and deep learning, image processing has
achieved great success over the last decade. One of the key techniques leading to this
success is convolution neural networks (CNNs), a technology that has been recently used
to rapidly identify crop diseases [4]. An early exploration by [5] employed AlexNet [6]
and GoogLeNet [7] to identify with an accuracy of 99.35% a total of 14 crop species (apple,
bell, blueberry, cherry, corn, grape, orange, peach, potato, raspberry, soybean, squash,
strawberry and tomato) and 26 diseases (17 fungal diseases, 4 bacterial diseases, 2 mold
diseases, 2 viral diseases and 1 disease caused by mites) in the public dataset PlantVillage [8].
More recent studies have investigated the performance of a wide range of different CNNs
in plant disease diagnosis. For example, Ferentinos et al. [9], who also studied plant
disease detection based on the PlantVillage dataset, adopted five CNNs, including AlexNet,
GoogLeNet, AlexNetOWTBn [10], Overfeat [11] and VGG [12]. VGG achieved the highest
accuracy, 99.53%. Similarly, Too et al. [13] used the PlantVillage dataset to compare the
accuracy of VGG-16, Inception-v4 [14], ResNet [15] with 50, 101 and 152 layers, and
DenseNet-121 [16] for plant disease identification. In their study, the highest accuracy,
99.75%, was achieved by DenseNet-121.

However, the high accuracies of these studies were achieved using images collected
under controlled conditions (i.e., a single, excised leaf photographed against a standard
background with uniform lighting) without attempting to replicate the challenges of plant
disease diagnosis in real-world agricultural fields. For rapid, operational use in the field, for
example for a user taking photographs with a mobile phone, diagnosis should preferably
use imagery of in situ plants, which implies a complex background (such as soil, weeds
and shadows) as well as variable intensity and direction of illumination. Studies that have
used field photographs have found lower accuracies. For example, Lu et al. [17] collected
a field-based wheat disease dataset (including powdery mildew, smut, black chaff, stripe
rust, leaf blotch and leaf rust) to verify the effectiveness of two VGG architectures, and
achieved mean recognition accuracies over 95%. Picon et al. [18] employed ResNet-50 [15]
for detection of wheat diseases (i.e., septoria, tan spot and rust) in the field, and obtained a
balanced accuracy of 87%. Bao et al. [19] designed a lightweight CNN model for detecting
wheat ears with scab and glume blight with an accuracy of 94.1%.

Generally, a large number of training samples is ideal to avoid overfitting and enhance
generalization of CNN models [20]. Yet in practice, it is hard to collect sufficient field images
of different diseases in varied field environment due to the uncertainty of wheat disease
occurrence. Therefore, it is desirable to find a strategy to train CNNs on limited images
collected in the field, without overfitting and while maintaining good generalization.

Transfer learning [21] is an effective strategy that addresses this issue of small training
datasets [22]. In transfer learning, a network is pretrained on a large, somewhat related
dataset, and then ‘transferred’ to the new application by updating the network using
the small dataset of interest [20]. Ramcharan et al. [23] used transfer learning to train
Inception-v3 [14] for cassava disease detection in field images (309~415 images for each
disease) with an overall accuracy of 93%. In a recent study on wheat disease detection,
Jiang et al. [24] collected 40 field images for each wheat leaf disease (i.e., leaf rust and
powdery mildew) and adopted a modified VGG-16 model based on transfer learning to
achieve 98.75% accuracy.

In summary, previous CNN studies for plant disease identification have mostly used
images of single leaves, photographed under controlled conditions, which limits opera-
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tional field usage. Moreover, the wide variety of available CNNs and training options
raises important questions regarding optimal methods of implementation of CNNs for
disease diagnosis. In this study, we assess multiple scene-labeling CNNs based on different
training strategies for wheat leaf disease diagnosis using field images. We collect field
images of three common wheat leaf diseases (powdery mildew, stripe rust and leaf rust)
and healthy leaves to build a custom dataset. The PlanetVillage dataset with a large number
of crop disease images is used to pretrain CNNs based on transfer learning. Seven typical
CNNs (VGG-16, Inception-v3, ResNet-50, DenseNet-121, EfficentNet-B6, ShuffleNet-v2
and MobileNetV3) are evaluated in terms of detection accuracy, operation time and model
parameters. In addition, potential factors influencing the performance of CNNs in wheat
disease identification are discussed, with the aim of enhancing fast and accurate crop
disease diagnosis.

2. Materials and Methods
2.1. Datasets

In this study, two datasets were used: the PlantVillage dataset and the Field-based
Wheat Diseases Images (FWDI) dataset. These datasets are described below and are
summarized in Table 1.

Table 1. The composition of datasets used in this study.

Dataset Disease Type Original
Images

Original
Training Set

Augmented
Images

Augmented
Training Set Test Set

PlantVillage 26 types 37,721 32,739 - - 4982

FWDI

Powdery
mildew 561 449 2806 2694 112

Leaf rust 808 647 4043 3882 161
Stripe rust 1015 812 5075 4872 203
Healthy wheat 259 208 1299 1248 51
Total 2643 2116 13,223 12,696 527

2.1.1. PlantVillage Dataset

Due to its large number of images and free availability, the PlantVillage dataset
has been widely used for plant disease classification based on deep learning [5,25,26].
The dataset consists of color images of 14 crop species (apple, bell, blueberry, cherry,
corn, grape, orange, peach, potato, raspberry, soybean, squash, strawberry and tomato),
with examples of both healthy and unhealthy leaves, representing 26 types of diseases
(17 fungal diseases, 4 bacterial diseases, 2 mold diseases, 2 viral diseases and 1 disease
caused by mites) [8]. Each image is a single leaf against a standard background. The
labeled PlantVillage dataset used in this study is offered by AI Challenger 2018, a global AI
contest (https://ai.chuangxin.com/ai_challenger?lang=en-US, accessed on 18 June 2021)
that includes 32,739 images for training and 4982 images for testing (Table 1). Given the
varying resolutions of images in the PlantVillage dataset, we resized the selected images to
224 × 224 pixels while preserving the details of the lesions to adapt the input size of CNN
models [13,17–19]. Finally, the resized images were normalized by scaling all pixel values
from [0, 255] to [0, 1].

2.1.2. Field-Based Wheat Diseases Images (FWDI) Dataset

We collected the images during the wheat-growing season of 2019–2020 at three sites
(Pukou: 118◦63′E, 32◦06′N; Yixing: 119◦82′E, 31◦36′N; Rugao: 120◦56′E, 32◦3′N) located
in the Yangtze-Huai Plain, one of the major agricultural regions in China. We collected
2643 wheat disease images under field conditions to create the FWDI dataset. The FWDI
dataset contains wheat images in complex environmental backgrounds, different capture
conditions, different stages of diseases development and similar appearance between
different wheat diseases (e.g., stripe and leaf rust). The dataset is comprised of 259 images
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of healthy leaves and 2384 images of leaves exhibiting evidence of three common fungal
diseases of wheat: powdery mildew (561 images), leaf rust (808 images) and stripe rust
(1015 images) (Figure 1).
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Powdery mildew, caused by the obligate biotrophic ascomycetous fungus (Blumeria
graminis f. sp. Tritici), is characterized by spots or patches of white-to-gray talcum-powder-
like growth [27]. Stripe rust, commonly known as yellow rust, is caused by Puccinia
striiformis [28]. Leaf rust, also known as brown rust or orange rust, is caused by the fungus
Puccinia triticina [29]. Stripe and leaf rust have similar characteristic colors but different
shapes. Stripe rust has yellow pustules arranged in a linear, stripe-like pattern along the
leaf, whereas leaf rust has orange-brown pustules in circular to oval patterns randomly
distributed on the leaf.

The images were captured between 8 h and 17 h local time using a Canon EOS
6D camera (Canon Inc., Tokyo Japan) and saved in JPEG format. The images have the
following characteristics: (1) every image contains only one class of wheat disease, (2) the
diseased wheat leaf in every image is unfolded, (3) the images capture a range of disease
development, and (4) every image maintains all the complexity and clutter of the field
environment. The images were annotated as healthy or with disease type labels, and were
double-checked by experts.

We randomly selected 80% of images as the training set and 20% of images as the test
set (Table 1). The resolution of the raw images in the FWDI dataset is 4000 × 5328 pixels.
To preserve the major characteristics of the lesions, all images were center-cropped to
1024 × 1024 pixels and were then resized to 224 × 224 pixels using a nearest-neighbor
algorithm (Figure 1). The images were then normalized to [0, 1].

To increase the size and variability of the training set, all resized images underwent
geometric transformation, including horizontal flip, vertical flip and clockwise rotation
of 90◦, 180◦ and 270◦ (Figure 2). Geometric transformation does not change the labeled
disease in the image and has been widely used for augmented training sets of CNNs [6,12].
The augmented training set is comprised of 12,696 images in total.
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2.2. Convolutional Neural Networks (CNNs)

We selected seven representative CNNs for wheat disease identification: VGG-16,
Inception-v3, ResNet-50, DenseNet-121, EfficientNet b6, ShuffleNet-v2 and MobileNetV3.
These CNNs are described below.

2.2.1. VGG-16

VGG-16 is a CNN architecture with 16 convolutional layers [12]. It was used to win
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) competition in 2014.
A major contribution of VGG16 is that it improves AlexNet by replacing the convolutional
layers with 3 × 3 filters of stride 1, and the max pooling layers with 2 × 2 filters of stride 2,
and adopts the same convolution and max pooling filter sizes consistently throughout the
whole architecture. It has two fully connected (FC) layers, each with 4096 output channels,
followed by a final FC layer with the softmax operation to output probabilities of all classes.

2.2.2. Inception-v3

Inception-v3 is a CNN architecture from the Inception family [14] that contains incep-
tion modules originally used in Inception-v1 (also known as GoogLeNet) [7]. Like VGG,
GoogLeNet achieved top results at ILSVRC 2014. Its key innovation is that the inception
module computes multiple convolutions with filter sizes in parallel on the same input
data, and concatenates their results as a single output. The underlying concept is to handle
objects of various scales. The inception module also inserts extra 1 × 1 convolutions be-
fore the convolutions to reduce channel dimensions, allowing more-efficient computation.
Based on previous versions, Inception-v3 added several new techniques, including the
RMSProp optimizer, factorized 7 × 7 convolutions, BatchNorm in the auxiliary classifier,
and label smoothing.

2.2.3. ResNet-50

ResNet, short for residual network, is a type of neural network that introduces residual
learning [15]. It won first place at the ILSVRS 2015 classification competition and Common
Objects in Context (COCO) 2015 competition in ImageNet detection, ImageNet localization,
COCO detection and COCO segmentation. Instead of learning features, ResNet tries to
learn residuals by adding shortcut connections (or skip connections). The skip connections
in ResNet solve the problem of vanishing gradients in deep neural networks by allowing
gradients to flow through these alternate shortcut paths. ResNet-50 is a variant of ResNet
with 48 convolution layers along with 1 max pooling layer and 1 average pooling layer.

2.2.4. DenseNet-121

DenseNet-121 is a variant of a dense convolutional network (DenseNet) with 121 layers
in the neural network. DenseNet is an architecture that focuses on making deep neural
networks even deeper yet more efficient to train by using dense shortcut connections
between layers [16]. Like ResNet50, DenseNet was developed to improve the decline
in accuracy in visual object recognition caused by the vanishing gradient problem. To
maximize information flow between the layers of the network, each layer is connected to
all other deeper layers in the network. Unlike ResNet, DenseNet does not combine features
through summation but instead uses concatenation.

2.2.5. EfficentNet-B6

EfficentNet-B6 is a lightweight and easy-to-deploy model in a new family of Efficient-
Net CNNs proposed by Google in 2019 [30]. It focuses on improving not only the accuracy
but also the efficiency of models. EfficientNet starts from a small EfficientNet-B0 model
obtained with grid search under a specific constraint, and uses a compound scaling to
uniformly scale all dimensions of the model, i.e., depth, width and resolution. Compound
scaling is motivated by the intuition that if the input image is bigger, then the network
needs more layers to increase the receptive field and more channels to capture more fine-
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grained patterns within the bigger image. EfficentNet-B6 is a variant that scales up from
EfficientNet-B0 by ~8 times in terms of the number of parameters.

2.2.6. ShuffleNet-v2

ShuffleNet is an extremely computationally efficient CNN architecture designed for
mobile devices with limited computing power. It uses pointwise group convolution and
channel shuffle to reduce computational cost while maintaining accuracy [31]. ShuffleNet
is optimized for direct (such as actual running speed or memory access) rather than
indirect metrics to measure the network’s computational complexity rather. Built upon
ShuffleNet-v1, ShuffleNet-v2 introduces a new channel split operation and moves the
channel shuffle operation further down the block.

2.2.7. MobileNetV3

MobileNet models are designed by Google for mobile and embedded vision appli-
cations [32]. They use depthwise separable convolutions to reduce the number of pa-
rameters, which results in lightweight deep neural networks. Specifically, they split the
3 × 3 convolutional layer of a conventional CNN into a 3 × 3 depthwise convolution and a
1 × 1 pointwise convolution. MobileNetV3, proposed in 2019 [33], is the latest generation
of MobileNet. It is tuned to mobile phone central processing units (CPUs) by combining
hardware-aware network architecture search (NAS) [34] complemented by the NetAdapt
algorithm and novel architecture advances. The advances include new network designs
such as the linear bottleneck and inverted residual structure in MobileNetV2, new effi-
cient versions of nonlinearities practical for the mobile setting, and squeeze and excitation
in MnasNet [30].

2.3. Comparison and Evaluation
2.3.1. Training Strategies of CNNs

The purpose of training is to find CNN parameter values that minimize the differences
between predictions and ground truth labels on a training dataset [22]. The parameters
optimized include kernels in convolution layers and weights in fully connected layers and
other layers, e.g., batch normalization. In this study, we compared three training strategies
(Figure 3): (1) training from scratch, (2) transfer learning with fixed feature extraction, and
(3) transfer learning with retuning.

Training a CNN from scratch (Figure 3a) is a process to train the whole network on
the target dataset (i.e., the FWDI dataset) with all its parameters randomly initialized. In
contrast, transfer learning, which includes fixed feature extraction and retuning, initializes
the network parameters (usually those in the layers before the fully connected layers)
using a model pretrained on a large dataset, (i.e., the PlantVillage dataset in our case).
Fixed feature extraction (Figure 3b) fixes the values of the parameters initialized from
the pretrained model, using them as a feature extractor, and replaces the fully connected
(FC) layers of the pretrained model with new FC parameters trained on the target dataset.
Retuning (Figure 3c) does not only train the FC layers, but also retunes all the parameters
initialized from the pretrained model. Note that in all the training strategies, we replace the
fully connected layers with global average pooling, which generates one feature map for
each corresponding target category and feeds the resulting vector directly into the softmax
layer [35]. The use of global average pooling can reduce computational complexity and the
number of model parameters, thus reducing overfitting as a structural regularizer.

Our codes are written in Python and all the CNNs were implemented with Keras [36]
running on top of TensorFlow. We run our codes on a computer with Tesla V100, 16 GB
RAM and Ubuntu 16.04. To ensure comparability between the different experiments, the
hyperparameters for all CNNs used in this study are chosen over a validation set randomly
selected from the training sets. Hyperparameters are the variables that determine the
network structure or how the network is trained. We set the initial learning rate as 0.001 and
use ReduceLROnPlateau to reduce the learning rate when a metric has stopped improving.
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Adam [37], an adaptive learning rate optimization algorithm, is employed to minimize the
loss. We set the batch size as 32 to train the models (i.e., 32 samples are used to compute the
loss and update the network parameters at one time). The maximum number of iterations
is set to 50 according to trial-and-error experiments.
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2.3.2. Model Assessment

For each deep model, we report accuracy, memory and time to measure the performance
of CNNs. Accuracy is defined as the ratio of correctly classified labels (match) to the total
number of images (N) in the test set:

Accuracy =
∑N

i matchi

N
, (1)

where i is the ith target image. In addition, a confusion matrix is used to report the models’
accuracy for each class (i.e., powdery mildew, stripe rust, leaf rust and healthy leaf).

Memory (in megabytes, MB) is the GPU memory occupied by model parameters:

Memory =
Nparm × 4

1024× 1024
, (2)

where Nparm is the number of model parameters, which is multiplied by 4 bytes, the size
of each parameter represented by a float variable. Model parameters are weights in the
network that are learned during training, mainly comprised of the weights and biases that
need to be learned in the convolution layers and FC layers, and the mean and deviation
parameters that need to be learned in the batch normalization.

Time (in milliseconds, ms) represents the processing time of a network to return a
result for one image through forward propagation of the network.

3. Results
3.1. Accuracy of CNNs Trained by Different Training Sets and Strategies

As shown in Figure 4, the accuracies of CNNs trained on the augmented training set
were generally higher than those trained using the original training set. This indicates
that image augmentation of training sets can improve the accuracy of CNNs when the
training data size is small. Augmentation of training sets had a greater impact on training
accuracy than validation accuracy, as expected. For the validation data, augmentation
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showed the greatest benefit for models trained from scratch, highlighting the importance
of large training sets for CNNs and the value of data augmentation for overcoming dataset
size limitations.

Figure 4 also shows that the training strategy affects the accuracy of CNNs. CNNs
trained from scratch had relatively low accuracy for early iterations compared to those of the
other two training strategies, indicating slow convergence. CNNs trained by fixed feature
extraction converged more rapidly than the other approaches, but their accuracies were
generally the lowest. In contrast, the accuracies of CNNs using retuning were generally
higher than those using the other two training strategies.
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3.2. Wheat Disease Diagnosis

Since the CNNs trained on the augmented dataset using retuning provided the best
results, we explore their accuracy for classification of the test dataset in Figure 5. Inception-
v3 had the highest class-based recall accuracy of 90–95% for healthy wheat and the three
diseases (Figure 5b), while VGG-16 had the lowest recall accuracy of 80–88% (Figure 5a).
The lowest recall class-based accuracy for all the methods was 80%.
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Three typical causes of recognition errors were identified: disease in different stages,
small-sized targets and environmental effects (Figure 6). As shown in Figure 6a, the pow-
dery mildew in this image was in the late stage of disease development, and the associated
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white mold layer had developed into white-yellow spots, leading to misclassification as leaf
rust. Alternatively, if the leaf or the spots on the leaf were small in the image, the disease
was easily misclassified (Figure 6b). White spots due to residual water stains on healthy
leaves were identified incorrectly as powdery mildew (Figure 6c).
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3.3. Comparative Evaluation of CNNs

Figure 7 shows the comparison of CNNs based on retuning in terms of accuracy,
memory and processing time for wheat disease diagnosis. For all CNNs, the GPU memory
occupied by model parameters (memory) was less than 100 MB. Because the first FC layer
was replaced by global average pooling for all the models, the number of parameters of the
FC layer was reduced compared to the originally proposed models. ResNet50 required the
largest memory (98 MB), followed by Inception-v3 (83.2 MB), due to the large number of
channels in their convolutional operations. Although DenseNet-121 is a deep network, its
parameters occupied only 30.87 MB of GPU memory because 1 × 1 convolution was used
to reduce the number of feature channels. MobileNetV3, with deep detachable convolution,
had the lowest memory (11.95 MB), making it a lightweight network, but at the cost of
a relatively low accuracy (88.08%). The highest accuracy was obtained by Inception-v3
(92.53%), followed by DenseNet-121 (91.92%) and ResNet50 (90.3%). While VGG-16 had
the lowest accuracy, its operation time was the shortest, with an average time of 4.64 ms per
image. Given that VGG-16 had only 16 layers, training from the input layer to the output
layer was fast. Conversely, DenseNet-121, with 121 layers, needed more time to identify
each image (20.31 ms).
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4. Discussion

In this study, we assessed seven CNNs based on three different training strategies for
wheat leaf disease diagnosis. According to our results, the potential factors influencing the
performance of CNNs in wheat disease identification include the network architecture of
the CNN model, the training strategy and the input dataset. Moreover, the limitations and
prospects of the CNN model applied in precision agriculture are highlighted, with the aim
of enhancing fast and accurate crop disease diagnosis.

4.1. Influencing Factors of CNNs Applied in Crop Diseases Diagnosis

The main factor influencing the performance of different CNNs in crop disease di-
agnosis is the network architecture. Generally, deep CNN models have higher accuracy
than shallow networks [16]. For example, Too et al. [13] found that DenseNet-121 (with
121 layers) and ResNets (with 50, 101 and 152 layers) had test accuracies over 99%, while
the VGG net with 16 layers achieved 81.83% for plant disease identification. Similarly,
our results show the lowest accuracy for VGG-16 (86%) and relatively high accuracy for
deeper networks, such as ResNet50 (90%) and DenseNet-121 (92%) (Figure 7). In con-
trast, Wang et al. [38] found that VGG-16 performed the best, with the highest accuracy
of 90.4% on the PlantVillage dataset, outperforming VGG-19, Inception-v3 and ResNet50.
Fuentes et al. [39] also found the best performance for VGG-16 in tomato plant disease and
pest diagnosis rather than the deeper networks. These results indicate that more complex
and deeper network do not necessarily yield greater accuracy on different tasks.

The performance of CNNs is also affected by the training strategy used. Our results
indicate that retuning improved the accuracy and reduced overfitting, a finding consistent
with previous studies [23,24,39]. Compared to the other two training strategies, CNNs
trained from scratch had slow convergence. This is because all parameters were randomly
initialized and optimized from scratch without any prior knowledge. Conversely, the
CNNs trained by fixed feature extraction converged more rapidly but had the lowest
accuracy. This is because only the FC layer was trained after the transfer, making the
network easier to train. However, because the other parameters were directly transferred
from the PlantVillage dataset, they were not optimized for the specific features of the FWDI.
Therefore, retuning, which is comprised of learning general characteristics from a large
dataset and then modifying the pretrained network to adapt to the characteristics of the
small dataset, is recommended for tasks with limited training samples.
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As the basic source of information, the input dataset is crucial for training CNNs.
First, the dataset size is important, as discussed above [40], and consequently data aug-
mentation is often used to increase the number of images in the training set [41]. While
the number of training images for each wheat disease was unequal (Table 1), the classifi-
cation accuracy of different diseases did not depend on the relatively small disparity in
image number (Figure 5) but was mainly affected by the enlarged dataset size after data
augmentation (Figure 4). By providing geometrically transformed replicates of the training
images, augmentation improves the accuracy of CNNs by providing a larger and more
general training dataset (Figure 4), an observation that has also been noted in previous
studies [40,42]. Second, image quality can interfere with classification results. In particu-
lar, images collected in field conditions can be affected by environmental factors such as
complex backgrounds, unstable lighting, image blur due to movement or lack of focus,
and the presence of water drops or marks, all of which might lead to misclassification
(e.g., Figure 6c). Third, confusing representation of disease symptoms is also a potential
factor causing uncertainty in crop disease diagnosis. Two typical causes of recognition
errors observed in this study were diseases in different stages of development and symp-
toms that had a small size (Figure 6a,b). In addition, the simultaneous occurrence of more
than one disease and different diseases that have similar symptoms can also weaken the
robustness of CNN models [40]. Therefore, annotated datasets of large size and rich variety
will always be required for crop disease diagnosis.

4.2. Limitations and Prospects for Precision Agriculture

For precision agriculture, the diagnosis of crop disease severity is of great significance
for precise disease prevention and control. However, previous studies have mainly focused
on classifying disease type, rather than identifying the severity of each type of disease.
Therefore, in future work, it will be necessary to collect a large number of images of different
severities for each of the various diseases to assess the capabilities of CNNs to detect crop
disease severity.

This study used RGB images for wheat disease identification. In addition to RGB
cameras, more-informative sensors (e.g., multispectral or hyperspectral sensors) can be
effectively used for image acquisition of crop disease [4,43,44]. Generally, multi- and hyper-
spectral sensors are mounted on unmanned aerial vehicle (UAV) and can obtain more
spectral information of crop disease and cover larger areas than can be accomplished with
proximal measurement [45,46]. Therefore, it is worth further exploring the performance
and potential of CNNs and different training strategies on crop disease diagnosis.

Lightweight CNNs on mobile devices could be a breakthrough technology for assist-
ing farmers in agricultural management, and therefore should be improved for practical
applications. The ability to analyze larger images with CNNs would also be an important
development. The size of input images for existing networks is usually no more than
256 × 256 pixels, and this may not resolve subtle symptoms, which can be important for
early disease detection [47,48]. In addition, model accuracy should be improved. While the
lightweight CNNs (e.g., ShuffleNet V2 and MobileNetV3) had high classification speed
and occupied low GPU memory, their accuracies were relatively low in our experiments
(Figure 7). Furthermore, given that the GPU performance of mobile devices is inferior to
that of GPUs on computers, classification speed will be even slower when lightweight
CNNs are deployed to mobile devices. Hence, the tradeoffs among accuracy, time and
memory should be considered in model design.

5. Conclusions

We assessed the performance of seven state-of-art CNNs (VGG-16, Inception-v3,
ResNet-50, DenseNet-121, EfficentNet-B6, ShuffleNet-v2 and MobileNetV3) in wheat fungal
disease identification. Our analysis, undertaken using the public PlantVillage dataset and
our FWDI dataset, quantified the impact of training strategies and other potential factors
on the detection accuracy of CNNs. Considering training strategy effects, the results show
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that retuning increased the overall accuracies compared to training from scratch and fixed
feature extraction.

Network architecture is a basic characteristic of different CNNs and directly affects
their performance. The results demonstrated the importance of balancing recognition
accuracy, operation time and model parameters in the model design for different tasks.
In addition to CNN model architecture, image quality and capture conditions (such as
complex backgrounds, unstable lighting and image blurring) might lead to misclassification,
especially in field conditions. Moreover, symptom representation of leaf disease is a
potential factor causing uncertainty in crop disease diagnosis. If the size of spots on a
leaf is too small in the image, the disease will likely be classified with low confidence or
misclassified. To benefit from the great potential of CNNs, annotated datasets of large size
and rich variety remain a crucial element for crop disease diagnosis, and robust CNNs on
mobile devices are desired for practical applications.
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