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Abstract: With satellite quantity and quality development in recent years, remote sensing products
in vast areas are becoming widely used in more and more fields. The acquisition of large regional
images requires the scientific and efficient utilization of satellite resources through imaging satellite
task planning technology. However, for imaging satellite task planning in a vast area, a large
number of decision variables are introduced into the imaging satellite task planning model, making
it difficult for existing optimization algorithms to obtain reliable solutions. This is because the
search space of the solution increases the exponential growth with the increase in the number of
decision variables, which causes the search performance of optimization algorithms to decrease
significantly. This paper proposes a large-scale multi-objective optimization algorithm based on
efficient competition learning and improved non-dominated sorting (ECL-INS-LMOA) to efficiently
obtain satellite imaging schemes for large areas. ECL-INS-LMOA adopted the idea of two-stage
evolution to meet the different needs in different evolutionary stages. In the early stage, the proposed
efficient competitive learning particle update strategy (ECLUS) and the improved NSGA-II were run
alternately. In the later stage, only the improved NSGA-II was run. The proposed ECLUS guarantees
the rapid convergence of ECL-INS-LMOA in the early evolution by accelerating particle update,
introducing flight time, and proposing a binary competitive swarm optimizer BCSO. The results of
the simulation imaging experiments on five large areas with different scales of decision variables
show that ECL-INS-LMOA can always obtain the imaging satellite mission planning scheme with the
highest regional coverage and the lowest satellite resource consumption within the limited evaluation
times. The experiments verify the excellent performance of ECL-INS-LMOA in solving vast area
mapping planning problems.

Keywords: satellite mission planning; vast area mapping; efficient competitive learning; large-scale
optimization; multi-objective optimization

1. Introduction

In recent years, with the development of satellite remote sensing technology, the
quantity and quality of remote sensing satellites have increased significantly. It gives users
higher requirements in the range and frequency of satellite observation. Regarding the
observation range, it has been extended from small target imaging, such as target recon-
naissance or emergency imaging [1], to large-scale regional imaging in cities, provinces, or
even a country [2]. Regarding the observation frequency, it has also developed from long-
term single-frequency production to annual, quarterly, and even monthly production [3].
One of the most important reasons is that the regional surveying and mapping products
obtained by satellite remote sensing play essential roles in many aspects, for example, na-
tional defense security [4], natural resource management [5], environmental protection [6],
emergency management [7], and other fields [8–10].

However, the current imaging satellite task planning technology is mainly used for
target reconnaissance and emergency imaging and is rarely used for surveying and map-
ping regional products [11]. In addition, most of the remote sensing satellites adopt the
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imaging method of ‘imaging wherever there is no image’ for regional products, which lacks
scientific and efficient planning methods. With the continuous increase in the number of
satellites, the expansion of regional imaging product application fields, and the increasing
demand for regional product timeliness, it is increasingly urgent to fully utilize existing
satellite resources and efficiently obtain regional remote sensing images.

Imaging satellite task planning is a technology that scientifically arranges imaging
tasks for satellites based on user needs. It maximizes comprehensive imaging income
by arranging each satellite to image each sub-region at the appropriate time and attitude
based on user needs, satellite attribute information, and related constraints, such as energy
constraints, maneuverability constraints, storage constraints, etc. [12,13]. For regional
mapping, the efficient utilization of satellite resources and the rapid completion of regional
imaging tasks are the most important and commonly used imaging benefits. Mathemati-
cal modeling and optimization algorithm solving are two core steps in imaging satellite
mission planning. Because the different needs of imaging satellite mission planning are
often contradictory for mathematical modeling, it is often established as a model with
multiple objective functions, known as multi-objective imaging satellite task planning.
Correspondingly, multi-objective optimization algorithms (MOEAs) [14,15] are used to
solve multi-objective task planning models.

Point targets and small area targets were commonly imaged in the past imaging
satellite mission planning. General MOEAs, such as NSGA-II [16] and MOPSO [17], can
find good solutions because the number of their imaging strips is small. That is, the scale
of the planning problem is small. However, when the observation range is extensive,
it is difficult for general MOEAs to obtain good solutions. This is because the larger
the observation area, the more imaging strips are required, which means that there are
more decision variables for the regional task planning model. The search space of the
solution increases the exponential growth with the increase in decision variables, that is,
the dimensional disaster. This leads to a decrease in the performance of existing MOEAs
in solving large-scale multi-objective task planning problems, making it difficult to obtain
the optimal solution for large-scale regional imaging task planning. Some scholars have
attempted to obtain a reliable solution by increasing the population size and extending the
iterations of MOEAs that can effectively solve small decision variables. However, these
operations greatly increase computational consumption, decrease search efficiency, and
still make obtaining a globally optimal solution difficult.

For multi-objective imaging satellite task planning problems with large-scale decision
variables, in the past decade, there has been some research on large-scale MOEAs that can
solve these problems. In summary, there are currently three main categories: MOEAs based
on decision variable grouping, MOEAs based on decision space reduction, and MOEAs
based on new search strategies.

MOEAs based on decision variable grouping are the earliest MOEAs for solving large-
scale problems. This method adopts the divide-and-conquer strategy. It divides many
decision variables into different groups based on different strategies and then optimizes
each group alternately. Common grouping strategies include random grouping, differential
grouping, and decision variable analysis grouping. In [18], the decision variables were
randomly grouped, and then the operational decomposition technique was added to the
non-dominated sorting genetic algorithm NSGA-III. The proposed OD-NSGA effectively
improved the performance of NSGA-III without increasing computational consumption.
Li [19] divided decision variables into different groups using differential grouping and pro-
posed a cooperative co-evolutionary large-scale MOEA called CCLSM. Bin [20] proposed
a multi-objective graph-based differential grouping with the shift method to decompose
decision variables, called mogDG-shift. The mogDG-shift was combined with MOEA/D
and NSGA-II, achieving better performance. MOEA/D (s & ns) [21] decomposed decision
variables into two basic groups based on their separability and inseparability characteristics
and then judged whether to divide each group based on population size. Zhang [22]
proposed LMEA by decomposing decision variables into convergence-related variables and
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diversity-related variables based on their control information. An angle-based clustering
analysis was used to analyze the attributes of decision variables. Liu [23] proposed a large-
scale MOEA framework based on variable importance-based differential evolution called
LVIDE. In LVIDE, decision variables are grouped based on their importance to the objective
function. To solve sparse large-scale multi-objective optimization problems (LSMOPs),
Zhang [24] improved SparseEA [25] through decision variable grouping technology and
proposed SparseEA2. The performance of SparseEA2 was improved because the variable
grouping enhanced the connection between the real variables and binary variables.

Many complex influence relationships exist between individual variables and between
variables and objective functions in mathematical models for practical application problems.
Therefore, MOEAs based on decision variable grouping inevitably divide the mutually
influencing decision variables into different groups, resulting in the global optimal solution
being missed. In addition, differential grouping and decision variable analysis grouping
require significant computational costs to calculate the correlation between the variables.

MOEAs based on decision space reduction adopt the idea of data compression in
digital image processing. They compress high-dimensional decision variables into low-
dimensional decision variables through some image processing methods and then restore
them to the original high-dimensional space. Zille [26] proposed a weighted optimiza-
tion framework (WOF) by optimizing a weight vector to replace decision variables. In
WOF, the original large-scale multi-objective optimization problem was transformed into
a small-scale multi-objective optimization problem, achieving dimensionality reduction.
Later, a large-scale MOF framework (LSMOF) [27] and a weighted optimization framework
with random dynamic grouping were proposed [28]. To balance the computational cost
and convergence speed of large-scale MOEAs, Liu [29] proposed a self-guided problem
transformation optimization algorithm (SPTEA). The self-guiding solution transformed the
optimization of large-scale decision variables into the optimization of small-scale weights.
In [30], Liu proposed a large-scale MOEA based on principal component analysis (PCA-
MOEA). In PCA-MOEA, the percentage of variance was used to control the number of
compressed decision variables. In [31], a large-scale multi-objective nature computation
based on dimension reduction and clustering strategy was proposed, namely DRC-LMNC.
In DRC-LMNC, the dimensionality of the decision variables was reduced via locally linear
embedding. In [32], a surrogate-assisted evolutionary algorithm based on multi-stage di-
mension reduction, MDR-SAEA, was proposed to solve the expensive sparse LSMOPs. The
dimensions of the decision variables were reduced through feature selection and the deter-
mination of the non-zero decision variables. Tian [33] proposed a Pareto-optimal subspace
learning-based evolutionary algorithm (MOEA/PSL) to solve sparse LSMOPs. MOEA/PSL
learned the sparse distribution and compact representation of decision variables using two
unsupervised networks: a constrained Boltzmann machine and a denoising autoencoder.

In summary, there are two main methods based on decision space reduction: problem
transformation and dimensionality reduction. However, different decision variables are
given the same weight for problem transformation, and for dimensionality reduction, the
decision variables are overly compressed or difficult to compress. Therefore, although
both can quickly capture local optimal solutions, obtaining the global optimal solution
is difficult.

MOEAs based on a new search strategy directly search for the global optimal solution
in the original high-dimensional decision variable space by designing a new search strat-
egy. It mainly includes two types: MOEAs based on the probability model and MOEAs
based on the novel reproduction operator. MOEAs based on the probability model utilize
probability models to generate offspring rather than evolutionary operators. Cheng [34]
proposed a direction-guided adaptive offspring generation method. Two kinds of direc-
tion vectors were used to generate convergence-related offspring and diversity-related
offspring, respectively. Liang [35] and He [36] used distributional adversarial networks
(DANs) and generative adversarial networks (GANs) instead of evolutionary operators to
generate offspring, respectively. MOEAs based on novel reproduction operators design
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new evolutionary operators that directly act on large-scale decision variables to generate
offspring. To solve sparse LOMOPs, Kropp [37] designed a novel set of evolutionary
operators, including varied striped sparse population sampling, sparse simulated binary
crossover, and sparse polynomial mutation. Then, S-NSGA-II was proposed by combining
these operators with NSGA-II. Ding [38] proposed a multi-stage knowledge-guided evo-
lutionary algorithm, MSKEA. At different stages of MSKEA, different knowledge fusions
were used to guide evolution. Thus, the evolutionary efficiency of MSKEA was improved.
Zhang [39] proposed an enhanced MOEA/D using information feedback models. The
feedback information model uses previous population information to guide evolution.
Thus, the proposed MOEA/D-IFM performed well in large-scale optimization problems.
In [40], a multi-objective conjugate gradient and differential evolution (MOCGDE) algo-
rithm was proposed. In MOCGDE, conjugate gradients and differential evolution were
used to keep convergence and diversity performance when solving LOMOPs, respectively.
Based on the competitive swarm optimizer (CSO) [41], Tian [42] proposed a large-scale
multi-objective CSO algorithm (LMOCSO) by further improving the convergence speed of
loser individuals to winner individuals. LMOCSO designs a better particle search strategy
to search for LOMOPs effectively.

Compared to methods based on decision variable grouping and decision space re-
duction, MOEAs based on new search strategies have three advantages. First, without a
large amount of decision variable analysis (i.e., a large amount of computational consump-
tion), it can efficiently balance exploitation and exploration in high-dimensional decision
variable space and search for LSMOPs. Second, it can effectively reserve the global opti-
mal solution without grouping, compressing, or transforming the decision variables. The
imaging satellite task planning calculation involves regional target information, satellite
orbit information, complex geometric imaging, etc. For the entire process, the calculation
is complex (i.e., the cost of decision variable analysis is high), the correlation between
the decision variables is strong (i.e., the decision variables are difficult to group), and the
satellite resources are precious (i.e., there is a need to obtain a global optimal solution).
Third, most new strategies are independent of evolutionary algorithms, making them
easier to use for other MOEAs. Therefore, from a comprehensive perspective, an MOEA
based on new search strategies is the best choice for large-scale imaging satellite mission
planning problems.

To better solve the problem of large-scale imaging satellite task planning for vast
area mapping, a large-scale multi-objective optimization algorithm based on efficient
competition learning and improved non-dominated sorting (ECL-INS-LMOA) is proposed.
Specifically, the main contributions of this article are as follows:

(1) An efficient competition learning particle update strategy (ECLUS) is proposed.
ECLUS is the core part of ECL-INS-LMOA. Its goal is to accelerate the proposed ECL-INS-
LMOA convergence by three aspects: One is to improve the particle update strategy in
LMOCSO to make it converge faster. The second is to introduce flight time to avoid the
oscillation convergence that particle swarm optimization (PSO) algorithms are prone to.
The third is to propose the BCSO to update binary decision variables.

(2) A large-scale multi-objective optimization algorithm called ECL-INS-LMOA is
proposed based on efficient competition learning and improved non-dominated sorting.
ECL-INS-LMOA adopts the idea of evolution in two stages. In the early stage, the proposed
ECLUS and the improved non-dominated sorting NSGA-II are run alternately. In the
later stage, only the improved non-dominated sorting NSGA-II is run. ECL-INS-LMOA
focuses on fast convergence in the early stage while also considering global optimization
and focuses on global optimization in the later stage while also considering convergence.
By doing so, ECL-INS-LMOA keeps a fast global optimization ability throughout the entire
evolutionary process, thereby enabling rapid acquisition of high-quality imaging solutions
for large regional mapping.

(3) To verify the effectiveness of the proposed ECL-INS-LMOA, this paper uses GF3 as
an imaging satellite and selects five expansive regions from around the world, namely the



Remote Sens. 2023, 15, 4178 5 of 26

Congo (K), India, Australia, the United States, and Antarctica, as the imaging regions for the
simulation imaging experiments. The proposed ECL-INS-LMOA is compared with three
multi-objective optimization algorithms: NSGA-II, LMOCSO, and LMEA. The effectiveness
of ECL-INS-LMOA in solving large-scale regional mapping task planning problems is
experimentally verified. The proposed method provides a reference for imaging satellite
task planning for surveying and mapping product production in the future.

The rest of this paper is organized as follows: Section 2 briefly introduces some work
related to the proposed method, including the multi-objective task planning model, ECL-
INS-LMOA, to solve and the particle update strategy in LSOCSO; Section 3 introduces the
principles and procedures of ECLUS and ECL-INS-LMOA in detail; Section 4 presents the
experiments and analysis; Section 5 discusses the experimental results obtained. Finally,
the conclusion is drawn in Section 6.

2. Related Work
2.1. Multi-Objective Imaging Satellite Task Planning Model

For large-scale multi-objective imaging satellite task planning for large-scale regional
mapping, we adopt the model proposed in the literature [43]. The objective functions of
the model express the core requirement of regional imaging, which is to use as few satellite
resources as possible to achieve maximum regional coverage. The decision variables
represent the relevant parameters of the satellite imaging strips during each transit. The
main constraint conditions are satellite maneuvering constraints. The specific description
is below.

Decision variables:
x = (x1, x2, · · · xd · · · , xD) (1)

yd =

{
1 , if the strip xd participates in imaging
0 , otherwise

(2)

where yd indicates whether the strip with the swing angle xd participates in regional
imaging. If so, yd = 1; otherwise, yd = 0. Here, x represents the set of swing angles for
each satellite imaging, and its length is D. Furthermore, xd represents the imaging swing
angle when the satellite passes the target area for the d-th time.

Objective functions:

min f (x) = 1− Scov(x)
Sobj

(3)

ming(yd) =
D

∑
i=1

yd

/
D (4)

where Equation (3) ensures the maximum coverage of the imaging area, Scov(x) is the effec-
tive coverage area of all the satellite imaging strips, and Sobj is the target area. Equation (4)
ensures the least imaging times, i.e., the least consumption of satellite resources.

Constraint conditions:
The experimental satellite is the SAR satellite in this paper. Because SAR satellites

are imaged all day and night, we only consider the constraint of satellite maneuverability
in this paper, which means that the satellite meets the maximum swing angle constraint
during each imaging as follows:

xmin ≤ |xd| ≤ xmax (5)

where xmin and xmax are the minimum and maximum swing angles of the SAR satellites,
respectively. When xd > 0, it is the left sway in the flight direction, and when xd < 0, it is
the right sway in the flight direction.
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2.2. Particle Update Strategy in LMOCSO

The particle search strategy in LMOCSO is proposed based on CSO. The idea of CSO
is to randomly divide the population with size N into N/2 competing particle pairs. The
winner and loser individual were selected according to the fitness value in each particle
pair, and then the loser learned from the winner. The updated equation for the loser in the
CSO is as follows:

vl(t + 1) = r0 × vl(t) + r1 × (xw(t)− xl(t)) (6)

xl(t + 1) = xl(t) + vl(t + 1) (7)

where r0 and r1 are random numbers in the range of 0 to 1, vl(t) is the velocity vector
of the t-generation loser individual, and xw(t) and xl(t) are the position vectors of the
t-generation winner and loser individuals, respectively.

According to Equation (6), the updating trajectory of the loser is shown in Figure 1a.
It can be intuitively seen that the loser rotation converges to the winner with a slower
convergence speed.
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Tian [42] proposed LMOCSO to accelerate the particle update speed in CSO. The idea
of LMOCSO is that the loser first updates based on its impetus, and then the updated loser
learns from the winner. It differs from the loser individual update method in CSO, in which
the loser first learns from the winner individual and then updates itself according to the
impetus. The loser updating trajectory in LMOCSO is shown in Figure 1b.

According to the idea of LMOCSO and Figure 1b, we can see that the loser at position
xl(t) is first updated based on its impetus to reach the position x′ l(t). The updated equation
is as follows:

x′ l(t) = xl(t) + r0v(t) (8)

Then, the updated loser x′ l(t) learns from the winner, where ∆′(t) is the learning vector.

∆′(t) = xw(t)− x′ l(t) (9)

Therefore, the updated equation of the loser is as follows:

vl(t + 1) = r0vt(t) + r1∆′(t) (10)

xl(t + 1) = xl(t) + v(t + 1) (11)

For more information about LMOCSO, please refer to [42].
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3. Proposed Method
3.1. Efficient Competition Learning Particle Update Strategy
3.1.1. Improved Loser Update Strategy

Although LMOCSO has a better convergence speed than CSO, it still requires a large
number of evaluations for large-scale problems. For the LSMOP testing problem [44], the
number of reference evaluations given by the author is 15,000 × D, where D represents the
number of decision variables. The computational cost is considerable. The calculation is
complex and costly for the imaging satellite task planning problem, and there are many
imaging strips for large areas. Therefore, obtaining good results by running LMOCSO
directly to solve the imaging satellite task planning problem is difficult. To better solve
the imaging satellite task planning problem, this part further improves the particle update
strategy in LMOCSO.

The core idea of the improved particle update strategy is to further accelerate the loser
individual updates based on LMOCSO. The improved particle update strategy enables par-
ticles to move directly from position xl(t) to position xl(t + 2) through only one evolution,
as shown in Figure 2.
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To enable the loser to evolve from position xl(t) to position xl(t+ 2) directly, we derive
the updated equation for the loser as follows:

V(1) = v(1) + v(2) = v(1) + r0v(1) + r1∆′(1)

= (1 + r0)v(1) + r1(Xw − X′ l(1))

= (1 + r0)v(1) + r1(Xw − (X′ l(0) + (1 + r0)v(1)− r0v(0)))

= (1 + r0 − r1 − r0r1)v(1) + r1∆′(0) + r0r1v(0)

= (1 + r0 − r1 − r0r1)(r0v(0) + r1∆′(0)) + r1∆′(0) + r0r1v(0)

= (r0 + r0
2 − r0

2r1)v(0) + (2r1 + r0r1 − r1
2 − r0r1

2)∆′(0)

= R1v(0) + R2∆′(0)

(12)

X′ l(1) = x′ l(2) = x′ l(1) + (1 + r0)v(2)− r0v(1)

= x′ l(0) + (1 + r0)v(1)− r0v(0) + (1 + r0)v(2)− r0v(1)

= x′ l(0) + (1 + r0)(v(1) + v(2))− r0v(1)− r0v(0)

= x′ l(0) + (1 + r0)(v(1) + v(2))− r0(r0v(0) + r1∆′(0))− r0v(0)

= x′ l(0) + (1 + r0)(v(1) + v(2))− (r0
2 + r0)v(0)− r0r1∆′(0)

= x′ l(0) + (1 + r0)(v(1) + v(2))− R3v(0)− R4∆′(0)

(13)
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where V(1) and X′ l(1) are the velocity vector and position vector of the updated loser,
respectively. The meanings of the other symbols are the same as the above equations.

By introducing (9) into (12) and (13) and replacing x′ l(t) with xl(t), we obtain the
improved loser update strategy in ECLUS as follows:

v(t + 1) == R1v(t) + R2(xw(t)− xl(t)) (14)

xl(t + 1) = xl(t) + (1 + r0)v(t + 1)− R3v(t)− R4(xw(t)− xl(t)) (15)

where r0 and r1 are random numbers in the range of 0 to 1, and
R1 = r0 + r0

2 − r0
2r1

R2 = 2r1 + r0r1 − r1
2 − r0r1

2

R3 = r0
2 + r0

R4 = r0r1

(16)

Therefore, the range of values for R1 and R3 is [0, 2], and the range of values for R2
and R4 is [0, 1].

3.1.2. Flight Time

For Equation (15), the position update equation of the loser can be abstracted as

xl(t + 1) = xl(t) + Vl(t + 1) (17)

where
Vl(t + 1) = (1 + r0)v(t + 1)− R3v(t)− R4(xw − xl(t)) (18)

Other algorithms based on PSO can also perform similar abstractions, but the specific
expression Vl(t + 1) varies among different algorithms. It can be seen that the flight time
of each particle in evolution is fixed, and the value is 1. However, in the early stages of
evolution, the loser individuals are far away from the winners, and the losers should have
a longer flight time to ensure that they are close to the winners. On the contrary, in the later
stages of evolution, the losers should have a shorter flight time to ensure that they do not
fly over the winners. Thus, the appropriate flight time can avoid ‘oscillation phenomena’
during evolution. Therefore, the flight time is introduced into ECLUS, enabling the ECLUS
to converge quickly in large steps in the early stage of evolution and converge in small
steps in the later stage of evolution, preventing the algorithm from falling into local optima.
The calculation equation for the flight time designed in this paper is as follows:

T(t) = Tmax ∗ (1− k
t

tmax
) (19)

where Tmax is the maximum flight time, k is the adjustment coefficient, t is the current
evolution generation, and tmax is the maximum evolution generation.

Thus, the position update equation for the loser in ECLUS is

xl(t + 1) = xl(t) + T(t)×Vl(t + 1) (20)

By introducing (18) into (20), the following is obtained:

xl(t + 1) = xl(t) + T(t)× [(1 + r0)v(t + 1)− R3v(t)− R4(xw − xl(t))] (21)

Finally, Equations (14), (19), and (21) together constitute the update strategy for the
loser’s real variables in ECLUS.
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3.1.3. Binary Decision Variable Update Strategy

Like the particle update strategies in PSO and LMOCSO, the particle update strategy
in ECLUS is only applicable to particles in real continuous space. However, for the imaging
satellite task planning problem in this paper, in addition to the satellite swing angle as a real
decision variable, there is also a binary decision variable of whether each strip participates
in imaging. To update the binary variables in the imaging satellite task planning problem,
we propose a BCSO by combining binary PSO (BPSO) and CSO.

The strategy for updating the velocity variables for the loser in the BCSO is the same
as in ECLUS for the real variables (see Equation (14)). Moreover, the position updating
adopts the particle position update strategy in the BPSO.

Firstly, the velocity vector of the loser is mapped to the range of [0, 1] through the
following sigmoid function:

s(vl(t)) =
1

1 + exp(−vl(t))
(22)

Then, the position vector of the binary variable of the loser is updated according to
the following equation:

xl(t) =
{

1 i f rand() ≤ s(vl(t))
0 otherwise

(23)

where rand() represents a random number within the range of [0, 1] and s(vl(t)) represents
the probability that the loser binary vector takes a value of 1.

Finally, Equations (14), (22), and (23) together constitute the updating strategy for the
loser binary variables in ECLUS.

3.1.4. Winner Selection Based on SDE

In ECLUS, there are two types of relationships between two individuals in a competi-
tive particle pair. The first is that when two individuals have a dominant relationship, the
winner and the loser can be determined through non-dominant sorting. The second is that
when two individuals are non-dominated with each other, the winner is selected by the
shift-based density estimation (SDE) [45] instead of the crowding distance in NSGA-II.

The principle of SDE is as follows: For individuals in the same dominant layer, when
the SDE of the individual p is calculated, the objective function values of the individual p
and other individuals q are sequentially compared in each objective function dimension i.
If the convergence of individual q is better than that of individual p, then individual q will
be moved to the position of individual p in this objective dimension i. Then, the distance
between individual p and the moved individual q′ is calculated. Finally, the minimum
distance between all q′ and the individual p is the SDE of the individual p, as shown in
Figure 3a.

The equation used for calculating the SDE of the individual p is as follows:

density(p) = min
q∈P\{p}

√√√√ M

∑
i=1

(max{0, fi(q)− fi(p)})2 (24)

where density(p) is the SDE value of individual p, P is the set of all individuals that are
non-dominated with p, fi(q) and fi(p) are the i-th objective function values of individuals
q and p, respectively, and a smaller value represents better convergence. M is the number
of objective functions.

As shown in Figure 3b, according to the crowding distance, individual A with a poor
convergence but good diversity was retained, while individual B with good convergence
was eliminated. However, for SDE, it is inverse. This is because the crowding distance
only considers population diversity, while SDE considers both population diversity and
convergence simultaneously. Therefore, the winner selection strategy based on SDE can
better assist in large-scale optimization algorithms.
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Similarly, in addition to the winner selection in ECLUS, SDE is also used in NSGA-II,
which is run in this paper. We call it NSGA-II-SDE.

3.1.5. Procedure of ECLUS

In summary, the procedure of ECLUS is shown in Algorithm 1. The main steps include
the following: First, number the Pareto layers and calculate the SDE of each individual
in the current population. Next, group the population in pairs and select the winner and
the loser from each pair. Then, update the loser according to the proposed ECLUS. Last,
combine the updated loser and the winner to form a new population.

Algorithm 1: Procedure of ECLUS

Input: Current population P (even individual)
Output: New population P′

1 Obtain the Pareto number of each individual by non-dominated sorting P;
2 Calculate the SDE of each individual in each Pareto layer according to (24);
3 Obtain competitive particle pairs by grouping individuals in pairs within P;
4 Select the winner and the loser from each pair based on the Pareto number and SDE;
5 Update the real and binary decision variables for all losers based on (14), (19), (21), (22), and (23);
6 Generate the new population P′ by combining updated losers and winners;
7 return P′;

3.2. Procedure of ECL-INS-LMOA

The procedure of ECL-INS-LMOA is shown in Figure 4. Firstly, some evolutionary
parameters are set to prepare for the running of ECL-INS-LMOA. The evolutionary pa-
rameters of ECL-INS-LMOA include the population size N, the maximum evaluations
Evaluationmax, the evolutionary strategy parameters, and the evolution process adjustment
coefficient K. Then, the initial population with the size of N is generated through random-
ization. Next, the evolution process is divided into two stages through the parameter K:
the early and later stages. In the early stages of evolution, ECLUS is run first, followed by
NSGA-II-SDE, and only NSGA-II-SDE is performed in the later stage of evolution. Finally,
the final population is returned, that is, the satellite imaging mission planning scheme
is returned.
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The proposed ECL-INS-LMOA has the following characteristics: Firstly, an individual
update strategy ECLUS with mixed decision variables and flight times is proposed to
improve the convergence speed. Secondly, ECLUS and NSGA-II-SDE are run alternately
to achieve complementary advantages. That is, ECLUS is used to overcome the slow
convergence speed of NSGA-II-SDE in large-scale multi-objective optimization problems,
and NSGA-II-SDE is used to avoid the problem of ECLUS easily falling into local optima.
Thirdly, to further improve the convergence efficiency of the algorithm, SDE is used for the
selection of dominant individuals in both ECLUS and NSGA-II simultaneously. Fourthly, to
cater to the different evolutionary needs of the different stages of progress, ECL-INS-LMOA
adopts the idea of running in two stages. ECL-INS-LMOA focuses on fast convergence
while also considering global optimization in the early stage, but focuses on global opti-
mization while also considering algorithm convergence in the later stage. ECL-INS-LMOA
continuously searches for optimal solutions by combining alternating optimization with
only single optimization and balancing fast convergence with global optimization in differ-
ent stages until a reliable solution that meets the conditions is obtained.

4. Experiment and Analysis
4.1. Experimental Settings
4.1.1. Imaging Satellite

This paper selects the fine strip II mode of the GF3 satellite for regional imaging task
planning. The satellite and sensor parameters are shown in Table 1.
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Table 1. The parameters of Gaofen-3.

Satellite Gaofen-3

Launch Time 10 August 2016
Orbit Type Repeat sun-synchronous orbit

Orbital Altitude (km) 755
Imaging Mode Fine strip II
Swing Ability 19–50◦

Spatial Resolution (m) 10
Swath Width (km) 100

Band C
Polarization Dual polarization

4.1.2. Imaging Regions

This paper uses 100 imaging strips as the minimum limit and selects five different
large regions from around the world as the regions to be imaged, namely the Congo (K),
India, Australia, the United States, and Antarctica. The boundaries of each region are
appropriately simplified, and the distribution of each region is shown in Figure 5. The
parameters of each region are shown in Table 2.
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Table 2. Imaging area parameters.

Region Congo (K) India Australia USA Antarctica

Area (10,000 square km) 234.5 298.0 774.1 936.4 1424.5
Ranking in world 11 7 6 4 -

4.1.3. Candidate Strips for Each Region

The maximum power-up time of GF3 within one cycle is about two minutes. Therefore,
the maximum flight distance of GF3 during one imaging does not exceed 912 km. For the
five areas to be imaged in our experiment, the north–south distance is much greater than
912 km, so the satellite cannot continuously image when passing through each region. To
reasonably obtain candidate imaging strips for each region, each region is decomposed
based on the maximum flight distance of the GF3, as shown in Figure 6. Only one sub-
region can be imaged each time the satellite passes, and the imaging time should not exceed
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the maximum. Due to its special geographical location, a circular decomposition was
conducted in our experiment for Antarctica. Table 3 lists the number and acquisition time
of candidate strips for each region.
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Table 3. Candidate imaging strip information for each region.

Region Sub-Region Imaging Time Number of
Candidate Stripes

Number of Real/Binary
Decision Variables

Congo (K)
1 1 December 2019–31 December 2019 41

1352 1 January 2020–31 January 2020 52
3 1 February 2020–29 February 2020 42

India

1 1 December 2019–31 December 2019 37

264
2 1 January 2020–31 January 2020 80
3 1 February 2020–29 February 2020 74
4 1 March 2020–31 March 2020 44
5 1 April 2020–30 April 2020 29
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Table 3. Cont.

Region Sub-Region Imaging Time Number of
Candidate Stripes

Number of Real/Binary
Decision Variables

Australia

1 1 December 2019–31 December 2019 64

411
2 1 January 2020–31 January 2020 97
3 1 February 2020–29 February 2020 98
4 1 March 2020–31 March 2020 105
5 1 April 2020–30 April 2020 47

The United States

1 1 December 2019–31 December 2019 115

491
2 1 January 2020–31 January 2020 131
3 1 February 2020–29 February 2020 118
4 1 March 2020–31 March 2020 104
5 1 April 2020–20 April 2020 23

Antarctica

1 19 December 2019–20 December 2019 20

798

2 20 December 2019–26 December 2019 96
3 26 December 2019–1 January 2020 99
4 1 January 2020–7 January 2020 91
5 7 January 2020–13 January 2020 91
6 13 January 2020–23 January 2020 163
7 23 January 2020–3 February 2020 79
8 3 February 2020–16 February 2020 139
9 16 February 2020–28 February 2020 20

After the screening, the imaging time window of each candidate strip and satellite
position and the velocity coordinates within it are output. This paper does not list them
one by one because of the large amount of data. According to the multi-objective imaging
satellite task planning model, the number of candidate strips is the number of real or binary
decision variables in ECL-INS-MOEA.

4.1.4. Parameter Settings for MOEAs

In our experiments, NSGA-II, LMOCSO, and LMEA are comparative algorithms. Among
them, NSGA-II is widely recognized as an MOEA with good performance for two-dimensional
objective space when the decision variables of the problem are not particularly large. LMOCSO
and LMEA are large-scale MOEAs based on new search strategy and decision variable
grouping, respectively. The proposed ECL-INS-MOEA is a large-scale MOEA based on the
new search strategy.

For the parameter settings, the population size is always set to 100 for different regions and
algorithms. The number of objective function evaluations is used as a termination condition of
evolution, which is different for different regions. For each region, the maximum number of
evaluations for NSGA-II, LMOCSO, and ECL-INS-LMOA is the same, while the maximum
number of evaluations for LMEA is more than them because LMEA requires a large amount
of decision variable correlation analysis. The evaluation numbers for different regions and
algorithms are shown in Table 4. The other parameter settings of comparison algorithms are
consistent with their paper. In ECL-INS-LMOA, the evolution process adjustment coefficient K
is 0.6, the maximum flight time is 2, and the time adjustment coefficient is 0.7.

Table 4. Iteration termination evaluation times of each algorithm.

Region Number of Decision Variables
Evaluation Times of Objective Function

NSGA-II LMOCSO LMEA ECL-INS-LMOA

Congo (K) 135 48,000 48,000 160,000 48,000
India 264 70,000 70,000 1,320,000 70,000

Australia 411 100,000 100,000 2,000,000 100,000
The United States 491 130,000 130,000 2,000,000 130,000

Antarctica 798 160,000 160,000 2,100,000 160,000
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4.2. Results and Analysis
4.2.1. Verification of Particle Update Strategies in ECLUS

To demonstrate the effectiveness of ECL-INS-LMOA, we verify the effectiveness of
the proposed particle update strategies through ablation experiments. The improved loser
update strategy, flight time, and binary decision variable update strategy BCSO were
compared with existing particle update strategies. The winner selection strategy based
on SDE has not been validated because its effectiveness was studied in the literature [45].
Figures 7–9 show the Congo (K) planning results of the proposed ECL-INS-LMOA with dif-
ferent strategies under 40,000 evaluations. Figure 7 shows the impacts of the improved loser
update strategy in ECLUS and the loser update strategy in LMOCSO on the performance
of ECL-INS-LMOA. Figure 8 shows the flight time strategy in ECLUS and the fixed flight
time strategy on the performance of ECL-INS-LMOA. Figure 9 shows the BCSO strategy
in ECLUS and the BPSO strategy on the performance of ECL-INS-LMOA. In Figures 7–9,
the red lines represent the results of the strategies in ECLUS, and the dotted lines of blue,
green, and magenta represent the results of the comparison strategies.
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In Figure 7a, the hypervolume (HV) is used to evaluate the performance of the im-
proved loser update strategy in ECLUS and the loser update strategy in LMOCSO. The
larger the HV, the better the convergence and distribution of the planning results. Therefore,
from Figure 7a, it can be seen that the improved loser update strategy in ECLUS has a
better impact on ECL-INS-LMOA than the loser update strategy in LMOCSO. Figure 7b
shows that the improved loser update strategy in ECLUS has a better maximum coverage
than the loser update strategy in LMOCSO. However, even if the number of imaging
strips of the improved loser update strategy in ECLUS has a downward trend, Figure 7c
shows that it is still inferior to the loser update strategy in LMOCSO. This is probably
because the maximum coverage obtained by the loser update strategy in LMOCSO is small,
resulting in a small number of corresponding imaging strips. In general, the improved loser
update strategy in ECLUS is better than the loser update strategy in LMOCSO because the
improved loser update strategy in ECLUS has advantages in HV and maximum coverage.

Figure 8 compares the flight time strategy and fixed flight time strategy from the HV,
maximum coverage, and the number of imaging strips corresponding to the maximum
coverage. Figure 8 shows that the strategy with flight time always achieves better results
than the strategy with fixed flight time. It demonstrates the effectiveness of adopting a
flight time strategy in ECLUS.

From Figure 9, it can be seen that the binary decision variable update strategy BCSO
exhibits a better performance than BPSO in ECL-INS-LMOA. Although the maximum
coverage advantage of BCSO in Figure 9b is small, the HV advantage in Figure 9a is
marked. This is mainly because BCSO obtains better convergence and distribution binary
solutions than BPSO. Figure 9c also demonstrates the effectiveness of BCSO in the number
of imaging strips corresponding to the maximum coverage.

Therefore, the improved loser update strategy, the flight time strategy, and the BCSO
strategy can effectively enhance the optimization ability of ECL-INS-LMOA. These three
proposed strategies, together with the winner selection strategy based on SDE, ensure
the excellent optimization performance of ECL-INS-LMOA in solving large-scale multi-
objective optimization problems.

4.2.2. Comparison between ECL-INS-LMOA and Comparative Algorithms

In this section, Congo (K) is the region to be imaged, and the imaging task planning
results obtained by ECL-INS-LMOA are compared with NSGA-II, LMOCSO, and LMEA.

1. The distribution of solutions in the objective space

Figure 10 shows the distribution of non-dominated solutions obtained by four algo-
rithms for Congo (K). According to the imaging satellite task planning model in Section 2.1,
in Figure 10, the vertical axis is the objective function 1, representing the difference between
1 and the regional coverage rate. The smaller the value, the greater the regional imaging
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coverage rate. And the horizontal axis is the objective function 2, representing the ratio of
the participating imaging strips to the total candidate strips. The smaller the value, the more
efficient the utilization of the satellite. In Figure 10, the red, blue, pink, and green curves
represent the distribution of non-dominated solutions obtained by ECL-INS-LMOA, LMEA,
LMOCSO, and NSGA-II, respectively. Table 5 shows the values of the optimal coverage
solution for each algorithm in Congo (K), as well as the corresponding coverage rate and
the number of strips participating in the imaging. The gray shadow marks the maximum
imaging coverage rate and the minimum number of strips participating in imaging.
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Table 5. Optimal coverage solutions in Congo (K) for different algorithms.

Algorithm Objective
Function 1 Coverage Rate Objective

Function 2
Number of

Imaging Strips

LMEA 0.02902 97.10% 0.60000 81
LMOCSO 0.00067 99.93% 0.62963 85
NSGA-II 0.01120 98.88% 0.68889 93

ECL-INS-LMOA 0.00018 99.98% 0.47407 64

From this experiment, three conclusions can be drawn: Firstly, although NSGA-II is
not an algorithm designed for large-scale optimization problems, it still achieves good
results in planning for Congo (K), with 135 decision variables. The regional coverage rate
of NSGA-II reaches 98.88%, surpassing LMEA. But NSGA-II requires more imaging strips
than other algorithms, which means that satellite resources have not been effectively saved
in NSGA-II. Secondly, each algorithm can achieve good results in terms of coverage with
little performance difference, not exceeding 3%. However, there is a significant difference
in the required imaging strips. ECL-INS-LMOA has 29 fewer imaging strips than NSGA-II,
accounting for approximately 21.5% of the candidate strips. Thirdly, ECL-INS-LMOA is
significantly superior to comparison algorithms, always utilizing fewer imaging strips to
achieve a higher regional coverage. ECL-INS-LMOA only uses 64 imaging strips to achieve
almost full coverage of the imaging region, achieving the goal of a high regional coverage
while saving satellite resources. The satellite resources are saved by 52.6%.

2. Regional coverage results

Figure 11 shows the coverage display results in Congo (K) using four different algo-
rithms. In Figure 11, the red lines represent the simplified regional boundary of Congo
(K), and the lotus root pink strips are the imaging strips obtained using various algorithms.
Figure 11a shows the coverage display result of all candidate strips without any algo-
rithm optimization, and Figure 11b–e shows the coverage display result of imaging strips
optimized by NSGA-II, LMOCSO, LMEA, and ECL-INS-MOEA, respectively.



Remote Sens. 2023, 15, 4178 18 of 26

Remote Sens. 2023, 15, x FOR PEER REVIEW 18 of 26 
 

 

to achieve almost full coverage of the imaging region, achieving the goal of a high regional 
coverage while saving satellite resources. The satellite resources are saved by 52.6%. 
2. Regional coverage results 

Figure 11 shows the coverage display results in Congo (K) using four different algo-
rithms. In Figure 11, the red lines represent the simplified regional boundary of Congo 
(K), and the lotus root pink strips are the imaging strips obtained using various algo-
rithms. Figure 11a shows the coverage display result of all candidate strips without any 
algorithm optimization, and Figure 11b–e shows the coverage display result of imaging 
strips optimized by NSGA-II, LMOCSO, LMEA, and ECL-INS-MOEA, respectively. 

 
(a) 

 
(b) 

 
(c) 

Figure 11. Cont.



Remote Sens. 2023, 15, 4178 19 of 26Remote Sens. 2023, 15, x FOR PEER REVIEW 19 of 26 
 

 

 
(d) 

 
(e) 

Figure 11. Coverage displays of task planning results in Congo (K) for different algorithms. (a) No 
optimization; (b) NSGA-II; (c) LMOCSO; (d) LMEA; (e) ECL-INS-LMOA. 

From Figure 11, the following conclusions can be drawn: Firstly, although Congo (K) 
can be fully covered without any algorithm optimization, the imaging strips are very 
dense, indicating a severe waste of satellite resources. Secondly, although each algorithm 
can achieve good coverage for Congo (K) and save satellite resources to varying degrees, 
the coverage effect varies greatly. On the one hand, there are invalid observations of im-
aging strips outside the region for three comparative algorithms, because the more deci-
sion variables, the more iterations the algorithm requires, and the algorithm has not yet 
reached the optimal within the maximum evaluation. On the other hand, due to differ-
ences in the coverage rate, there are varying degrees of gaps in the imaging schemes of 
the different algorithms. The imaging schemes of ECL-INS-LMOA and LMOCSO have no 
apparent gaps, while the imaging schemes of NSGA-II have several small gaps, and the 
gaps of LMEA are the most obvious. Thirdly, compared to the three comparison algo-
rithms, ECL-INS-LMOA has fewer redundant imaging strips and no obvious gaps in the 
imaging region, and the distribution of imaging strips is uniform. Therefore, ECL-INS-
LMOA outperforms the three comparison algorithms in terms of coverage display. In ad-
dition, it should be noted that the comparison algorithms did not obtain a better imaging 
scheme because the solution obtained within the maximum number of evaluations is still 
locally optimal. As the number of evaluations increases, all algorithms, including ECL-
INS-LMOA, can obtain a better imaging scheme. However, increasing the number of eval-
uations means increasing the computational consumption. Moreover, the closer it is to the 
optimal solution, the more disproportionate the ‘cost’ and ‘benefit’ of the search solution. 
3. Runtime 

Figure 11. Coverage displays of task planning results in Congo (K) for different algorithms. (a) No
optimization; (b) NSGA-II; (c) LMOCSO; (d) LMEA; (e) ECL-INS-LMOA.

From Figure 11, the following conclusions can be drawn: Firstly, although Congo (K)
can be fully covered without any algorithm optimization, the imaging strips are very dense,
indicating a severe waste of satellite resources. Secondly, although each algorithm can
achieve good coverage for Congo (K) and save satellite resources to varying degrees, the
coverage effect varies greatly. On the one hand, there are invalid observations of imaging
strips outside the region for three comparative algorithms, because the more decision
variables, the more iterations the algorithm requires, and the algorithm has not yet reached
the optimal within the maximum evaluation. On the other hand, due to differences in the
coverage rate, there are varying degrees of gaps in the imaging schemes of the different
algorithms. The imaging schemes of ECL-INS-LMOA and LMOCSO have no apparent
gaps, while the imaging schemes of NSGA-II have several small gaps, and the gaps of
LMEA are the most obvious. Thirdly, compared to the three comparison algorithms, ECL-
INS-LMOA has fewer redundant imaging strips and no obvious gaps in the imaging region,
and the distribution of imaging strips is uniform. Therefore, ECL-INS-LMOA outperforms
the three comparison algorithms in terms of coverage display. In addition, it should be
noted that the comparison algorithms did not obtain a better imaging scheme because the
solution obtained within the maximum number of evaluations is still locally optimal. As
the number of evaluations increases, all algorithms, including ECL-INS-LMOA, can obtain
a better imaging scheme. However, increasing the number of evaluations means increasing
the computational consumption. Moreover, the closer it is to the optimal solution, the more
disproportionate the ‘cost’ and ‘benefit’ of the search solution.
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3. Runtime

Table 6 shows the time consumption of ECL-INS-LMOA and the comparative algo-
rithms for imaging planning in Congo (K). From Table 6, it can be seen that ECL-INS-LMOA
has a significantly better runtime than the comparison algorithms. In addition, LMOCSO
and LMEA require a longer runtime than NSGA-II. Particularly, the runtime is 10,512 s
for LMEA because LMEA requires much time to analyze the decision variables. In sum-
mary, compared to the comparison algorithms, ECL-INS-LMOA not only has the best
performance, but also the shortest runtime for the imaging task planning problem in
Congo (K).

Table 6. Runtimes of different algorithms in Congo (K) (s).

Algorithm NSGA-II LMOCSO LMEA ECL-INS-LMOA

Calculation time of
objective functions 1.2992

Total optimization time 7.7601 × 102 1.5365 × 103 1.0512 × 104 5.3960 × 102

4.2.3. Results of ECL-INS-LMOA for Larger Regions

To verify the effectiveness of ECL-INS-LMOA in large-scale multi-objective optimiza-
tion problems, four regions larger than Congo (K), including India, Australia, the United
States, and Antarctica, are used as imaging regions. Figure 12 shows the distribution of
non-dominated solutions obtained by each algorithm in different regions. Table 7 lists the
optimal coverage solutions of ECL-INS-LMOA and the comparison algorithms in each
region, as well as the corresponding regional coverage rate and the number of participating
imaging strips. Figure 13 shows the coverage display of ECL-INS-LMOA in different
regions. The meanings of each element in Figures 12 and 13 and in Table 7 are the same as
in Section 4.2.2.
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Table 7. Optimal coverage solutions of each algorithm in different regions.

Region Algorithm Objective
Function 1 Coverage Rate Objective

Function 2
Number of

Imaging Strips

India

LMEA 0.01037 98.96% 0.38636 102
LMOCSO 0.00389 99.61% 0.62121 164
NSGA-II 0.01418 98.58% 0.65530 173

ECSO-NSGA-II 0.00113 99.89% 0.36364 96

Australia

LMEA 0.03913 96.09% 0.54745 225
LMOCSO 0.01430 98.57% 0.67153 276
NSGA-II 0.03689 96.31% 0.55961 230

ECSO-NSGA-II 0.00736 99.26% 0.43552 179

The United States

LMEA 0.02598 97.40% 0.42974 211
LMOCSO 0.00542 99.46% 0.65173 320
NSGA-II 0.02597 97.40% 0.57434 282

ECSO-NSGA-II 0.00688 99.31% 0.36660 180

Antarctica

LMEA 0.04870 95.13% 0.51504 411
LMOCSO 0.01726 98.27% 0.68797 549
NSGA-II 0.07696 92.30% 0.58647 468

ECSO-NSGA-II 0.01158 98.84% 0.36591 292
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From this experiment, the following conclusions can be drawn: Firstly, ECL-INS-
LMOA can obtain reliable results in task planning for regions with different decision
variable scales. The coverage rate always remains above 98.5%, and the percentage of
participating imaging strips remains within 0.5. There is no significant decrease in per-
formance as the number of decision variables increases. Although the coverage rate of
LMOCSO in the United States is 0.15% higher than the ECL-INS-LMOA, the number of
imaging strips required for LMOCSO is 140 more than that of ECL-INS-LMOA, which is too
costly. ECL-INS-LMOA always achieves the best results except for this factor. Importantly,
the coverage display of ECL-INS-LMOA in various regions shows an overall uniform
arrangement of imaging strips, without obvious redundant observations, and only with
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small and limited gaps. Secondly, for NSGA-II in different regions, the proportions of
participating imaging strips are around 0.6, but the coverage rates decrease, which is most
evident in Antarctica with a coverage rate of only 92.30%. Thirdly, the performance of the
comparison algorithm LMOCSO is relatively stable. For regions with different decision
variable sizes, the coverage rate can always reach over 98%, but the percentage of partici-
pating imaging strips remains between 0.6 and 0.7. Satellite resources are wasted compared
with ECL-INS-LMOA. Fourthly, for LMEA, although a higher number of evaluations is
assigned based on its principles, its performance is not fully reflected.

In summary, the effectiveness of ECL-INS-LMOA in regional task planning problems
with large-scale decision variables is further verified.

5. Discussion

This paper focuses on the research of large-scale multi-objective imaging satellite
task planning in large areas, where large areas generally refer to areas with more than
100 imaging strips. On the one hand, it is easy to solve imaging satellite task planning in
small areas using existing MOEAs. On the other hand, if the large area is decomposed
into several small areas for optimization, only the local optimal solution can be obtained,
limiting the acquisition of the optimal solution. We should strive to explore better imaging
solutions to utilize precious satellite resources and complete imaging tasks more efficiently.

The proposed ECL-INS-LMOA achieved better optimization results than the existing
MOEAs. This is because, firstly, ECL-INS-LMOA performs global optimization by directly
designing more efficient search strategies and better environmental selection strategies. The
global optimal solution of ECL-INS-LMOA is preserved. However, the MOEAs based on the
decision variable grouping method and the decision space reduction lose the global optimal
solution because of the methods of processing decision variables. Secondly, the proposed
ECLUS has a faster convergence speed than the strategy in LMOCSO. The particles go
directly from position xl(t) to position xl(t + 2) with one evolution. On the other hand,
ECLUS adjusts the flight distance by introducing flight time to accelerate convergence and
avoid oscillation convergence. In addition, BCSO was proposed for updating the binary
decision variables. Thirdly, ECL-INS-LMOA adopts the idea of two-stage optimization. In
the early stages of evolution, ECLUS and NSGA-II-SDE run alternately, which focuses on
fast convergence while balancing global optimization. In the later stage of evolution, only
NSGA-II-SDE runs, which focuses on global optimization while balancing fast convergence.

ECL-INS-LMOA not only provides the optimal planning solution, but also has advan-
tages in runtime. Firstly, ECL-INS-LMOA is based on a new search strategy without the
need for additional analysis and the calculation of decision variables, so the time consump-
tion is significantly less than LMEA. Secondly, the accelerated particle update strategy,
flight time, and the winner selection strategy in ECLUS are all linear, and their increased
computational cost is negligible and can be ignored. Compared with ECL-INS-LMOA, only
non-dominated solutions in LMOCSO are used in particle updates per generation, which
results in LMOCSO having many more evolutionary generations than ECL-INS-LMOA
within the same number of objective function evaluations. As a result, the environment
selection strategy of LMOCSO is executed more frequently, resulting in a lower running
efficiency than the proposed ECL-INS-LMOA. Thirdly, all particles in ECL-INS-LMOA
participate in winner and loser selection rather than just non-dominant particles. On the
one hand, it can maintain the diversity of solutions. On the other hand, ECLUS can select
winner individuals by simply comparing SDEs, and then obtain new populations by only
updating the losers. In contrast, NSGA-II requires a series of operations such as competitive
selection, crossover, and mutation on all individuals to obtain new populations. Therefore,
ECL-INS-LMOA has a higher running efficiency than NSGA-II.

In our study, based on previous research, we specifically defined the scope of a
large area, which is the area with more than 100 imaging strips. And a large-scale multi-
objective optimization algorithm was specifically designed to solve large-scale task plan-
ning problems efficiently. We rarely see these in other related studies [46,47]. Although the
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imaging area is large in some studies, the scale of their problems may not be large. It is
believed that this paper can provide some new references for large-scale satellite mission
planning problems.

In addition, although the experimental satellite in this paper is only GF3, the proposed
MOEA can also be applied to multi-satellite optimization problems, for example, constella-
tion optimization [48], multi-satellite joint scheduling [49], etc. For different application
problems, the goal of an MOEA is always to find the best solution to the problem. In addi-
tion to the imaging satellite task planning problem for large-scale mapping studied in this
paper, there are many large-scale multi-objective optimization problems in the real world,
for example, feature selection in machine learning [50,51], neural network training [52],
drone-assisted camera network [53], routing problems [54,55], etc. The proposed method
can also be explored for its value in different fields.

The proposed ECL-INS-LMOA focuses on innovating new search strategies, but
the environmental selection strategy adopts the methods in existing papers. In the fu-
ture, the environment selection strategy will be designed to enhance the performance of
MOEAs. In addition, the regional mapping we are currently researching only focuses
on obtaining orthophoto images of one region. In the future, we will focus on obtaining
regional stereo imaging products and multi-satellite multi-region task planning problems.
In summary, we will construct different imaging satellite task planning models and de-
sign corresponding solving algorithms based on specific imaging satellite task planning
problems in practical applications.

6. Conclusions

To solve the imaging satellite task planning problem in large areas, we proposed
ECL-INS-LMOA. ECL-INS-LMOA adopts the idea of two-stage evolution. In the early
stage of evolution, the proposed ECLUS and NSGA-II-SDE are alternately run to ensure
fast convergence while balancing global optimization. In the later stage of evolution, only
NSGA-II-SDE is run to ensure global optimization while balancing fast convergence. To
enable ECL-INS-LMOA to quickly converge to the approximate optimal solution in the
early stage of evolution, we proposed ECLUS based on accelerating the particle update,
introducing flight time, and proposing BCSO. This paper conducts imaging task planning
experiments on five large imaging regions with a global number of imaging bands greater
than 100 and compares ECL-INS-MOEA with three comparative algorithms. The experi-
mental results show that the proposed ECL-INS-MOEA can always achieve efficient and
fast convergence in different regions and obtain reliable imaging schemes. For different
regions, the regional coverage rate exceeds 98.8%, the satellite resource savings exceed 50%,
and the coverage is uniform, with fewer redundant observations and gaps.

With the increase in the number of satellites and the complexity and diversification of
user needs, imaging satellite task planning will play an increasingly important role in both
theoretical research and practical applications. We sincerely hope this paper can provide a
reference for relevant research and stimulate more research interest.
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