
Citation: Wang, Y.; Cai, J.; Zhou, J.;

Sun, J.; Xu, Y.; Zhang, Y.; Wei, Z.;

Plaza, J.; Plaza, A.; Wu, Z. CE-RX: A

Collaborative Cloud-Edge Anomaly

Detection Approach for

Hyperspectral Images. Remote Sens.

2023, 15, 4242. https://doi.org/

10.3390/rs15174242

Academic Editors: Diego

González-Aguilera, Pablo

Rodríguez-Gonzálvez and

Danfeng Hong

Received: 28 May 2023

Revised: 25 August 2023

Accepted: 27 August 2023

Published: 29 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

CE-RX: A Collaborative Cloud-Edge Anomaly Detection
Approach for Hyperspectral Images
Yunchang Wang 1 , Jiang Cai 2, Junlong Zhou 1 , Jin Sun 1, Yang Xu 1, Yi Zhang 1, Zhihui Wei 1, Javier Plaza 3 ,
Antonio Plaza 3 and Zebin Wu 1,*

1 School of Computer Science and Engineering, Nanjing University of Science and Technology,
Nanjing 210094, China; yunchangwang@njust.edu.cn (Y.W.); jlzhou@njust.edu.cn (J.Z.);
sunj@njust.edu.cn (J.S.); xuyangth90@njust.edu.cn (Y.X.); yzhang@njust.edu.cn (Y.Z.);
gswei@njust.edu.cn (Z.W.)

2 Nanjing Research Institute of Electronics Engineering (NRIEE), Nanjing 210007, China; caijiang@cetc.com.cn
3 Hyperspectral Computing Laboratory, Department of Technology of Computers and Communications,

University of Extremadura, 10071 Cáceres, Spain; jplaza@unex.es (J.P.); aplaza@unex.es (A.P.)
* Correspondence: wuzb@njust.edu.cn

Abstract: Due to the constrained processing capabilities of real-time detection techniques in remote
sensing applications, it is often difficult to obtain detection results with high accuracy in practice. To
address this problem, we introduce a new real-time anomaly detection algorithm for hyperspectral
images called cloud–edge RX (CE-RX). The algorithm combines the advantages of cloud and edge
computing. During the data acquisition process, the edge performs real-time detection on the data
just captured to obtain a coarse result and find the suspicious anomalies. At regular intervals, the
suspicious anomalies are sent to the cloud for further detection with a highly accurate algorithm,
then the cloud sends back the (high-accuracy) results to the edge for information updating. After
receiving the results from the cloud, the edge updates the information of the detector in the real-time
algorithm to improve the detection accuracy of the next acquired piece of data. Our experimental
results demonstrate that the proposed cloud–edge collaborative algorithm can obtain more accurate
results than existing real-time detection algorithms.

Keywords: hyperspectral; anomaly detection; cloud–edge collaboration; real-time detection

1. Introduction

With the advance of spectral imaging technologies and the subsequent improvement
of spectral resolution, hyperspectral remote sensing data now provides extremely detailed
information for earth observation [1–4]. Hyperspectral target detection [5–10] is one of the
most important research directions in hyperspectral image processing. It utilizes the rich
spectral information contained in hyperspectral images to effectively separate targets from
background pixels. However, in practical situations, it is difficult to obtain labeled sample
data [11–13]. Therefore, anomaly detection (an unsupervised approach to detect targets)
has a wider practical application.

Anomaly detection can be considered a binary problem. The anomaly detection
algorithm extracts information based on the principle that the features of anomalies and
background are different [14–16]. A hyperspectral image is divided into background
pixels and anomalies during the detection process. The RX detection algorithm proposed
by Reed and Xiaoli [17,18] is considered the benchmark anomaly detection algorithm.
This algorithm first calculates the Mahalanobis distance between the current pixel and
the mean value of the background data. Then, the RX detection algorithm determines
whether the current pixel is an anomalous pixel based on the magnitude of the distance.
Nowadays, different algorithms have been proposed to improve detection accuracy. Li et al.

Remote Sens. 2023, 15, 4242. https://doi.org/10.3390/rs15174242 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15174242
https://doi.org/10.3390/rs15174242
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0009-0002-7681-7773
https://orcid.org/0000-0002-7734-4077
https://orcid.org/0000-0002-2384-9141
https://orcid.org/0000-0002-9613-1659
https://orcid.org/0000-0002-7162-0202
https://doi.org/10.3390/rs15174242
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15174242?type=check_update&version=1

Remote Sens. 2023, 15, 4242 2 of 21

present a new hyperspectral anomaly detection baseline network, referred to as LRR-
Net [19], which synergizes the low-rank representation model with deep learning (DL)
techniques. Gao et al. proposed a novel chessboard topology-based anomaly detection
(CTAD) method to adaptively dissect images and extract detailed information about land
cover [20]. In [21], Wang proposed a joint anomaly detection and noise removal paradigm
called DSR-ADNR. This algorithm develops a double subspace representation method to
obtain both denoised and detection results simultaneously.

However, these anomaly detection algorithms need to wait for the spectrometer to
capture all the image data before obtaining the result. In other words, they output all the
detection results at once. These algorithms cannot detect anomalies in real time. Real-
time processing is very important in the field of hyperspectral imaging [22–24], especially
for hyperspectral anomaly detection. In order to cope with the demand for real-time
detection, different algorithms have been recently proposed to improve the speed of the
detection algorithm. Du proposed a fast CLDA detection classification algorithm for target
detection and classification [25]. Chang proposed an LCMV-based target detector. This
detector can be processed line-by-line in real time [26]. Zhao [27] proposed a real-time
RX detection algorithm that uses Woodbury’s lemma to simplify the calculation of each
detection step. This method allows us to quickly achieve detection results without the need
to collect the full image data. Chen found the real-time causal version of R-RXD [28,29].
Zhao [30] combined the kernel collaborative representation detector (KCRD) and Cholesky
decomposition to propose a real-time version called RT-KCRD.

A real-time process must be causal in the sense that no data sample vectors beyond the
current data sample vector being processed should be allowed to be included in the data
processing. Existing real-time algorithms are designed based on the principle of using the
currently captured data to construct detection operators. When executing these algorithms,
the information used comes from the hyperspectral data already captured. Real-time
algorithms often suffer from low detection accuracy compared to standard algorithms
that can process the entire area data, especially at the initial detection stage. Due to the
small amount of data captured by edge devices, real-time algorithms are often unable to
accurately detect anomalies and separate them from the background pixels. The inability
to execute accurate background suppression at the previous detection stage will negatively
affect the subsequent results and will ultimately reduce the overall detection accuracy.

The edge can collect the data faster than the cloud to obtain a real-time result [31–33].
However, limited by the performance of the edge devices, the real-time algorithm cannot
correct the previous inaccuracy detection results and affects the subsequent detection results.
In general, the cloud has a huge amount of computing resources that allow us to process
a large number of computation tasks simultaneously and obtain high-accuracy results
[34–36]. However, it needs to wait for a while before the latest data can be uploaded to the
cloud for computation. The data needs to be transferred to the cloud before the detection
algorithm can be executed. The cloud can perform fast calculations, but the latency of data
transmission prevents the cloud from capturing data and performing real-time inspections
at the same time.

Nowadays, cloud–edge computing technology has been widely used in many fields.
The most common model is that the edge offloads part of the computational tasks to the
cloud. The edge and the cloud accomplish a computational task together [35,37,38]. In the
literature [39,40], people deploy a complex algorithm in the cloud and deploy a simple
algorithm at the edge. When the algorithms at the edge cannot meet the computational
requirements, the data are uploaded to the cloud for further computation. However, all
these cloud–edge computation models have a flaw: the computation results in the cloud
do not provide further feedback and optimization to the algorithms at the edge. The edge
performs fast detection on the data just captured and the detection algorithm must be
causal and real-time. On the contrary, the cloud detects the data previously captured and
the data sample vectors beyond the currently processed data sample vector can be allowed

Remote Sens. 2023, 15, 4242 3 of 21

to be included. In other words, the algorithm performed in the cloud does not need to be
casual. This means that the cloud can perform more precise detection.

Following this principle, we propose a real-time hyperspectral detection framework
based on cloud–edge collaboration to process hyperspectral images captured by pushbroom
imaging spectrometers [41]. In this scenario, the edge needs to perform real-time anomaly
detection for every line of data captured. We deploy the casual lineway progressive (CLP)-
RX [42] at the edge and deploy a high-accuracy and non-casual algorithm at the cloud.
While the newly captured data are detected in real-time at the edge, the high-precision
detection on previously captured data is performed in the cloud. The edge receives the
results sent from the cloud to perform background suppression and improve the accuracy
of the subsequent real-time detection. The main innovative contributions of this paper can
be summarized as follows.

1. We propose an algorithm called Cloud–Edge RX (CE-RX). This algorithm uses a new
cloud–edge collaboration framework and takes full advantage of the characteristics of
cloud and edge to improve detection accuracy at the edge.

2. We introduce an edge-updating algorithm. This algorithm reduces the time spent
updating data at the edge and the time of data transmission between the cloud and
the edge.

3. Following the proposed cloud–edge collaboration framework, we design a new com-
putation latency model. By using this proposed computation latency model, we can
further analyze which variables affect the real-time performance of the proposed
CE-RX algorithm.

The rest of this paper is organized as follows. Section 2 briefly reviews the RX, the
CLP-RX [42], and local RX [43], which served as a baseline for constructing our method.
Section 3 describes the collaboration process between the edge and the cloud and introduces
our CE-RX algorithm. Section 4 constructs a system model and analyzes it based on the
computational latency of the proposed cloud–edge collaboration framework. Section 5
provides experimental results and analyses. We discuss the proposed algorithm in Section 6.
Section 7 concludes this paper with some remarks.

2. Related Work
2.1. RX Algorithm

RX is an anomaly detection algorithm based on signal detection theory, which has
been widely used in the field of hyperspectral remote sensing. The RX algorithm assumes
that the data follow a Gaussian distribution and that the spectral information of target
pixels is unknown. By comparing the differences between each pixel and the overall data,
the RX algorithm establishes a threshold to discover any image pixels that deviate from the
overall data distribution.

Assuming that the detected pixel is represented by a vector x, the RX detector
δK−RXD(x) is given by

δK−RXD(x) = (x− µ)TK−1(x− µ)

H1
>
6
H2

η (1)

where µ is the estimated background sample mean, K is the covariance matrix estimated
from the background pixels, and η is the threshold. H1 means that x is the background
pixel and H2 means that x is an anomaly.

The RX detector decides whether the current pixel belongs to the target or background
by comparing the magnitude of the difference between the current pixel and the background
statistical information. Since it does not require any a priori information, the RX algorithm
is quite practical. However, the sample covariance matrix is important in the algorithm.
The matrix will remove the first-order statistical information and may lead to compromised

Remote Sens. 2023, 15, 4242 4 of 21

detection results by the RX operator. Chang [44] proposed the R-RX anomaly detector that
uses the correlation matrix of the samples instead of the covariance matrix as

δR−RXD(x) = xT R−1x

H1
>
6
H2

η (2)

where R(L) = (1/L)ΣL
i=1xixT

i denotes the correlation matrix of the hyperspectral data and
L denotes the number of pixels in the data.

2.2. CLP-RX Algorithm

If the whole hyperspectral image has been already collected, the matrix inverse cal-
culation needs to be performed only once. However, in real-time hyperspectral anomaly
detection, new pixels are continuously captured at the edge. The R−1 in Equation (2) is
constantly changing. Each time the algorithm performs the detection step, it needs to
repeat the matrix inverse calculation. This process is too intensive in computational terms
to achieve real-time detection results. On the other hand, with the rapid development
of modern remote sensing technology, the acquisition of spectral information with high
dimensionality introduces significant requirements in terms of data storage and processing.

Nowadays, line-by-line capture (i.e., pushbroom mode) is the most frequently used
method to acquire spectral data. During the capture process, the spectrometer captures
one row of the whole image at a time. To address this scenario and the shortcomings
of existing RX operators, Zhang et al. introduced a recursively updated hyperspectral
anomaly detection operator called CLP-RXD [42]. When new pixels are captured and
detected at the edge, the only data needed by this operator are the pixels just captured and
the result R−1 of the last calculation. There is no need for the edge to store the previously
captured hyperspectral data. This results in a significant reduction of data storage space
requirements, while increasing the efficiency of the RX operator execution.

In the CLP-RX algorithm, we assume that it takes M times for the spectrometer to
scan the whole scene. The data line obtained during the mth scan can be expressed as De

m.
When performing anomaly detection on De

m, the detector of CLP-RX is denoted as

δCLP−RXD = xT R(m− 1)−1x

H1

>

6

H2

η (3)

where R(m− 1)−1 is the correlation inverse matrix obtained in the (m− 1)th round. After
performing real-time detection, the algorithm will update R(m− 1)−1 based on the data De

m.
If each data line contains N image pixels, the correlation matrix of De

m can be expressed as

R(De
m) =

∑N
i=1 rm

i
(
rm

i
)T

N
. (4)

The correlation matrix of all the captured data (denoted as De(m)) can be expressed as

R(m) =
∑N

i=1 ∑m
j=1 rj

i

(
rj

i

)T

mN

=
∑m

i=1 R(De
m)

m

=
(m− 1)R(m− 1)

m
+

R(De
m)

m
.

(5)

Remote Sens. 2023, 15, 4242 5 of 21

According to Woodbury’s constant equation, the inverse of some matrices with k-order
correction factors can be written by the inverse matrix of the original matrix and its k-order
correction factors. This criterion is known as Woodbury’s Lemma [45,46], and can be
stated as (

A + UCVT
)−1

= A−1 − A−1U
(

C−1 + VT A−1U
)−1

VT A−1 (6)

where A is an s× s matrix, U is an s× k matrix, C is a k× k matrix, and VT is a k× s matrix.
When C and VT are the identity matrix, Equation (6) can be simplified as

(A + U)−1 = A−1 − A−1U
(

A−1U + I
)−1

A−1. (7)

Clearly, if we know the value of A−1, it would be much easier to calculate it using
Equation (7) than to find the inverse of the matrix A + U directly. Let A = m−1

m R(m− 1),
U = 1

m R(De
m). Then, we get

A−1U =
R(m− 1)−1

m− 1
R(De

m). (8)

Using Equation (7) we can further derive

R(m)−1 =

(
(m− 1)R(m− 1)

m
+

R(De
m)

m

)−1

=
m

m− 1
{R(m− 1)−1

− R
(

R + I
)−1R(m− 1)−1}

(9)

where R = R(m−1)−1

m−1 R(De
m).

The CLP-RX algorithm can be applied to many scenarios because it does not need to
store all remote sensing data. Thus, the algorithm lays the foundation for developing real-
time anomaly detection algorithms for pushbroom airborne and satellite-based systems.
Compared with the traditional RX algorithm, the accuracy of the CLP-RX algorithm tends
to be reduced due to the limited access to data. Equation (2) indicates that if the pixels
involved in the calculation of the inverse correlation matrix do not contain anomalies, the
accuracy of the detection results can be greatly improved. However, when performing
the detection, both the conventional RX and the CLP-RX algorithm do not know which
pixel is an anomaly in advance. These algorithms involve all pixels in the calculation of
the inverse correlation matrix and the process will lead to a significant reduction of the
detection accuracy.

2.3. Local-RX Algorithm

When the anomalies are relatively small or only distinct from the local surroundings,
local anomaly detection is more important than the global RX anomaly detector. Local-RX
algorithm (LRX) is the most widely used local anomaly detection algorithm. This algorithm
makes use of a local dual window to get the local background statistics sliding through the
whole dataset. The LRX detector can be described as

δLRXD(x) = (x− µlocal)
TK−1

lcoal(x− µlocal)

H1

>

6

H2

η (10)

Remote Sens. 2023, 15, 4242 6 of 21

where µlocal is the estimated background sample mean, Klocal is the background covariance
matrix estimated from the background pixels, and η is the threshold. The local anomaly
detection returns a higher detection rate due to the fact that the local background model
can be tightly fitted. However, the correlation inverse matrix needs to be recalculated when
a new pixel is detected. Moreover, the algorithm relies strongly on the information around
the detected pixel. This leads to a significant reduction in detection accuracy during the
causal real-time detection process.

The comparison of the proposed algorithm with other algorithms mentioned in this
section is shown in Table 1. Most traditional anomaly detection algorithms cannot be used
for anomaly detection in real-time detection scenarios. Existing real-time algorithms cannot
get accurate results. Moreover, these algorithms need to be executed individually at the
edge or in the cloud, which does not fully utilize the computational resources of the cloud
and the edge.

Table 1. Comparison of related work and proposed method.

Detection Algorithm Detection Accuracy Resource Utilization

RX algorithm
(non-real-time) Low accuracy detection; Only runs on one device;

CLP algorithm
(real-time)

Low accuracy detection at
the previous detection stage; Only runs on one device;

Local-RX algorithm
(non-real-time) High accuracy detection; Only runs on one device;

Proposed algorithm
(real-time)

Ability to perform accurate
background suppression;

Use the cloud and
the edge to run
collaboratively;

3. Proposed Algorithm

This section describes the specific steps of the proposed CE-RX algorithm when
performing anomaly detection.

3.1. Cloud–Edge Collaboration Framework

The main principle of our algorithm is that, while the edge is capturing new hyperspec-
tral data and performing real-time detection, some of the previously detected suspicious
anomalies and their surrounding pixels are uploaded to the cloud for high-precision detec-
tion. After detecting the real anomalies, the cloud sends back the information of anomalies
to the edge. The high-accuracy detection algorithm used in the cloud is the LRX algorithm,
which can be replaced by other high-local-accuracy anomaly detection algorithms. These
local anomaly detection algorithms can perform parallel calculations in the cloud to obtain
accurate results. In particular, it is emphasized that the purpose of performing detection at
the cloud is to help the edge perform more accurate background suppression and improve
the accuracy of real-time detection results at the edge. In this section, we describe our new
cloud–edge framework. It is the first time that this cloud–edge collaboration framework
has been proposed and utilized in real-time hyperspectral detection.

We assume that the CE-RX algorithm consists of multiple rounds of cloud–edge
collaboration. Figure 1 shows the data storage and transmission between the cloud and
the edge when the first n pixels are captured at the edge. When performing cloud–edge
interactions, the edge uploads the suspicious anomalies and their surrounding pixels
(denoted as Dsusp

1) to the cloud. The purpose of uploading the surrounding pixels of
suspicious anomalies is to calculate the background covariance matrix in Equation (10).
Here, we assume that the number of hyperspectral pixels uploaded to the cloud in each
round is km. Generally, km is much smaller than n. In the first round, there are no data
available in the cloud for high-precision detection. Therefore, there are no results that can
be sent back from the cloud.

Remote Sens. 2023, 15, 4242 7 of 21

Figure 1. Data storage and transmission for round 1 of the proposed cloud–edge collaboration.

During the second round of the cloud–edge collaboration (illustrated in Figure 2), the
cloud performs high-precision anomaly detection on the uploaded data Dsusp

1 . The edge
captures pixels and performs real-time anomaly detection on the newly captured pixels.
After the second cloud–edge communication is performed, the cloud sends the detection
results of the data Dsusp

1 back to the edge. The edge uploads the data Dsusp
2 to the cloud

and updates the matrix in the δCLP−RXD.

Figure 2. Data storage and transmission for round 2 of the proposed cloud–edge collaboration.

During the third round of the cloud–edge collaboration (illustrated in Figure 3), the
cloud performs high-precision anomaly detection on the uploaded data Dsusp

2 . When the
third cloud–edge communication is performed, the cloud sends the detection result of the
data Dsusp

2 back to the edge. The edge uploads the data Dsusp
3 to the cloud and updates the

matrix in the δCLP−RXD.

Figure 3. Data storage and transmission for round 3 of the proposed cloud–edge collaboration.

3.2. Edge Updating Algorithm

We can describe the mth round (m > 1) in general fashion as follows. When performing
cloud–edge interactions, as shown in Figure 4, the cloud sends back the high-precision
detection results of data Dsusp

m−1 to the edge. The edge uploads the suspicious anomalies and
their surrounding pixels Dsusp

m to the cloud and updates the matrix in δCLP−RXD.

Remote Sens. 2023, 15, 4242 8 of 21

Figure 4. Data storage and transmission for round m of the proposed cloud–edge collaboration.

Once the cloud has sent the detection results back to the edge, the edge needs to
update the inverse correlation matrix in the real-time detection operator for background
suppression. However, recomputing a new inverse correlation matrix with the pixels stored
at the edge will make the update step at the edge too cumbersome from a computational
viewpoint. Frequent use of previous data also makes it impossible for edge devices to
transfer pixels to other devices or servers to relieve storage pressure.

To address this issue, we proceed as follows. When the mth round of the real-time
detection is accomplished, the number of all the pixels is mn and the correlation inverse
matrix of them is denoted as R(m)−1. The cloud completes the detection and sends the
information of anomalies to the edge. The edge updates the correlation inverse matrix in
δCLP−RXD.

We use ω to denote the number of anomalies detected at the cloud in the mth round
and use Ia to denote the index of these anomalies. If we split the R(m) formula, we have

R(m) =
1

mn

mn

∑
i=1

xixT
i

=
1

mn

(
∑
i∈Ia

xixT
i + ∑

i/∈Ia

xixT
i

)

=
1

mn

(
(mn−ω)Rbackground(m) + ωRanomalies(m)

)
=

mn−ω

mn
Rbackground(m) +

ω

mn
Ranomalies(m). (11)

where Ranomalies(m) denotes the correlation matrix of the anomalies detected at the cloud
and Rbackground(m) denotes the correlation matrix of other background pixels. According to
Equation (11), we have

Rbackground(m) =
mn

mn−ω
R(m)− w

mn− w
Ranomalies(m). (12)

According to Woodbury’s constant equation, we have

Rbackground(m)−1 =

(
mn

mn−ω
R(m)− w

mn− w
Ranomalies(m)

)−1

=
mn− w

mn

(
R(m)−1 + R∗(I − R∗)−1R(m)−1

)
.

(13)

where R∗ = w
mn R(m)−1Ranomalies(m). The edge updating algorithm in the mth round is

shown in Algorithm 1.

Remote Sens. 2023, 15, 4242 9 of 21

Algorithm 1: Edge updating algorithm

Input: Number of cloud–edge interaction rounds m, matrix R(m)−1 and matrix
Ranomalies(m);

Output: Matrix Rbackground(m)−1;
if m < 2 then

let Rbackground(m)−1 = R(m)−1;
return Rbackground(m)−1;

end
The cloud sends matrix Ranomalies(m) to the edge;
Equation (13) is used to obtain the updated matrix Rbackground(m)−1 at the edge;
return Rbackground(m)−1;

In the first round, there are no pixels that can be processed in the cloud. As a result,
the cloud cannot send its detection result to the edge for updating. Therefore, the matrix
Rbackground(m)−1 remains unchanged. The specific steps of the CE-RX algorithm are shown
in Algorithm 2.

Algorithm 2: CE-RX algorithm

Input: Data De
m captured in the mth round at the edge, data Dsusp

m−1 stored in the
mth round at the cloud, matrix Rbackground(m− 1)−1 obtained by updating
in the m− 1th round;

Output: Real-time detection result in the edge Be
m and matrix Rbackground(m)−1;

if De
m = φ then
return φ;

end
Let Rbackground(m− 1)−1 = R(m− 1), perform real-time anomaly detection on
pixels {xi|xi ∈ De

m} to get real-time detection result Be
m and Dsusp

m according to
Equation (3);

The inverse correlation matrix R(De
m)
−1 of pixels {xi|xi ∈ De

m} is calculated at the
edge according to Equation (4);

Calculate R(m) based on Equation (9);
if Dsusp

m−1 6= φ then
Execute Algorithm 1 to obtain Rbackground(m)−1;

end
else

The cloud uses the LRX algorithm to detect anomalies in the data Dsusp
m−1 and

calculate the inverse correlation matrix Ranomalies(m);
Execute Algorithm 1 to obtain Rbackground(m)−1;

end
The edge uploads data Dsusp

m to the cloud;
return Detection results in the edge Be

m and matrix Rbackground(m)−1;

In the edge updating algorithm, the cloud only sends matrix information to the edge
and the edge can update information quickly. This ensures that the detection accuracy at
the edge can be improved without increasing excessive edge data updating time.

4. Time Latency Analysis of the Proposed Cloud–Edge Model

In this section, we describe the computational latency model as well as the network
transmission latency model for the proposed CE-RX. After that, we analyze the whole
cloud–edge collaboration system.

Remote Sens. 2023, 15, 4242 10 of 21

4.1. Computing Latency Model for the Cloud and for the Edge

We assume that the computation task can be represented by A = {L, C}, where L
denotes the size of the processed data and C denotes the number of CPU cycles required to
compute one-bit data in the task. These two variables can be obtained by testing in advance.
In this paper, the number of CPU cycles per second is used to measure the computing
power at the edge and the cloud, which are respectively denoted by f edge

comp and f cloud
comp .

When the anomaly detection task is performed at the edge, the time required for the
mth round of detection is

tdetect,edge
m =

Ldetect
m Cdetect

m

f edge
comp

(14)

where Ldetect
m denotes the hyperspectral data to be processed at the edge in the mth round

when the real-time algorithm is executed. Cdetect
m denotes the number of CPU cycles to

compute one-bit data when the detection algorithm is executed at the edge.
When the updating algorithm is executed at the edge, the update latency is

tupdate,edge
m =

Lupdate
m Cupdate

m

f edge
comp

(15)

where Lupdate
m denotes the hyperspectral data to be processed at the edge in the mth round

when the update algorithm is executed. Cupdate
m denotes the number of CPU cycles to

compute one-bit data when the updating algorithm is executed at the edge.
Similarly, we can obtain the time spent in the mth round when the cloud performs

high-accuracy detection:

tsusp,cloud
m =

Lsusp
m Csusp

m

f cloud
comp

(16)

where Lsusp
m denotes the hyperspectral data to be processed at the cloud in the mth round

when executing the high-precision background suppression algorithm. Csusp
m denotes

the number of CPU cycles for computing one-bit data in the cloud when executing the
high-precision background suppression.

4.2. System Latency Model

Figure 5 shows the computational latency to be considered for the mth round of
computation. To be specific, tsups,cloud

m denotes the time spent for computation at the cloud
in round m, tdetect,edge

m denotes the time spent for real-time detection at the edge in round
m, tcor

m denotes the time spent for data transmission between the cloud and the edge in
round m, and tupdate,edge

m denotes the latency of data updating at the edge in round m. Then,
the total time Tm of the cloud–edge collaborative computation at the mth round can be
expressed as

Tm = max(tdetect,edge
m + tupdate,edge

m , tsusp,cloud
m + tcor

m). (17)

Remote Sens. 2023, 15, 4242 11 of 21

Figure 5. Overview of the system latency model.

5. Experimental Results

This section is organized as follows. The hyperspectral datasets used in the experi-
ments are first introduced in Section 5.1. Section 5.2 evaluates the detection accuracy of
the software version using MATLAB of the proposed CE-RX by comparing the widely
used detectors mentioned above. Section 5.3 evaluates the real-time performance of the
proposed CE-RX by comparing other algorithms.

In this paper, the 3-D and 2-D receiver operating characteristic (ROC) curves [47] and
the area under the curve (AUC) values are used as the evaluation criteria for experimental
results. We used the AUC score of false alarm F and the probability of detection D to
evaluate the performance of the anomaly detection algorithm. The closer the AUC value to
1.0, the better the detection result. Furthermore, we used the AUC score of the thresholds
τ and false alarm to evaluate the performance of background suppressibility. When the
value of the false alarm is 0, it means that no background pixel is mistakenly detected as
an anomaly.

5.1. Dataset Description

To test the effectiveness and feasibility of the proposed algorithm, we selected three
real datasets for comparison purposes.

Real-data1 is a hyperspectral image from San Diego Airport, collected by the airborne
visible-infrared imaging spectrometer (AVIRIS). The image has 224 bands. Its spatial
resolution is 3.5 m per pixel. In the pre-processing stage, we removed the water vapor
bands and some contaminated bands (1–6, 33–35, 94–97, 107–113, 153–166, and 221–224).
Then, 186 available bands were retained in the experiments. The experimental data came
from a small area of 100× 100 in the upper left corner of the overall image, as shown in
Figure 6a. The background part of the area consists of the apron, building roofs, and a
small amount of vegetation. Figure 6b shows the ground-truth map of the real anomalies.
The anomalies are three aircraft on the tarmac and contain 57 pixels.

Real-data2 is a Salinas hyperspectral image collected by the airborne visible-infrared
imaging spectrometer (AVIRIS). The image has 224 bands. Its spatial resolution is 3.7 m
per pixel. In the pre-processing stage, we removed some contaminated bands (108–112,
154–167, 205). Then, 204 available bands of the data were retained in the experiments.
The experimental data came from a small area of 100× 100 in the bottom left corner of
the overall image, as shown in Figure 7a. Figure 7b shows the ground-truth map of the
real anomalies.

Remote Sens. 2023, 15, 4242 12 of 21

(a) 10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(b)

Figure 6. Real-data1. (a) Original image. (b) Ground-truth map.

(a) (b)

Figure 7. Real-data2. (a) Original image; (b) Ground-truth map.

Real-data3 is an urban hyperspectral image acquired over Texas, USA, by the hyper-
spectral data collection experiment (HYDICE) instrument. The image has 210 bands. Its
spatial resolution is 1 m per pixel. In the pre-processing stage, we removed the water
vapor bands and some contaminated bands (1–4, 76, 87, 101–111, 136–153, 198–210). Then,
162 available bands of the data were retained in the experiments. The experimental data
came from a small area of 80× 100 in the upper right corner of the overall image, as shown
in Figure 8a. The background part of the area consists of roads, grass, and trees. Figure 8b
shows the ground-truth map of the real anomalies. The anomalies are cars in the region
and contain 21 pixels.

(a)
10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

(b)

Figure 8. Real-data3. (a) Original image. (b) Ground-truth map.

Remote Sens. 2023, 15, 4242 13 of 21

5.2. Detection Performance

In order to evaluate detection accuracy, we compared the proposed CE-RX algo-
rithm with the following anomaly detection algorithms: CLP-RX algorithm, LRASR algo-
rithm [48], RGAE algorithm [49], LSUNRSOR algorithm [50], and FEBP algorithm [51]. To
test the real-time detection accuracy, we executed these algorithms following the scenario of
capturing and detecting data in real time. The CE-RX algorithm performs one cloud–edge
interaction for every 500 captured pixels at the edge. The simulation environment in the
experiment was a 64-bit system. The CPU was an Intel(R) Core(TM) i5-7300HQ operating
at 2.50 GHz. The system memory was 8 G. The software used for implementation was
MATLAB R2018b.

For the real-data1, the anomalies were three aircrafts. Figure 9 shows the results of
the comparison experiments. Figure 10 plots the ROC curve generated from the results
in Figure 9. Table 2 tabulates the AUC values of (D, F) and (F, τ) for quantitative studies
and analysis, the best detection results are highlighted in bold. It is noticeable that the
CE-RX algorithm has a good detection result. The detection performance of the CE-RX
algorithm is better than all other detection algorithms except slightly lower than the LRASR
algorithm. On the contrary, The CLP-RX algorithm exhibits relatively poor accuracy due to
the limitations of the real-time algorithm. It can be observed that the CE-RX method can
effectively identify anomalies with 0.9974 as the AUC score of (D, F). We observed that the
AUC values of the CE-RX algorithm are 0.0708 higher than the AUC values of the CLP-RX
algorithm. This observation proves that the cloud–edge collaborative approach can greatly
improve the detection accuracy of the algorithm at the edge.

(a) (b) (c)

(d) (e) (f)

Figure 9. Detection performance of different algorithms for real-data1. (a) CLP-RX Algorithm;
(b) LRASR Algorithm; (c) RGAE Algorithm; (d) LSUNRSOR Algorithm; (e) FEBP Algorithm; (f) CE-
RX Algorithm.

Remote Sens. 2023, 15, 4242 14 of 21

(a) (b)

Figure 10. ROC curves obtained by different methods for real-data1. (a) 3D ROC curves; (b) ROC
curves of (F, τ).

Table 2. AUC for the detection algorithms in Figure 9.

Detector AUC(D,F) AUC(F,τ)

CLP-RX (real-time) 0.9225 0.0821
LRASR (non-real-time) 0.9948 0.0786
RGAR (non-real-time) 0.9887 0.0365

LSUNRSOR (non-real-time) 0.9579 0.0737
FEBP (non-real-time) 0.9791 0.0050

CE-RX (real-time) 0.9933 0.0783

In each round of the cloud–edge interaction in the CE-RX algorithm, the lower the
number of pixels uploaded from the edge to the cloud, the larger the number of cloud–
edge interactions. To verify the effect of the number of cloud–edge interactions on the
considered algorithm, we performed four sets of experiments denoted by experiment1,
experiment2, experiment3, and experiment4. In experiment1, the algorithm performs one
cloud–edge interaction for every 2000 pixels captured at the edge. In experiment2, the
algorithm performs one cloud–edge interaction for every 1000 pixels captured at the edge.
In experiment3, the algorithm performs one cloud–edge interaction for every 500 captured
pixels at the edge. In experiment4, the algorithm does not perform cloud–edge interactions.
We compare the detection results of the CE-RX algorithm in three sets of experiments.
The AUC is shown in Table 3. We can see that more cloud–edge interactions lead to
better results.

Table 3. AUC for the four sets of experiments on the real-data1.

Experiment1 Experiment2 Experiment3 Experiment4

AUC 0.9591 0.9757 0.9933 0.9225

Figure 11 shows the detection results of different algorithms on the real-data2. Figure 12
shows the corresponding ROC curves. Table 4 shows the AUC values of all detection
algorithms and the best detection results are highlighted in bold. The proposed algorithm
is the most effective in detecting and has the highest AUC value (0.9842). Based on real-
data2, we also perform four sets of experiments again using the CE-RX algorithm. The
experiments are denoted by experiment1, experiment2, experiment3, and experiment4.
In experiment1, the algorithm performs one cloud–edge interaction for every 2000 pixels
captured. In experiment2, the algorithm performs one cloud–edge interaction for every
1000 pixels captured. In experiment3, one cloud–edge interaction is performed for every
500 pixels captured at the edge. In experiment4, the algorithm does not perform cloud–edge

Remote Sens. 2023, 15, 4242 15 of 21

interaction. Table 5 shows the AUC values of the four sets of experiments. We can still see
that more cloud–edge interactions lead to better results.

(a) (b) (c)

(d) (e) (f)

Figure 11. Detection performance of different algorithms for real-data2. (a) CLP-RX Algorithm;
(b) LRASR Algorithm; (c) RGAE Algorithm; (d) LSUNRSOR Algorithm; (e) FEBP Algorithm; (f) CE-
RX Algorithm.

(a) (b)

Figure 12. ROC curves obtained by different methods for real-data2. (a) 3D ROC curves; (b) ROC
curves of (F, τ).

Remote Sens. 2023, 15, 4242 16 of 21

Table 4. AUC for the detection algorithms in Figure 11.

Detector AUC(D,F) AUC(F,τ)

CLP-RX (real-time) 0.9070 0.0446
LRASR (non-real-time) 0.9826 0.0246
RGAR (non-real-time) 0.9767 0.0115

LSUNRSOR (non-real-time) 0.9753 0.0124
FEBP (non-real-time) 0.9690 0.0062

CE-RX (real-time) 0.9842 0.0348

Table 5. AUC for the four sets of experiments on the real-data2.

Experiment1 Experiment2 Experiment3 Experiment4

AUC 0.9206 0.9538 0.9842 0.9070

The anomalies of real-data3 are multiple cars. Compared to the anomalies of other
datasets, the anomalies of real-data3 take up a relatively smaller proportion of the whole
picture. The CLP-RX real-time algorithm not only has difficulty in detecting larger objects
but also has low detection results for smaller objects. We can observe that the CE-RX
algorithm has a better detection result than other detection algorithms. The AUC values of
all algorithms are given in Table 6 and the best detection results are highlighted in bold.
The results of detection are shown in Figure 13, and the ROC curves are given in Figure 14.
We can see that the AUC value of the CE-RX algorithm is 0.9642, which is higher than
the AUC value of the CLP-RX algorithm. These results prove that the CE-RX algorithm
exhibits higher detection accuracy when hyperspectral images contain anomalies with
small-scale differences.

(a) (b) (c)

(d) (e) (f)

Figure 13. Detection performance of different algorithms for real-data3. (a) CLP-RX Algorithm;
(b) LRASR Algorithm; (c) RGAE Algorithm; (d) LSUNRSOR Algorithm; (e) FEBP Algorithm; (f) CE-
RX Algorithm.

Remote Sens. 2023, 15, 4242 17 of 21

(a) (b)

Figure 14. ROC curves obtained by different methods for real-data3. (a) 3D ROC curves; (b) ROC
curves of (F, τ).

Table 6. AUC for the detection algorithms in Figure 13.

Detector AUC(D,F) AUC(F,τ)

CLP-RX (real-time) 0.8567 0.0540
LRASR (non-real-time) 0.9438 0.0570
RGAR (non-real-time) 0.9311 0.0516

LSUNRSOR (non-real-time) 0.9553 0.0544
FEBP (non-real-time) 0.9590 0.0429

CE-RX (real-time) 0.9642 0.0418

Once again, we perform four sets of experiments as with the previous two datasets.
The experiments are denoted by experiment1, experiment2, experiment, and experiment4.
Table 7 shows the AUC values. We can see that the higher the frequency of cloud–edge
collaboration, the more accurate the CE-RX algorithm will be in detecting anomalies in the
real-data3.

Table 7. AUC for the four sets of experiments on the real-data3.

Experiment1 Experiment2 Experiment3 Experiment4

AUC 0.9362 0.9595 0.9642 0.8567

5.3. Real-time Performance Analysis of Proposed Algorithms

To evaluate the computing latency of our proposed algorithm, we conducted extensive
experiments on a Jetson AGX Orin development board and a cloud server. The Jetson AGX
Orin development board is equipped with a 12-core Cortex-A78 arm processor, a 2048-core
GPU with 64 Tensor Cores, and 32GB RAM. The cloud server is composed of three hosts
equipped with 18 core i9-10980K CPU, 128GB RAM, and 1T disk storage. Table 8 shows
the computational latency of the CE-RX algorithm on the three hyperspectral datasets. In
the experiment, we perform ten cloud–edge interactions. We can see that the latency for
the edge to perform real-time detection is longer than the latency for the edge to upload
the data to the cloud and perform high-accuracy detection, i.e., tdetect,edge

m > tcor
m + tsusp,cloud.

Therefore, the total latency of the CE-RX algorithm Ttotal is the computational latency at the
edge plus the latency for the edge to receive the results from the cloud and perform the
update algorithm:

Ttotal = tdetect,edge
total + tupdate,edge

total
. (18)

Remote Sens. 2023, 15, 4242 18 of 21

Table 8. Computational latency of the CE-RX algorithm.

Hyperspectral Data tcor
total tdetect,edge

total tsusp,cloud
total tupdate,edge

total Ttotal

real-data1 54 ms 87 ms 21 ms 4 ms 91 ms

real-data2 45 ms 85 ms 20 ms 5 ms 90 ms

real-data3 42 ms 79 ms 20 ms 5 ms 84 ms

As shown in Table 8, we know that tdetect,edge
total >> tupdate,edge

total , data updates at the edge
do not affect the real-time performance of the CE-RX algorithm. From Table 9, we can see
that both the CLP-RX and CE-RX algorithms have excellent real-time performance. The
computation latency of the CLP-RX algorithm and the CE-RX algorithm are much smaller
than the computation latency of other algorithms. Although the computation latency of
the CE-RX algorithm is longer than that of the CLP algorithm, the extra time is the latency
of performing the data update at the edge. Therefore, the CE-RX algorithm significantly
improves the accuracy of the detection results at the cost of slightly increasing the overall
computational latency.

Table 9. Computational latency of all algorithms.

Hyperspectral Data Real-Data1 Real-Data2 Real-Data3

CLP-RX (real-time) 0.087 s 0.085 s 0.079 s

LRASR (non-real-time) 202 s 131 s 182 s

RGAR (non-real-time) 436 s 421 s 401 s

LSUNRSOR (non-real-time) 221 s 232 s 212 s

FEBP (non-real-time) 11.2 s 12.9 s 10.1 s

CE-RX (real-time) 0.091 s 0.09 s 0.084 s

To verify the scalability of the CE-RX algorithm, we join the real-data1 to generate data
of 1 GB, 2 GB, 4 GB, and 8 GB, respectively, and performed experiments on the condition that
the CE-RX algorithm performs one cloud–edge interaction for every 500 captured pixels at
the edge. The results are shown in Table 10. It is obvious that the latency increases with the
growth of data size. The latency of updating the algorithm does not increase linearly as the
data volume grows, which results in nonlinear growth of the total running time. In general,
the experiments indicate that the CE-RX algorithm is scalable for larger data.

Table 10. Latency corresponding to different data sizes.

Data Size Latency Latency Ratio

1 GB 34.52 s 1
2 GB 70.11 s 2.03
4 GB 142.64 s 4.13
8 GB 282.81 s 8.19

6. Discussion

In the experiment, the proposed algorithm was compared with the other five algo-
rithms. Experimental results on three real datasets illustrate the advantage of the proposed
CE-RX method. While ensuring real-time performance, the CE-RX algorithm has high
detection accuracy. We again set different numbers of cloud–edge interactions to verify the
effectiveness of detection. We can see that the higher the number of edge interactions, the
higher the accuracy of the CE-RX algorithm will be. If there is no cloud–edge interaction
performed, the CE-RX has the same accuracy as the CLP algorithm.

Remote Sens. 2023, 15, 4242 19 of 21

When performing the cloud–edge interaction, the cloud only needs to send back the
information about the anomalies detected in this round. This makes the latency of network
transmission negligible. In addition, the update algorithm at the edge makes it so that
the edge does not need to recalculate the correlation matrix of all background pixels after
receiving the information of the anomalies. This makes the latency of data updating much
lower. As can be seen from Table 8, the latency for the edge to update is only 6% of Ttotal .
Since the computation latency of the update algorithm is determined by the participating
matrices Ranomalies(m) and R(m), the total computation latency does not change with the
increase of captured data. This means that no matter how much data are captured at the
edge, the update time is constant for each cloud–edge interaction. Therefore, this algorithm
is scalable for larger data. The push-scan spectrometer can capture tens of thousands of
pixels per second. One second to perform a cloud–edge interaction will only result in an
additional 0.5 ms of edge update. This does not affect the overall real-time performance of
the algorithm.

7. Conclusions

In this paper, we propose a hyperspectral anomaly detection algorithm based on
the cloud–edge collaboration called CE-RX. While pixels are captured at the edge, this
algorithm performs real-time anomaly detection on them to obtain a fast result. Then,
the suspicious anomalies are uploaded to the cloud in the edge so that the cloud can
use its vast computing resources to perform highly accurate algorithms on the uploaded
data, find the real anomalies, and send them back to the edge for data updates, so as to
improve the accuracy of the next round of real-time anomaly detection. This represents
a completely innovative approach to anomaly detection in hyperspectral images. Our
experimental results demonstrate that the newly proposed CE-RX algorithm exhibits
higher accuracy compared with existing real-time detection algorithms while ensuring
real-time performance.

Author Contributions: All authors participated in analyzing and writing the paper. Y.W. is the main
author who proposed the methodology, conducted the experiments, and wrote the manuscript. All
authors reviewed and approved the final manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
(62071233, 61971223, 61976117), the Jiangsu Provincial Natural Science Foundation of China (BK20211570,
BK20180018, BK20191409), the Fundamental Research Funds for the Central Universities (30917015104,
30919011103, 30919011402, 30921011209, JSGP202204), in part by the Key Projects of University Natu-
ral Science Fund of Jiangsu Province under Grant 19KJA360001.

Data Availability Statement: The dataset used in this paper can be download from https://github.
com/wycDetection/hyperspectral-dataset/tree/main/dataset.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Zhang, B.; Sun, X.; Gao, L.; Yang, L. Endmember Extraction of Hyperspectral Remote Sensing Images Based on the Ant Colony

Optimization (ACO) Algorithm. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2635–2646. [CrossRef]
2. Zhang, B.; Liu, Y.; Zhang, W.; Gao, L.; Li, J.; Wang, J.; Li, X. Analysis of the proportion of surface reflected radiance in mid-infrared

absorption bands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 7, 2639–2646. [CrossRef]
3. Gao, L.; Du, Q.; Zhang, B.; Yang, W.; Wu, Y. A Comparative Study on Linear Regression-Based Noise Estimation for Hyperspectral

Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 488–498. [CrossRef]
4. Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep learning for hyperspectral image classification: An

overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [CrossRef]
5. Wang, Y.; Chen, X.; Wang, F.; Song, M.; Yu, C. Meta-learning based hyperspectral target detection using Siamese network. IEEE

Trans. Geosci. Remote Sens. 2022, 60, 5527913. [CrossRef]
6. Song, M.; Liu, S.; Xu, D.; Yu, H. Multiobjective optimization-based hyperspectral band selection for target detection. IEEE Trans.

Geosci. Remote Sens. 2022, 60, 5529022. [CrossRef]

https://github.com/wycDetection/hyperspectral-dataset/tree/main/dataset
https://github.com/wycDetection/hyperspectral-dataset/tree/main/dataset
http://doi.org/10.1109/TGRS.2011.2108305
http://dx.doi.org/10.1109/JSTARS.2013.2272633
http://dx.doi.org/10.1109/JSTARS.2012.2227245
http://dx.doi.org/10.1109/TGRS.2019.2907932
http://dx.doi.org/10.1109/TGRS.2022.3169970
http://dx.doi.org/10.1109/TGRS.2022.3176856

Remote Sens. 2023, 15, 4242 20 of 21

7. Chen, J.; Chang, C.I. Background-Annihilated Target-Constrained Interference-Minimized Filter (TCIMF) for Hyperspectral
Target Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5540224. [CrossRef]

8. Chen, Z.; Lu, Z.; Gao, H.; Zhang, Y.; Zhao, J.; Hong, D.; Zhang, B. Global to local: A hierarchical detection algorithm for
hyperspectral image target detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5544915. [CrossRef]

9. Gao, H.; Zhang, Y.; Chen, Z.; Xu, S.; Hong, D.; Zhang, B. A Multidepth and Multibranch Network for Hyperspectral Target
Detection Based on Band Selection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5506818. [CrossRef]

10. Gao, H.; Zhang, Y.; Chen, Z.; Xu, F.; Hong, D.; Zhang, B. Hyperspectral Target Detection via Spectral Aggregation and Separation
Network with Target Band Random Mask. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5515516. [CrossRef]

11. Jia, S.; Jiang, S.; Lin, Z.; Li, N.; Xu, M.; Yu, S. A survey: Deep learning for hyperspectral image classification with few labeled
samples. Neurocomputing 2021, 448, 179–204. [CrossRef]

12. Xie, H.; Chen, Y.; Ghamisi, P. Remote sensing image scene classification via label augmentation and intra-class constraint. Remote
Sens. 2021, 13, 2566. [CrossRef]

13. Liu, S.; Cao, Y.; Wang, Y.; Peng, J.; Mathiopoulos, P.T.; Li, Y. DFL-LC: Deep feature learning with label consistencies for
hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3669–3681. [CrossRef]

14. Li, W.; Du, Q. Collaborative representation for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2014,
53, 1463–1474. [CrossRef]

15. Xie, W.; Zhang, X.; Li, Y.; Lei, J.; Li, J.; Du, Q. Weakly supervised low-rank representation for hyperspectral anomaly detection.
IEEE Trans. Cybern. 2021, 51, 3889–3900. [CrossRef] [PubMed]

16. Jiang, T.; Xie, W.; Li, Y.; Lei, J.; Du, Q. Weakly supervised discriminative learning with spectral constrained generative adversarial
network for hyperspectral anomaly detection. IEEE Trans. Neural Networks Learn. Syst. 2021, 33, 6504–6517. [CrossRef]

17. Reed, I.S.; Yu, X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Trans.
Acoust. Speech Signal Process. 1990, 38, 1760–1770. [CrossRef]

18. Yu, X.; Reed, I.S.; Stocker, A.D. Comparative performance analysis of adaptive multispectral detectors. IEEE Trans. Signal Process.
1993, 41, 2639–2656. [CrossRef]

19. Li, C.; Zhang, B.; Hong, D.; Yao, J.; Chanussot, J. LRR-Net: An Interpretable Deep Unfolding Network for Hyperspectral Anomaly
Detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5513412. [CrossRef]

20. Gao, L.; Sun, X.; Sun, X.; Zhuang, L.; Du, Q.; Zhang, B. Hyperspectral anomaly detection based on chessboard topology. IEEE
Trans. Geosci. Remote Sens. 2023, 61, 5505016. [CrossRef]

21. Wang, M.; Hong, D.; Zhang, B.; Ren, L.; Yao, J.; Chanussot, J. Learning double subspace representation for joint hyperspectral
anomaly detection and noise removal. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5507517. [CrossRef]

22. Horstrand, P.; Díaz, M.; Guerra, R.; López, S.; López, J.F. A novel hyperspectral anomaly detection algorithm for real-time
applications with push-broom sensors. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4787–4797. [CrossRef]

23. Báscones, D.; González, C.; Mozos, D. An FPGA accelerator for real-time lossy compression of hyperspectral images. Remote Sens.
2020, 12, 2563. [CrossRef]

24. Li, C.; Gao, L.; Plaza, A.; Zhang, B. FPGA implementation of a maximum simplex volume algorithm for endmember extraction
from remotely sensed hyperspectral images. J. Real-Time Image Process. 2019, 16, 1681–1694. [CrossRef]

25. Du, Q.; Ren, H. Real-time constrained linear discriminant analysis to target detection and classification in hyperspectral imagery.
Pattern Recognit. 2003, 36, 1–12. [CrossRef]

26. Chang, C.I.; Ren, H.; Chiang, S.S. Real-time processing algorithms for target detection and classification in hyperspectral imagery.
IEEE Trans. Geosci. Remote Sens. 2001, 39, 760–768. [CrossRef]

27. Zhao, C.; Wang, Y.; Qi, B.; Wang, J. Global and local real-time anomaly detectors for hyperspectral remote sensing imagery.
Remote Sens. 2015, 7, 3966–3985. [CrossRef]

28. Chen, S.Y.; Wang, Y.; Wu, C.C.; Liu, C.; Chang, C.I. Real-time causal processing of anomaly detection for hyperspectral imagery.
IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 1511–1534. [CrossRef]

29. Wang, Y.; Chen, S.Y.; Wu, C.C.; Liu, C.; Chang, C.I. Real-time causal processing of anomaly detection. In Proceedings of the
High-Performance Computing in Remote Sensing II. SPIE, Edinburgh, UK, 26–27 September 2012; Volume 8539, pp. 50–57.

30. Zhao, C.; Li, C.; Yao, X.; Li, W. Real-time kernel collaborative representation-based anomaly detection for hyperspectral imagery.
Infrared Phys. Technol. 2020, 107, 103325. [CrossRef]

31. Ndikumana, A.; Tran, N.H.; Ho, T.M.; Han, Z.; Saad, W.; Niyato, D.; Hong, C.S. Joint communication, computation, caching, and
control in big data multi-access edge computing. IEEE Trans. Mob. Comput. 2019, 19, 1359–1374. [CrossRef]

32. Pan, J.; McElhannon, J. Future edge cloud and edge computing for internet of things applications. IEEE Internet Things J. 2017,
5, 439–449. [CrossRef]

33. Premsankar, G.; Di Francesco, M.; Taleb, T. Edge computing for the Internet of Things: A case study. IEEE Internet Things J. 2018,
5, 1275–1284. [CrossRef]

34. Zhang, Y.; Lan, X.; Ren, J.; Cai, L. Efficient computing resource sharing for mobile edge-cloud computing networks. IEEE/ACM
Trans. Netw. 2020, 28, 1227–1240. [CrossRef]

35. Xu, X.; Liu, Q.; Luo, Y.; Peng, K.; Zhang, X.; Meng, S.; Qi, L. A computation offloading method over big data for IoT-enabled
cloud-edge computing. Future Gener. Comput. Syst. 2019, 95, 522–533. [CrossRef]

http://dx.doi.org/10.1109/TGRS.2022.3208519
http://dx.doi.org/10.1109/TGRS.2022.3225902
http://dx.doi.org/10.1109/TGRS.2023.3258061
http://dx.doi.org/10.1109/TGRS.2023.3288739
http://dx.doi.org/10.1016/j.neucom.2021.03.035
http://dx.doi.org/10.3390/rs13132566
http://dx.doi.org/10.1109/JSTARS.2021.3063679
http://dx.doi.org/10.1109/TGRS.2014.2343955
http://dx.doi.org/10.1109/TCYB.2021.3065070
http://www.ncbi.nlm.nih.gov/pubmed/33961574
http://dx.doi.org/10.1109/TNNLS.2021.3082158
http://dx.doi.org/10.1109/29.60107
http://dx.doi.org/10.1109/78.229895
http://dx.doi.org/10.1109/TGRS.2023.3279834
http://dx.doi.org/10.1109/TGRS.2023.3249748
http://dx.doi.org/10.1109/TGRS.2023.3261964
http://dx.doi.org/10.1109/JSTARS.2019.2919911
http://dx.doi.org/10.3390/rs12162563
http://dx.doi.org/10.1007/s11554-017-0679-2
http://dx.doi.org/10.1016/S0031-3203(02)00065-1
http://dx.doi.org/10.1109/36.917889
http://dx.doi.org/10.3390/rs70403966
http://dx.doi.org/10.1109/TAES.2014.130065
http://dx.doi.org/10.1016/j.infrared.2020.103325
http://dx.doi.org/10.1109/TMC.2019.2908403
http://dx.doi.org/10.1109/JIOT.2017.2767608
http://dx.doi.org/10.1109/JIOT.2018.2805263
http://dx.doi.org/10.1109/TNET.2020.2979807
http://dx.doi.org/10.1016/j.future.2018.12.055

Remote Sens. 2023, 15, 4242 21 of 21

36. Xu, X.; Gu, R.; Dai, F.; Qi, L.; Wan, S. Multi-objective computation offloading for internet of vehicles in cloud-edge computing.
Wirel. Netw. 2020, 26, 1611–1629. [CrossRef]

37. Ren, J.; Yu, G.; He, Y.; Li, G.Y. Collaborative cloud and edge computing for latency minimization. IEEE Trans. Veh. Technol. 2019,
68, 5031–5044. [CrossRef]

38. Jia, M.; Cao, J.; Yang, L. Heuristic offloading of concurrent tasks for computation-intensive applications in mobile cloud
computing. In Proceedings of the 2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
Toronto, ON, Canada, 27 April–2 May 2014; pp. 352–357.

39. Zhang, X.; Hu, M.; Xia, J.; Wei, T.; Chen, M.; Hu, S. Efficient federated learning for cloud-based AIoT applications. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 2020, 40, 2211–2223. [CrossRef]

40. Gu, H.; Ge, Z.; Cao, E.; Chen, M.; Wei, T.; Fu, X.; Hu, S. A collaborative and sustainable edge-cloud architecture for object tracking
with convolutional siamese networks. IEEE Trans. Sustain. Comput. 2019, 6, 144–154. [CrossRef]

41. Gamez, G.; Frey, D.; Michler, J. Push-broom hyperspectral imaging for elemental mapping with glow discharge optical emission
spectrometry. J. Anal. At. Spectrom. 2012, 27, 50–55. [CrossRef]

42. Zhang, L.; Peng, B.; Zhang, F.; Wang, L.; Zhang, H.; Zhang, P.; Tong, Q. Fast real-time causal linewise progressive hyperspectral
anomaly detection via cholesky decomposition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4614–4629. [CrossRef]

43. Molero, J.M.; Garzon, E.M.; Garcia, I.; Plaza, A. Analysis and optimizations of global and local versions of the RX algorithm for
anomaly detection in hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 801–814. [CrossRef]

44. Chang, C.; Chiang, S. Anomaly detection and classification for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2002,
40, 1314–1325. [CrossRef]

45. Chen, X.; Gu, C.; Zhang, Y.; Mittra, R. Analysis of partial geometry modification problems using the partitioned-inverse formula
and Sherman–Morrison–Woodbury formula-based method. IEEE Trans. Antennas Propag. 2018, 66, 5425–5431. [CrossRef]

46. Xu, X. Generalization of the Sherman–Morrison–Woodbury formula involving the Schur complement. Appl. Math. Comput. 2017,
309, 183–191. [CrossRef]

47. Chang, C.I. An effective evaluation tool for hyperspectral target detection: 3D receiver operating characteristic curve analysis.
IEEE Trans. Geosci. Remote Sens. 2020, 59, 5131–5153. [CrossRef]

48. Xu, Y.; Wu, Z.; Li, J.; Plaza, A.; Wei, Z. Anomaly detection in hyperspectral images based on low-rank and sparse representation.
IEEE Trans. Geosci. Remote Sens. 2015, 54, 1990–2000. [CrossRef]

49. Fan, G.; Ma, Y.; Huang, J.; Mei, X.; Ma, J. Robust graph autoencoder for hyperspectral anomaly detection. In Proceedings of the
ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada,
6–11 June 2021; pp. 1830–1834.

50. Tan, K.; Hou, Z.; Wu, F.; Du, Q.; Chen, Y. Anomaly detection for hyperspectral imagery based on the regularized subspace
method and collaborative representation. Remote Sens. 2019, 11, 1318. [CrossRef]

51. Ma, Y.; Fan, G.; Jin, Q.; Huang, J.; Mei, X.; Ma, J. Hyperspectral anomaly detection via integration of feature extraction and
background purification. IEEE Geosci. Remote Sens. Lett. 2020, 18, 1436–1440. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11276-019-02127-y
http://dx.doi.org/10.1109/TVT.2019.2904244
http://dx.doi.org/10.1109/TCAD.2020.3046665
http://dx.doi.org/10.1109/TSUSC.2019.2955317
http://dx.doi.org/10.1039/C1JA10241A
http://dx.doi.org/10.1109/JSTARS.2017.2725382
http://dx.doi.org/10.1109/JSTARS.2013.2238609
http://dx.doi.org/10.1109/TGRS.2002.800280
http://dx.doi.org/10.1109/TAP.2018.2854162
http://dx.doi.org/10.1016/j.amc.2017.03.039
http://dx.doi.org/10.1109/TGRS.2020.3021671
http://dx.doi.org/10.1109/TGRS.2015.2493201
http://dx.doi.org/10.3390/rs11111318
http://dx.doi.org/10.1109/LGRS.2020.2998809

	Introduction
	Related Work
	 RX Algorithm
	CLP-RX Algorithm
	Local-RX Algorithm

	Proposed Algorithm
	Cloud–Edge Collaboration Framework
	 Edge Updating Algorithm

	 Time Latency Analysis of the Proposed Cloud–Edge Model
	 Computing Latency Model for the Cloud and for the Edge
	System Latency Model

	Experimental Results
	Dataset Description
	Detection Performance
	Real-time Performance Analysis of Proposed Algorithms

	Discussion
	Conclusions
	References

