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Abstract: Semantic segmentation for urban remote sensing images is one of the most-crucial tasks in
the field of remote sensing. Remote sensing images contain rich information on ground objects, such
as shape, location, and boundary and can be found in high-resolution remote sensing images. It is
exceedingly challenging to identify remote sensing images because of the large intraclass variance and
low interclass variance caused by these objects. In this article, we propose a multiscale hierarchical
channel attention fusion network model based on a transformer and CNN, which we name the
multiscale channel attention fusion network (MCAFNet). MCAFNet uses ResNet-50 and Vit-B/16 to
learn the global–local context, and this strengthens the semantic feature representation. Specifically, a
global–local transformer block (GLTB) is deployed in the encoder stage. This design handles image
details at low resolution and extracts global image features better than previous methods. In the
decoder module, a channel attention optimization module and a fusion module are added to better
integrate high- and low-dimensional feature maps, which enhances the network’s ability to obtain
small-scale semantic information. The proposed method is conducted on the ISPRS Vaihingen and
Potsdam datasets. Both quantitative and qualitative evaluations show the competitive performance of
MCAFNet in comparison to the performance of the mainstream methods. In addition, we performed
extensive ablation experiments on the Vaihingen dataset in order to test the effectiveness of multiple
network components.

Keywords: semantic segmentation; transformer; channel attention module; hybrid structure

1. Introduction

Semantic segmentation assigns semantic labels to each pixel of the image [1]. In the
field of remote sensing, high-resolution remote sensing images provide corresponding data
and information support for the construction of smart cities. However, high-resolution
urban remote sensing imagery contains rich information about ground objects, which leads
to the common phenomenon of large intraclass variance and small interclass variance.
Figure 1 shows the local remote sensing image of Potsdam; the orange boxes display the
importance of capturing multiscale semantic information, and the black boxes illustrate the
difference between small-scale objects. Therefore, extracting useful relevant information
from remote sensing images has become a key issue.

In recent years, remote sensing images have developed great potential for application
in the field of smart city construction. However, traditional image semantic segmentation
of remote sensing images is typically performed by extracting low-level features from the
image. When establishing the corresponding semantic segmentation model, there is a
gap between the artificially designed features and the high-level semantic features, so the
generalizability of the established semantic segmentation model is poor. The interpreted
results of deep-learning-based semantic segmentation algorithms in remote sensing city
images often present lump-like fuzzy boundaries, which do not sufficiently preserve the
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feature information of objects. This leads to the confusion of semantic classifiers and brings
great challenges to the task of semantic segmentation. Effectively segmenting small objects
and improving the interpretation accuracy are still extremely challenging tasks.

Figure 1. The challenge of urban remote sensing image interpretation.

The transformer is a concept proposed by Google in the literature [2]. Since its
birth in 2017, the transformer has made rapid breakthroughs in the NLP field. With the
advancement of research, it also shows great potential in the field of computer vision,
providing novel solutions and achieving good results. Image Transformer [3], released
in 2018, was the first to migrate the transformer architecture to the field of computer
vision. Since 2019, transformer-based visual models have developed rapidly, and many
new attention achievements have appeared. For example, the segmentation transformer
(SETR) [4] uses a transformer encoder to completely replace the CNN backbones, discards
the convolution and downsampling processes, and uses split tasks as sequence-to-sequence
prediction tasks. The detection transformer (DETR) [5] applies the advantages of the
transformer in the field of target detection. In July 2020, Chen et al. [6] proposed the
iGPT model in order to explore the performance of the approach on images, as well as the
performance of unsupervised accuracy. In October 2020, Dosovitskiy et al. [7] proposed
the Vision Transformer model, an image classification scheme that is based entirely on the
mechanism of self-attention, which was the first work using a transformer to substitute
a standard convolution. In January 2021, Esser et al. [8] constructed the vector quantized
generative adversarial network (VQGAN), which combines a transformer and CNN, and it
is the first transformer architecture to generate megapixel images by semantic guidance. It
is worth noting that researchers from Facebook and Berkeley [9] rechecked the design space
and tested the limits that pure ConvNet can reach, indicating that the performance of a
convolutional neural network is no less than that of a visual transformer, while maintaining
the simplicity and effectiveness of the standard ConvNet.

Therefore, given the difficulty of identifying different scales in remote sensing images,
we propose a hybrid network structure based on a transformer and CNN, which makes
full use of semantic feature information at different scales. In the decoder module, a variety
of effective blocks is applied to study an urban scene with complex surface features based
on a CNN. The following are this paper’s main contributions:

(1) We combine the ResNet-50 and a transformer hybrid model to improve the current
mainstream semantic segmentation network structure, and the proposed global–local
transformer block models the spatial distance correlation in the image while maintain-
ing the hierarchical characteristics.

(2) We propose a channel attention module decoder (CAMD). In the module, a pooling fu-
sion module is designed to enrich the feature expression of the network. We evaluated
the efficiency of each part of the decoder module through ablation research.

(3) We added a fusion module to optimize the structure of the hybrid model, merge
feature maps from different scales, and improve semantic representation of the
underlying features.
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2. Related work
2.1. Methods for Semantic Segmentation Based on Deep Learning

Deep learning [10] is a new research direction in machine learning in recent years. The
field of remote sensing image interpretation has gradually implemented deep learning
algorithms to deal with problems that were difficult to solve by traditional machine learning
methods. At present, the mainstream deep semantic segmentation networks include three
forms: a network based on a spatial pyramid structure, a multibranch network, and
an encoder–decoder network. These three networks can handle problems in multiscale
semantic information extraction and output resolution degradation.

The network based on the spatial pyramid structure uses the pyramid structure
to capture the scale semantic information. This kind of network introduces numerous
branches to reference the network’s end, and each branch corresponds to a fixed scale.
For example, PSPNet [11] generates input with different resolutions through an adaptive
average pooling operation. PANet [12] changes the input feature map’s resolution through
a convolutional operation with various core sizes and step sizes. DeepLab [13,14] proposes
the atrous spatial pyramid structure (ASPP), which fixes the input resolution of each branch
of the pyramid structure and introduces convolutional layers with different expansion rates
to expand the network’s receptive field. DensAspp [15] improves the receptive field of the
pyramid structure in DeepLab by introducing dense connections, making the structure
suitable for large-resolution pictures.

The multibranch network sends the input image into multiple branches, and each
branch has a different output resolution. For example, icnet [16] uses two spatial branches
to capture small-scale targets. Reference [17] uses the branches with higher output reso-
lution to generate a proportional fraction map, which optimized the spatial information
of low-resolution branches. Bisenet [18] proposes a lightweight branch with high output
resolution and introduces the attention mechanism into the fusion process of different
branches, which greatly improves the network speed while maintaining the network accu-
racy. By combining the shallow characteristics of many branches, Fast SCNN [19] creates a
multibranch network, which considerably reduces the amount of calculation consumed on
the high-resolution output branches.

The encoder–decoder network gradually integrates the high-dimensional feature map
into the low-dimensional feature map to improve the resolution of the output. At the
same time, different levels of feature maps have different resolutions. Integrating them
can enable the network to capture semantic information of different scales. Therefore, the
encoder–decoder network is an effective method to address resolution degradation and
multiscale complications. The first deep semantic segmentation network, FCN [20] is a
famous encoder–decoder network. It generates a layer-hopping connection structure to
integrate high-dimensional and low-dimensional feature maps. On this basis, U-Net [21]
proposes a more efficient layer-hopping connection structure, which realizes the fusion of
different feature maps with higher accuracy. SegNet [22] records the pooled index in the
encoding process and uses the pooled index to supervise the decoding process, making
the decoding process more standardized. Refinenet [23] introduces a large number of
optimization modules to optimize the feature map fusion results, which could increase the
information capture ability of the fused feature map.

Compared with the above two networks, the encoder–decoder structure does not need
to change the reference framework and draw additional branches to obtain small-scale
semantic information. It needs only to properly optimize the semantic feature maps at
different levels on the basis of the reference network. Therefore, this approach is best suited
to the domain of semantic segmentation in remote sensing.

Although the encoder–decoder network has great advantages in the field of semantic
segmentation, the existing studies have not found an accurate optimization and fusion
method for high- and low-dimensional feature maps. Therefore, improving the optimal fu-
sion efficiency of high- and low-dimensional feature maps is a bottleneck in the application
of encoder–decoder networks.
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2.2. Methods for Semantic Segmentation Based on Transformers

For image problems, convolution has a natural inherent bias translation of equivalence
and locality. The transformer obviously does not have these advantages, but its core self-
attention operation can obtain a large range of global information, which has obvious
advantages for the information extraction range of images. The reasons for the rapid
development of the transformer can be attributed to its strong ability to learn long-distance
dependencies, multimodal fusion ability, and more interpretable models.

Therefore, many segmentation algorithms take ViT as the backbone network, with
Segmenter [24], Segformer [7], and Swin Transformer [25] as typical representatives.
Strudel et al. [24] proposed a converter model for semantic segmentation based on the
research results from ViT. Segment adopts the ViT model structure in the coding stage,
divides the image into blocks, performs a linear mapping, and outputs the embedded
sequence after being processed by the encoder. In the decoding stage, learnable category
embedding is introduced, and the output of the encoder and category embedding are sent
to the decoder, which obtains the class label. Xie et al. [7] proposed SegFormer, a simple,
effective, yet powerful semantic segmentation framework. SegFormer uses a hierarchi-
cal feature representation method that combines a transformer with a light multilayer
perceptron (MLP). Swin Transformer [25] uses a multi-stage design similar to the convolu-
tional neural network, and each stage has a different resolution of the feature map. This
mechanism of using a local window attention fully proves that convolution, a method of
extracting local feature information, can play its role.

In summary, the transformer has proven to be more powerful than a CNN in feature
extraction in semantic segmentation. However, during the semantic segmentation test, the
resolution of the picture is not fixed. Its requirements for pixel classification and contour
details are meticulous. Transformer-based semantic segmentation methods have poor
effects in processing image details. Therefore, more research is needed to build an effective
transformer structure and combine it with the current CNN model.

3. The Proposed Method

In this section, we elaborate the method for the semantic segmentation of high-
resolution images that combines the hybrid transformer and CNN encoder model. In
Section 3.1, we describe the principle and network structures of the hybrid model based
on the transformer and ResNet-50. In Section 3.2, we describe the structure of the CAMD
module in the CNN-based decoder. Finally, the overall design of our network is described
in Section 3.3.

We propose a multiscale channel attention fusion network (MCAFNet) in the context
of the semantic segmentation of remotely sensed images. The framework of the MCAFNet
is shown in Figure 2. The overall structure of the MCAFNet follows an encoder–decoder
structure. A remotely sensed image of an urban area has rich spectral information and
texture structure and irregular ground object boundaries, and these characteristics require
a higher feature extractor. Therefore, in the encoder part, we used the hybrid model of a
CNN and a transformer to extract the multilayer features of the image and optimize the
structure of the transformer block. When facing the decoder part of the MCAFNet, the
channel attention decoder module is introduced to learn the complex relationship between
high- and low-dimensional semantic features. The fusion module is used to improve the
fusion efficiency.
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Figure 2. Overall structure diagram of the MCAFNet.

3.1. CNN-Transformer Hybrid as Encoder

The encoder module, which is presented in Figure 3, is designed as a hybrid network
model of ResNet-50 and Vit-B/16 [7]. The ResNet-50 convolutional layer is used to enhance
the expression of the local context information. The linear multihead self-attention of the
transformer module is used to capture the global context information of urban remote
sensing images.

Figure 3. The encoding part structure of the MCAFNet.

We first cut the input remote sensing image x into fixed size patches {x = [x1, · · · , xN ] ∈
R(N×P2×C)} for feature extraction, where N = H ×W/P2 is the number of image patches
and C is the number of slice channels. Then, we used ResNet-50 to perform preliminary
semantic feature extraction on the patch. We flattened each patch into a one-dimensional
vector {X0 = [EX1 , · · · , EXN ] ∈ RN×D, E ∈ RP2C} and, then, performed a linear projection
to produce a series of patch embeddings to retain low-dimensional semantic feature in-
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formation. Finally, we modeled the global image context information based on position
embedding in the transformer, which perfectly removes the dependence on convolution.

Specifically, inspired by Wang et al. [26], we introduced convolutional groups to extend
the multihead attention module. The specific structure is shown in Figure 4b; it adds a
convolutional group branch to extract the local features of the image, while retaining the
transformer’s self-attention mechanism as the global feature extraction branch. In addition,
we used batch normalization to solve the variable shift problem in transformer training,
accelerate the convergence rate of the model, and resolve the overfitting problem.

Figure 4. Optimization example of the transformer block. (a) is the basic block, and (b) is the
optimized block.

Figure 5 shows the combination design idea of the module’s convolution and self-
attention. In order to obtain high- and low-level semantic information at the same time, we
processed one part of the input image as a one-dimensional sequence based on the QKV
mechanism, and the other part recovers from the sequence the two-dimensional feature
map for convolution processing and, finally, splices according to the channel dimensions to
output feature vectors with rich semantic information.

Figure 5. Specific structure design of the global–local attention module.

The global branch deploys the multihead self-attention to capture the global context,
and the local branch uses two parallel convolutional layers with core sizes of 3 and 1 to
extract the local context. In the transformer, the self-attention mechanism is represented
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by a linear layer of three points mapped to an intermediate layer. The QKV mechanism is
calculated as follows:

Attention(Q, K, V) = so f tmax(
QKT
√

dK
)V (1)

Based on the QKV mechanism of self-attention, in this paper, we combined the deep
and shallow semantic features of the input semantic features through weighted fusion,
which calculates the correlation between the deep semantic features and the other shallow
features in the transformer encoder.

We used the encoded feature vector corresponding to the deep feature map as the
query and the value of the multihead attention mechanism and used the encoded feature
vector corresponding to the shallow feature map as the key to perform attention fusion.
Then, we multiplied the fusion attention map by the encoded feature vector corresponding
to the deep feature map, which obtains Attention(Q, K, V) through residual connections
and layer normalization. Finally, more precise semantic features are output through the
feed-forward network.

3.2. CNN-Based Decoder

As is shown in Figure 6, the process of the MCAFNet interpretation of urban remote
sensing images can be summarized as follows: information encoding, information opti-
mization, and information fusion. In addition, a channel attention module is added to
adjust the weight of semantic features. Inspired by Ma et al. [27], we added a pooling
fusion module (PFM) to enrich the feature expression of remote sensing image semantic
information. Its specific structure is shown in Figure 7.

Figure 6. Three steps to decode multiscale semantic information.

Figure 7. Design motivation and detailed structure of the PFM. (a) is the design motivation of PFM,
and (b) is the specific structure of PFM.
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Figure 7a shows the design motivation for the PFM. We materialized the semantic
feature maps of six categories of objects and found that the requirements for high-resolution
and high-level semantic segmentation contradict the design of convolutional networks. The
broken lines with different fluctuations are used to represent the low-dimensional feature
map and the high-dimensional feature map after upsampling. Intraclass differences can
be shown by discounting small fluctuations, and the differences between classes can be
represented by large discounted fluctuations. When they are merged along the spliceosome
of the channel dimension, the high- and low-dimensional feature maps of each location are
not equally effective, and there are uneven spatial dimensions. Simple upsampling cannot
solve the semantic gap problem.

Figure 7b shows the specific structure of the PFM. The operation core of the pooling
fusion module is to embed the local attention information in the high-dimensional semantic
features of remote sensing images into the low-dimensional semantic features. In this
manner, low-dimensional features can be fused to sense the field context information, while
this original spatial information will not be lost. First, the average pooling layer is used to
optimize the high-dimensional feature map, retain the background information, and obtain
the channel attention vector. Then, we reused a 1× 1 convolutional layer encoder of each
channel weight vector that unifies the number of high- and low-dimensional feature map
channels. Finally, we extracted the local attention feature map Zc from high-dimensional
semantic features. The calculation formula is as follows:

Zc =
1

hpwp

hp

∑
i=1

wp

∑
j=1

xc(i, j) (2)

where hpwp denotes the split window size of the average pooling operation and xc repre-
sents a pixel from the c channel.

On this basis, we set the extracted high-dimensional feature map as ZH ∈ RCh×Hh×Wh ,
and set the original low-dimensional feature map as Xl ∈ RCl×Hl×Wl . Based on the
move flip bottleneck convolutional operation, we generated attention maps for the low-
dimensional features Ml [28] by transformation. The calculation formula is as follows:

Ml = Fu{σ[Hlδ(HrZh)]} (3)

where σ and δ stand for the sigmoid and ReLU functions. A dimension-reduction convolu-
tion of 1× 1 with the reduction ratio r is represented by Hr [28]; Hl adjusts the number of
channels to match Xl ; Fu is the upsampling operation. In addition, we added a residual
design to emphasize the importance of low-dimensional features. The augmented features
are computed as follows:

Bl = Xl + Xl Ml (4)

Finally, the PFM outputs feature maps with both precise semantic and spatial information.
The attention mechanism can greatly improve the information capture ability of feature

maps. Through the observation of urban remote sensing images, it was found that there
are not too many irregular boundaries between adjacent objects in the image, and there
was less detail information in the image, making the spatial information of high- and
low-dimensional feature maps more accurate. Therefore, this paper used the channel
attention mechanism in the soft attention mechanism and did not introduce the spatial
attention branch to optimize the spatial information of low-dimensional feature maps.
Therefore, we designed the channel attention decoder by combining the channel attention
module and the PFM. Figure 8 shows the specific structure of the channel attention module
decoder (CAMD).

First, we improved the semantic and spatial information acquisition ability of the
MCAFNet based on the channel attention module (CAM). Then, we used upsampling
and a 3× 3 convolutional operation the further optimize and unify the resolution and
channel number of the redefined feature map. Finally, the PFM is used to emphasize
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the underlying feature information in the key high-dimensional features and filter the
background information, restore the pixel position of the target category, and output the
enhanced feature information.

Figure 8. Specific structure of channel attention module decoder.

3.3. Network Architecture

Inspired by Peng et al. [29], we took the output feature maps of the hybrid model as
the optimization targets, in order for the network to be able to capture semantic information
for three different scales. The characteristic images of Output 1 and Output 2 have a large
resolution, which makes them more sensitive to small-scale targets in urban remote sensing
images. Therefore, they are the most-important optimization objectives of the network. The
overall network structure of the hierarchical encoding and decoding network is shown in
Figure 9.

Figure 9. Each module of the network and its overall network structure. (a) Channel attention
optimization module network structure, (b) convergence module network structure, (c) infor-
mation fusion module network structure, (d) overall network structure, and (e) output module
network structure.
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A transformer is more suitable for extracting global image information and has a
limited ability to capture local semantic information. Directly fusing its intermediate
feature map to obtain multiscale semantic information leads to poor segmentation results.
Therefore, before fusing the multilevel feature maps, we added a 3× 3 convolutional layer
combined with BN and ReLU to the front-end of the channel attention branch so that it has
the function of unifying the number of output channels, which optimizes the feature maps
of each dimension, especially low-dimensional feature maps. We assumed that the feature
map Fin ∈ RC×h×w is the input of the channel attention mechanism and Mc ∈ RC×1×1 is
the channel attention mask. The calculation process of the output feature map Fcout after the
channel attention mechanism optimization is as follows. The improved channel attention
branch is shown in Figure 9a.

Fcout = Flow
⊗

MC (5)

where
⊗

denotes multiplication by elements. However, the network is still unable to
extract accurate small-scale semantic information based on the improved channel attention
branch. Therefore, after using the channel attention branch to optimize the feature maps of
each dimension, we continued to use the pooling fusion module of the CAMD to optimize
the low-dimensional feature maps. The specific fusion module structure used in this article
is illustrated in Figure 9b.

The fusion module that we adopted has two input feature maps Fcout and Fhigh. The res-
olution of the high-dimensional feature map is half of the resolution of the low-dimensional
feature map. This setting limits the information spread between the two feature maps,
which is convenient for information fusion. The fusion module first uses the bilinear
interpolation operation UP(·) so that the resolution of the high-dimensional feature map is
consistent with the low-dimensional feature map. Thereafter, we adopted a 3× 3 convolu-
tional layer CV3×3 (·) combining BN and ReLU to optimize the high-dimensional feature
maps after upsampling. Finally, the optimized high- and low-dimensional feature maps are
aggregated through the concat operation C (· , ·), and the aggregation is optimized using
a 1× 1 convolutional layer CV1×1 (·) that combines BN and ReLU to generate the output.
The process of realizing the entire fusion module can be expressed as follows:

Fc f out = CV1×1(C(Flow, CV3×3(UP(Fhigh)))) (6)

Through the fusion module, the low-dimensional feature map obtains more abstract
information, and its ability to capture semantic information is also significantly improved.
In addition, the fusion module has a simple structure, which quickly improves the ability
of low-dimensional feature maps.

We introduce the channel attention module and fusion module to optimize the feature
maps of each dimension, the feature maps of each dimension are simultaneously sent to the
information fusion module shown in Figure 9c. This module uses cascade operations to fuse
the characteristics of different scales, optimizes the fusion result with a 1× 1 convolutional
layer combining BN and ReLU, and finally, outputs a feature map that captures multiscale
semantic information.

The specific MCAFNet architecture is illustrated in Figure 9d. First, we used a hybrid
network model to extract global and local features from remotely sensed imagery. Then,
the channel attention branches were used to optimize the feature maps from different levels
within the network to improve their ability to capture semantic information. Next, the
feature maps of Output 1 and Output 2 are sent to the same fusion module, and the feature
maps of Output 2 and Output 3 are sent to another fusion module to greatly improve the
ability of the low-dimensional feature map to capture small-scale semantic information.
Unlike encoder–decoder networks, our network does not introduce the information of
Output 3 to optimize Output 1 in the decoding process, which avoids the impact of the
information gap on the optimization efficiency of Output 1. After optimizing the feature
maps of each dimension, they are upsampled at the same time to make them have the same
resolution as Output 1, and they are input into the information fusion module, which can
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improve the ability of capturing semantic information by output feature maps. Finally,
the output result of the information fusion module is processed by the output module to
generate the final network output feature map, as shown in Figure 9e.

4. Experiment Setup
4.1. Datasets and Evaluation Metrics

All the data needed for repeating the experiments described in the paper are available
at https://www.isprs.org (accessed on 10 April 2022). The dataset includes two sub-
datasets: the ISPRS Vaihingen and Potsdam 2D semantic segmentation datasets, which
correspond to two high-resolution urban remote sensing images of Vaihingen and Potsdam
in Germany. The ground objects in the image are marked and distinguished with bright
colors, rich ground structures, and representative categories and are suitable for verifying
the generalization and robustness of semantic segmentation models. According to the
experimental results officially given by ISPRS, generally, only the classification accuracy of
the first five categories is evaluated. Therefore, we conducted ablation and interpretation
experiments based on them.

Since the image resolution of the experimental dataset is very high, it cannot be directly
sent to the GPU for training on the network. We cut the tif image into nonoverlapping
blocks to produce 10,000 images, each with a size of 256× 256 as the training set and test
set. The image as rotated, flipped, tilted, translated, elastically transformed, perspective,
cropped, and zoomed to complete the expansion of the dataset. Figure 10 shows some
examples of the data augmentation.

We calculated the confusion matrix of these datasets and extracted the overall accuracy
(OA), the mean F1-score, and the mean intersection over union (MIoU) [30] of each class in
order to assess the semantic segmentation results. The confusion matrix was obtained by
comparing the segmentation result of the predicted output with the labeled image. The
formula for the calculation is:

CM =


c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
cn1 cn2 · · · cnn


The definitions of the relevant evaluation indicators are shown in the following formulas:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

OA =

n
∑

i=1
cii

n
∑

i=1

n
∑

j=1
cij

(9)

F1 = 2 · Precision · Recall
Precision + Recall

(10)

MIoU =
1
n

n

∑
i=1

cii
n
∑

i=1
cij +

n
∑

j=1
cji + cii

(11)

https://www.isprs.org
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Figure 10. Examples of experimental dataset enhancements. (a) is the reference image, and (b–f) is
examples of multiple enhanced operations based on opencv.

4.2. Implementation Details

We used Python 3.6 and the open-source deep learning framework PyTorch for the
experiments in this paper. The optimization algorithm we adopted is the random gradient
descent algorithm with momentum equal to 0.9 and weight attenuation equal to 0.0005. In
order to train the proposed model on both datasets, the number of iterations was fixed at
15,000. Some experimental parameter settings were as follows: the batch size was set to six;
the initial learning rate was set to 0.01; the initial learning rate of the encoder in the network
was 0.005. The image was randomly scaled during the training process to be between 0.5-
and 2-times higher than the original resolution. At the same time, the image was randomly
flipped horizontally to increase the robustness of the model. On this basis, the input image
was cropped and padded to a 224× 224 resolution rate to unify the resolution in each batch
of training data.

The skewed distribution of ground objects in remote sensing image sample sets leads
to class imbalance. Inspired by D. Eigen et al. [31], we introduced a focal loss function
to make the model focus on complex and difficult samples. The definition of the loss
function is:

MFB_Focalloss = −
1
N

N

∑
n=1

C

∑
c=1

wc · l(n)c (1− p(n)c )2 · log(p(n)c ) (12)

where N represents the number of samples of a minibatch, C represents the number
of categories, wc represents the weight corresponding to category c, l(n)c represents the
true label corresponding to sample n, and p(n)c represents the probability of sample n for
category c.

5. Experiments And Results
5.1. Result Display

To confirm the efficiency of our approach, we visualize the results of the model
segmentation on the ISPRS dataset, as shown in Figures 11 and 12. The segmentation
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results of our proposed network model are almost close to the label values, and the
interpretation effect is outstanding in the high-resolution urban remote sensing scene
with a dense distribution of ground objects. The boundary of the segmentation results of
different types of ground objects is smooth and accurate, and the confusion of classification
rarely occurred.

Figure 11. The segmentation results of the MCAFNet on the Vaihingen dataset.

Figure 12. The segmentation results of the MCAFNet on the Potsdam dataset.



Remote Sens. 2023, 15, 361 14 of 21

5.2. CAM Visualization Analysis

We took the output feature map of the three stages in the MCAFNet encoding part
as the optimization goal. According to the change of the resolution of the output feature
map, we dynamically adjusted the weight of each channel, so that the CAMD can better
optimize the small-scale target. To make the effect more intuitive, we visualize the heat
map of the attention mechanism of three stage, as shown in Figure 13. The weight of small
target features increases with the deepening of the process, which makes the model more
sensitive to small-scale targets.

Figure 13. Heat map of small target objects in different stages.

5.3. Architecture Ablation Study

Comprehensive ablation experiments were designed to analyze the efficiency of every
part in the MCAFNet. The influence of each module of the network is shown in Table 1,
and the improvement effect of the overall and local remote sensing images is shown in
Figure 14. It can be seen from Table 1 that different modules of the MCAFNet improved
the segmentation performance. However, the performance gain of the transformer and
FM is relatively marginal. This is because transformer applications in computer vision
are less compatible with urban remote sensing scenes, and the improvement of semantic
segmentation accuracy in multi-category scenes is limited. The effect will be obvious if it
is combined with the CAMD modules. FM has a simple structure and a small amount of
calculation, which can increase the network depth of low-dimensional feature maps, so
as to improve the ability of low-dimensional feature maps to capture small-scale targets.
It is mainly for the optimized high- and low-dimensional feature maps, which are placed
after the CAMD. If a feature map does not go through the channel attention optimization
branch, even after FM optimization, this limits the accuracy of the segmentation due to the
sufficient depth of the baseline network.

Table 1. The influence of each module on the MCAFNet’s performance.

Transformer CAMD FM Mean F1 (%)

MCAFNet

× × × 81.24√
× × 83.25√ √

× 85.46√
×

√
83.78√ √ √
88.41
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Figure 14. The improvement effect of the overall and local remote sensing images.

(1) Baseline network:

In order to evaluate the performance improvement brought by the architecture in the
CNN transformer hybrid as the encoder, we carried out visual analysis on the attention map
of different ground object categories for the models before and after the transformer was
removed, as shown in Figure 15. The upper row represents the attention map of the figure
category of the CNN transformer hybrid model, and the lower row represents the attention
map of the category after the transformer is removed. Through comparison, it can be
clearly seen that the CNN transformer structure plays an important role in distinguishing
the semantic features of different kinds of ground objects when interpreting ground objects.
In the process of feature reconstruction, more attention is paid to the pixels of the same
category. After the transformer is removed, the model is relatively seriously interfered
with by the features of other categories when interpreting a single category of ground
objects, which effectively proves that the CNN transformer structure can extract global–
local context feature information and improve the segmentation accuracy of multiple types
of ground objects.

Figure 15. The effect of baseline network on the remote sensing semantic segmentation results. (a) is
the input image and ground truth, and (b–f) are different types of surface feature attention maps.

(2) Channel attention optimization module:

In the ablation experiment, the channel attention decoder was removed, and only the
front-end convolutional layers were kept. At this time, the mean F1-score of the network
dropped from 88.41 to 83.78, indicating that the channel attention decoder module plays
a very large role in remote sensing scene segmentation. Figure 16 shows the effect of the
CAMD on the remote sensing semantic segmentation results.
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Figure 16. The effect of the CAMD on the remote sensing semantic segmentation results.

(3) Fusion module:

To test the gains in performance brought by the fusion module to the network, we re-
moved it from the network and tested the change in network performance. After removing
it, the mean F1-score of the network decreased from 88.41 to 85.46, which fully proved the
importance of the fusion module. From the visualization results shown in the figure, the
fusion module increased the network depth of the low-dimensional feature map, which
improved the ability of the low-dimensional feature map to capture small-scale targets, and
it can efficiently optimize the segmentation results of small-scale targets. Figure 17 shows
the effect of the FM on the remote sensing semantic segmentation results.

Figure 17. The effect of the FM on the remote sensing semantic segmentation results.

(4) Advanced contrast:

Compared to the performance of U-Net, SegNet, PSPNet, HRNetV2 [32], DeepLab
V3+ [33], TransUnet [34], SegFormer, Inception-ResNetV2 [35], and Swin Transformer, the
performance of our MCAFNet model in urban remote sensing image interpretation was
significantly improved. In Table 2, we provide four test-set-based assessment indices for
various models. Compared with the mainstream semantic segmentation model, our model
achieved greater improvement in various indicators.
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Table 2. The metrics (%) of the semantic segmentation models in the testing phase.

Method Overall Accuracy Recall Mean F1 MIoU

U-Net 87.5 83.6 82.7 81.2
SegNet 89.4 86.9 86.7 83.6
PSPNet 89.7 87.1 86.9 84.6

HRNetV2 87.2 84.1 83.2 81.4
DeepLab V3+ 89.8 87.0 86.7 85.2

TransUnet 90.1 87.2 87.3 86.2
SegFormer 89.5 86.8 87.1 85.9

Inception-ResNetV2 88.1 86.5 86.4 85.5
Swin Transformer 90.2 87.3 87.9 87.3

MCAFNet 90.8 87.9 88.4 88.2

To prove the superiority of the method in remote sensing scenes, based on the same
experimental conditions, comparison experiments were carried out from local small-scale
object segmentation and whole remote sensing scene interpretation. Some visualization
results on Vaihingen and Potsdam are shown in Figures 18 and 19. The mean F1-score of
the different models is shown in Tables 3 and 4.

Figure 18. Semantic segmentation results on Vaihingen. (a1,a2) Original image, (b1,b2) ground truth,
(c1,c2) U-Net, (d1,d2) SegNet, (e1,e2) PSPNet, (f1,f2) HRNetV2, (g1,g2) DeepLab V3+, (h1,h2) Tran-
sUnet, (i1,i2) SegFormer, (j1,j2) Inception-ResNetV2, (k1,k2) Swin Transformer, and (l1,l2) MCAFNet.
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Figure 19. Semantic segmentation results on Potsdam. (a1,a2) Original image, (b1,b2) ground truth,
(c1,c2) U-Net, (d1,d2) SegNet, (e1,e2) PSPNet, (f1,f2) HRNetV2, (g1,g2) DeepLab V3+, (h1,h2) Tran-
sUnet, (i1,i2) SegFormer, (j1,j2) Inception-ResNetV2, (k1,k2) Swin Transformer, and (l1,l2) MCAFNet.

The performance of these mainstream semantic segmentation networks may be related
to their own structure. There are many convolutional layers and pooling layers with steps
in the networks, but the convolution lacks an overall understanding of the image itself;
moreover, it cannot model feature dependence and does not dynamically adapt to changes
in the input. The networks performed poorly in capturing the semantic information of
different scales and processing the spatial output resolution of the network. However, we
applied a hybrid model network architecture that can reduce the influence of the convo-
lutional operation. It also better integrates semantic information and spatial information
through the attention module to optimize the segmentation accuracy of urban features.

Table 3. Performance of ground objects interpreted by the different models on the Vaihingen dataset.

Method #Param Building Car Low_veg Imp Tree GFLOPs

U-Net 118 M 88.2 75.2 80.2 86.9 85.4 135.4
SegNet 104 M 90.1 84.2 81.7 90.5 86.8 82.9
PSPNet 121 M 91.2 85.7 82.9 91.1 86.4 20.5

HRNetV2 40 M 90.8 76.8 80.4 87.5 86.5 51.5
DeepLab V3+ 223 M 91.7 81.4 82.1 88.9 87.6 72.3

TransUnet 257 M 92.3 85.1 83.2 89.7 87.1 112.4
SegFormer 246 M 91.1 81.3 81.5 86.9 86.9 88.7

Inception-ResNetV2 153 M 90.7 84.9 82.5 89.1 86.7 98.5
Swin Transformer 238 M 92.4 85.5 84.1 91.3 87.2 131.4

MCAFNet 334 M 93.6 86.4 84.9 92.6 88.1 164.2
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Table 4. Performance of ground objects interpreted by the different models on the Potsdam dataset.

Method #Param Building Car Low_veg Imp Tree GFLOPs

U-Net 114M 87.2 76.2 80.8 86.2 84.6 123.5
SegNet 97M 89.4 83.6 82.3 90.1 85.9 80.5
PSPNet 114M 90.3 84.7 81.9 89.6 85.4 16.1

HRNetV2 38M 91.2 77.8 80.1 86.9 85.6 43.8
DeepLab V3+ 207M 91.4 80.9 81.8 88.2 87.2 62.7

TransUnet 231M 91.8 84.6 82.8 89.1 86.7 98.7
SegFormer 220M 90.7 81.1 81.1 86.4 86.3 81.2

Inception-ResNetV2 141M 90.1 83.9 80.9 87.7 85.5 87.3
Swin Transformer 217M 91.6 85.1 83.1 90.4 87.4 108.7

MCAFNet 320M 92.4 86.1 83.9 91.3 88.3 153.3

6. Discussion

The MCAFNet model we proposed effectively reduces the probability of the mis-
classification of ground objects in the interpretation of urban remote sensing images and
improves the accuracy by integrating low-level semantic features, such as the shape and
boundary of ground objects and the high-level semantic information of ground object
categories. Two factors ensure the superiority of the model. First, the MCAFNet model
realizes the structural innovation in the encoder part and fully combines the advantages
of the CNN and transformer when processing semantic segmentation tasks. Second, the
proposed network adopts a pooling fusion module in the decoder section. This elaborate
design alleviates the information gap and improves the utilization of low-dimensional
feature maps. However, the parameters of our model are relatively large, and how to better
simplify the transformer structure and combine the advantages of CNNs requires further
exploration.

7. Conclusions

We proposed the MCAFNet to realize fast and high-precision semantic segmentation
of remote sensing images. The designed network structure successfully integrates the ad-
vantages of the transformer and CNNs. Furthermore, we used a channel attention decoder
to emphasize the key areas, especially the small-scale target semantic information. The
research of our method realizes the robustness and generalization of the model. However,
in exchange for high accuracy, the proposed model relies on a large amount of computation,
and the CAMD is mainly aimed at the feature extraction of small-scale objects. Its perfor-
mance is not good when dealing with large-scale target objects. At the same time, there
are far more than three bands available in the remote sensing task of image segmentation,
and the DSM in the remote sensing image can be used for auxiliary segmentation. This
information was not used in this paper. Therefore, future research needs to consider how
to reduce the amount of computation of the encoding part, further improve the proposed
CAMD to focus on multi-category and large-scale feature extraction, and utilize multiple
band information of urban remote sensing images.
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