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Abstract: Due to the expanding population and the constantly changing climate, food production
is now considered a crucial concern. Although passive satellite remote sensing has already demon-
strated its capabilities in accurate crop development monitoring, its limitations related to sunlight
and cloud cover significantly restrict real-time temporal monitoring resolution. Considering synthetic
aperture radar (SAR) technology, which is independent of the Sun and clouds, SAR remote sensing
can be a perfect alternative to passive remote sensing methods. However, a variety of SAR sensors
and delivered SAR indices present different performances in such context for different vegetation
species. Therefore, this work focuses on comparing various SAR-derived indices from C-band and
(Sentinel-1) and X-band (TerraSAR-X) data with the in situ information (phenp; pgy development,
vegetation height and soil moisture) in the context of tracking the phenological development of corn,
winter wheat, rye, canola, and potato. For this purpose, backscattering coefficients in VV and VH
polarizations

(
σ0

VV , σ0
VH), interferometric coherence, and the dual pol radar vegetation index (DpRVI)

were calculated. To reduce noise in time series data and evaluate which filtering method presents
a higher usability in SAR phenology tracking, signal filtering, such as Savitzky–Golay and moving
average, with different parameters, were employed. The achieved results present that, for various
plant species, different sensors (Sentinel-1 or TerraSAR-X) represent different performances. For
instance, σ0

VH of TerraSAR-X offered higher consistency with corn development (r = 0.81), while for
canola σ0

VH of Sentinel-1 offered higher performance (r = 0.88). Generally, σ0
VV , σ0

VH performed better
than DpRVI or interferometric coherence. Time series filtering makes it possible to increase an agree-
ment between phenology development and SAR-delivered indices; however, the Savitzky–Golay
filtering method is more recommended. Besides phenological development, high correspondences
can be found between vegetation height and some of SAR indices. Moreover, in some cases, moderate
correlation was found between SAR indices and soil moisture.

Keywords: SAR; Sentinel-1; TerraSAR-X; phenological stages; coherence; radar vegetation indices;
polarization

1. Introduction

Food production demand is drastically rising due to the constant growth of the world
population [1]. Monitoring crop development is crucial for the advancement of precision
agriculture [2]. It is vital to develop methods for the fast monitoring and screening of
numerous crop fields to effectively manage agricultural productivity [3]. Knowledge of
the specific crop development stage is necessary to perform the required agrotechnical
treatments in the field [4]. However, gathering such information in the field is time-
consuming, especially across large areas [5]. Therefore, the application of remote sensing
(RS) data, particularly from satellite platforms, allows for a fast and remote data capture
for wide areas [6].
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Optical RS data are highly effective in vegetation monitoring due to the strong relation-
ship between the electromagnetic wave signal, especially in the green and infrared spectrum,
and the chlorophyll content [7]. Unfortunately, passive RS has limited temporal monitoring
capabilities due to its sensitivity to cloud cover and sunlight, especially in tropical regions
where the availability of cloud-free images is scarce [8,9]. Relying solely on passive RS poses
a high risk of missing information for significant developmental stages of the monitored
plants [10], leading to reduced analysis quality and decision-making accuracy.

Supplementing decision-making with Synthetic Aperture Radar (SAR) technology,
which is insensitive to weather conditions and daytime, would be beneficial [11]. More-
over, SAR backscatter is significantly related to vegetation biomass, making it sensitive to
vegetation structure and ground conditions, which are related with crop phenological indi-
cators [3]. Therefore, it is feasible to develop SAR-delivered time series indicators for the
frequent and remote observation of fields throughout the growing season, providing high
temporal resolution and wide area coverage [12]. Despite the enormous potential of SAR
images for vegetation monitoring, ongoing studies aim to establish a relationship between
SAR signals and the phenological stages of plants to compete with optical data [13,14].
Researchers have started developing SAR-based plant observation indices to monitor plant
development, with the Radar Vegetation Index (RVI) being one of the pioneering indices
introduced by Kim and Van Zyl in 2009 [15]. This index has been suggested as a tool for
monitoring plant development, particularly with the availability of time series data [16].
The RVI has been found to correlate with other indices such as the Normalized Difference
Vegetation Index (NDVI), Leaf Area Index (LAI), and biomass quantity in the monitored
area [17]. The scientific community has subsequently developed several versions of the RVI,
including the Dual-pol Radar Vegetation Index (DpRVI-[2]), Compact-pol Radar Vegetation
Index (CpRVI-[18]), and Polarimetric Radar Vegetation Index (PRVI-[19]). Besides these, sci-
entists analyzed various SAR deliverables including H-alfa plane delivered from dual-pol
polarimetric decomposition [20,21], or recently introduced three vegetation descriptors: the
co-pol purity parameter (mcp), the pseudo-scattering angle (θcp), and the pseudoscattering
entropy (Hcp) [22]. The method combines the backscattering intensity and information of
polarization decomposition to construct a normalized index q, which is used to generate
these three vegetation indices.

Recent research on SAR signal analysis in relation to vegetation growth has gained
momentum [3,13,14,20,22,23]. Nasirzadehdizaji et al. (2021) [13] attempted to establish a
link between SAR backscattering coefficient, InSAR coherence, and crop growth monitoring
using Sentinel-1 TOPSAR data and field observations. The findings demonstrated a signif-
icant relationship between interferometric coherence and various phenological stages of
crops, enabling the estimation of key growth phases across different crop varieties such as
maize, sunflower, and wheat. SAR backscattering also provided reliable data on all growth
stages during the agricultural season, contributing to effective crop assessment. In the same
year, Bhogapurapu et al. (2021) [14] presented work on the utilization of dual-polarimetric
descriptors from Sentinel1 GRD data for crop growth assessment. The authors proposed
three polarimetric descriptors: the pseudo scattering-type parameter (θc), pseudo scattering
entropy parameter (Hc), and co-pol purity parameter (mc), derived from dual-pol Sentinel-1
data. Their study demonstrated the sensitivity of these descriptors throughout a time series
of data for wheat and canola phenological development. Additionally, Zhao et al. (2022) [3]
proposed the Deep-Crop model, which combines optical and SAR time series to extract
phenology, incorporating spatial-aware features. Dave et al. (2023) [21] analyzed the po-
tential of polarimetric decomposition parameters of Sentinel-1 dual-pol SAR data for the
estimation of rice crop biophysical parameters. In their study they used multi-temporal
Sentinel-1A images to calculate various indices (σ0

VV , σ0
VH , Entropy, Anisotropy, and Alpha)

to investigate their correlation level with rice crop biophysical parameters. As for field
data, they conducted surveys in the study area during which phenological stages in BBCH
scale, crop parameters (fresh biomass, dry biomass, vegetation water content, plant height,
plant–plant and row–row distance, crop age, crop cover, crop vigor), and soil parameters
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(soil type, soil moisture, soil roughness) were obtained. The analyses showed the highest
level of correlations during the early vegetation stages of rice. The maximum correlation
was found between the values of σ0

VH and plant height (r= 0.82). It was also concluded that
multiple regression using various parameters shows better potential in crop monitoring
than regression using individual parameters.

Moreover, some authors also investigate the effect of the various wavelengths of the SAR
sensors and its relation to vegetation development. For example, Duguay et al. (2015) [24]
tested the potential of C and X-band SAR data for shrub growth monitoring. In situ
measurements of shrub vegetation density and height were compared to RADARSAT-2
and TerraSAR-X images. The findings demonstrated that σ0 (sigma-nought) is sensitive to
changes in shrub height up to approximately 1 m and variations in shrub coverage up to
20%. σ0

VH , showed the best sensitivity to shrub height and density, with RADARSAT-2 (C-
band) being more sensitive to shrub height than TerraSAR-X (X-band). SAR data provided
crucial information on shrub vegetation’s vertical development and spatial expansion,
particularly in the early stages of colonization. These findings highlight the correlation
between different SAR signal bands and various vegetation parameters, emphasizing the
importance of researching how SAR signal is changing for different plant species.

While many authors have demonstrated the great potential of SAR signals for moni-
toring vegetation development [14], variations in viewing angle, range, consistency of crop
phenological stages, wavelength of sensors, and polarization and various SAR-delivered
indices exist among the presented studies [25]. Temporal decorrelation in SAR backscatter-
ing also plays a significant role. Thus, further experiments are still needed to gain more
knowledge and achieve accurate results [26]. Considering this, the objective of this study is
to investigate different SAR-derived indicators delivered from C- and X-band SAR data
for tracking the phenology development of various crop fields in Poland. Additionally,
this study aims to evaluate those aspects for various plants, specifically corn, wheat, rye,
canola, and potato. Sentinel-1 data, utilizing the C-band signal (5.6 cm wavelength) and
data from the twin satellites TerraSAR-X and TanDEM-X from the German Aerospace
Centre (3.1 cm wavelength), were employed in this study. The acquired SAR data were
processed to generate key indicators, including interferometric coherence ( γ), DpRVI, and
backscattering σ0

VV , σ0
VH . To address existing noise, the estimated coefficients and indices

underwent temporal filtering using two techniques: the Savitzky–Golay (S-G) smoothing
filter and moving average (MA). The evaluation of specific radar indices with temporal
filtering was performed by comparing them to in situ data collected in the field. The
Pearson correlation coefficient (r) was utilized to assess the strength of the relationship
between each delivered SAR index (with and without filtering) with the in situ data.

2. Materials and Methods
2.1. Study Area

The study area (Figure 1) is situated in an agricultural region between Jelcz-Laskowice,
Nowy Dwór, and Piekary villages in the eastern part of Lower Silesia, Poland. A total of
30 agricultural fields were selected for analysis, comprising 7 maize fields, 7 wheat fields,
5 rapeseed fields, 6 potato fields, and 5 rye fields.

The Jelcz-Laskowice Commune is located in the Silesian Lowlands, which falls within
the Oder climate zone [27]. The area experiences a temperate–transitional climate with the
influence of polar–maritime air from the Atlantic Ocean [27]. The research area exhibits high
variability in climatic parameters. In the city and municipality of Jelcz-Laskowice, the aver-
age annual temperature is 8.30 ◦C, and the average annual precipitation ranges from 550 to
600 mm, with the highest precipitation occurring during the summer months [27]. This
region boasts the longest growing season in Poland, spanning approximately 225 days [27].

The Jelcz-Laskowice Commune primarily consists of lowland landscapes, including
river valleys and tributaries of rivers such as the Oder and Widawa [28]. The research
region is situated within the Pre-Sudetic Monocline, which comprises a variety of sedi-
mentary strata [27]. The predominant soil types in this area are Podzols, including light
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sands, clays, and loams [29]. Cereal crops dominate the agricultural practices in the Jelcz-
Laskowice municipality, which is known as one of the main agricultural regions, with
cereals accounting for approximately 65% of all sown crops [29].
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Figure 1. Location of the study area.

2.2. Data
2.2.1. Field Data

From 27 March 2021 to 21 September 2021, a total of 18 field visits were conducted to
gather information about the phenology development as well as soil moisture. These visits
were scheduled to align as closely as possible with the anticipated flights of the Sentinel-1
or TerraSAR-X/TanDEM-X satellites. The collected data were then used to verify the actual
correlation between the RS radar signal and the derived vegetation indices. Vegetation
height measured by tape, phenology development phase in BBCH scale, as well as soil
samples were captured to estimate soil water content by field sampling and laboratory
analysis. The Biologische Bundesanstalt, Bundessortenamt and CHemical (BBCH) is a
widely used scale applied to phenology characterization of a wide range of crops [30].
This scale can be described as a two-digit decimal coding system used to describe the
development of monocotyledonous and dicotyledonous plants. It employs 10 major phases
(0–9), which are further separated into 10 smaller stages of development (0–9) [31].

Plant heights were measured with a tape at multiple sites (2–3) in each field. These
measurements were then averaged. The phenological phases of the plants in the research
region were identified during field trips. Plant shoots in the early stages of development
were removed and described according to the official BBCH scale [31]. As the plants pro-
gressed, it became possible to determine their phenological phase by observing distinctive
elements of their appearance without removing them from the soil. Additionally, photo-
graphic documentation was taken to assist in later analysis. The transition of the plant’s
phenological phases was captured in photographs, documenting even the smallest details.
Figure 2 shows photographic documentation of crop plants in different phenological stages
obtained as part of field visits to the study area.
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Figure 2. Characteristic appearance of investigated crops in different BBCH scale (Biologische
Bundesanstalt, Bundessortenamt, und CHemische Industrie).

2.2.2. Remote Sensing Data

For the experiment, 38 Sentinel-1 images were collected from relative orbit number
73 between 25 May 2021 and 20 November 2021 in ascending geometry. Single Look
Complex (SLC) products were obtained using the C-band signal, preserving information on
the phase and amplitude in VH and VV polarization of Interferometric Wide Swath mode.

In case of X band data, 12 TerraSAR-X and TanDEM-X images were collected from
relative orbit number 17 between the dates of 17 June 2021 and 29 November 2021 in
descending geometry to examine the impact of wavelength on the accuracy of crop devel-
opment tracking. Unlike the Sentinel-1 data, these data were not freely available. Therefore,
due to financial constraints, it was impossible to establish a consistent time series. X-band
products from Single Look Slant Range Complex (SSC) were used, which have a slightly
shorter wavelength than C-band data. They were acquired in Stripmap mode, resulting in
the imaging of a consistent strip of terrain with a constant azimuth of the sensor’s antenna
pointing and a constant image quality along its motion path. The images in VH and VV
polarization, such as the Sentinel-1 data, were used. The characteristics of the utilized data
are presented in Table 1 while timeline of the used Sentinel-1 (S-1) and TerraSAR-X (TSX)
data but also field investigations (FV) are presented in Figure 3, while.
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Table 1. Geometry parameters for SAR dataset.

Geometry Parameters Sentinel-1 TerraSAR-X

Wavelength 5.55 cm 3.1 cm
Geometry ascending descending

Incidence far 45.87◦ 35.51◦

Incidence near 41.21◦ 34.10◦

Heading 349.81◦ 190.72◦
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2.3. Methodology

Figure 4 shows the general scheme of the analyses that were performed on the basis of
the acquired RS and field data. Radar vegetation indices (DpRVI, interferometric coherence
γ and backscattering coefficients σ0

VV , σ0
VH) were determined by SAR data processing using

SNAP ESA software. After extraction of time series vegetation indices, temporal filtering
of the achieved RS signal was performed in Python and Excel by using various methods
and parameters. Representative values for each field were calculated based on the average
from all pixels within the field boundary. For the evaluation of the agreement between in
situ data and RS time series obtained from various: indices, datasets, and filtering methods,
Pearson correlation coefficients (r) were calculated. Correlation indices were calculated as
the average values from all fields represented specific plant species but also for separate
fields to see the variability in the signal within the field level (Appendices A and B).
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The following subsections represent the corresponding processing steps including in
situ data acquisition (Section 2.3.1), Sentinel data processing (Section 2.3.2), TerraSAR-X
data processing (Section 2.3.3), temporal filtering (Section 2.3.4), and correlation analysis
(Section 2.3.5).

2.3.1. Auxiliary Data Acquisition

During the field visits, soil samples were collected from all fields in the study area
to measure the soil moisture content on specific days. Each sample was placed in a metal
cylinder and then weighed to determine its initial moisture content. Samples prepared in
this way were then dried for approximately 24 h at about 100 ◦C (212 ◦F) in a drying oven to
evaporate the water. After 24 h of drying, the samples were weighed again to determine the
soil’s composition. The soil water content is determined by comparing the weights before
and after drying. The following formula (PN-EN ISO 17892-1:2015-02/A1:2022-11) [32])
was used to calculate the natural moisture content (SM) of the soil:

SM =
WW − DM
DM − CM

·100%, (1)

where

WW—Wet weight;
DM—Dry matter;
CM—Cylinder mass.

For a better understanding of radar signals, information on daily precipitation totals
was collected (Figure 5). The data were recorded by the Wroclaw-Strachowice meteorolog-
ical station and made available by the Institute of Meteorology and Water Management
(https://danepubliczne.imgw.pl/ (accessed on 2 October 2023)).
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2.3.2. Sentinel-1 Data Processing

The DpRVI radar index, coherence (γ), and backscattering coefficients (σ0
VV , σ0

VH)
were computed using Sentinel-1 data. Calculations were performed using SNAP soft-
ware (v.9.0.0) tools. Preprocessing of the SAR data involves image updating with precise
orbit information, radiometric calibration, and multilooking. Radiometric calibrations
make it possible to transform the digital number (DN, amplitude of the backscattering
signal) of each pixel into backscattering coefficients (σ0

VV , σ0
VH) on a linear scale using the

following equation:

value (i) =
|DNi|

A2
i

, (2)

where A is the value provided in metadata information which allows for converting SAR
reflectivity into physical units [33]. Afterward, the Lee Refined Speckle Filtering with a
window size of 7 × 7 pixels was used to remove the speckle effect. For the preprocessed

https://danepubliczne.imgw.pl/
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SAR images, the backscattering coefficient (σ0
VV , σ0

VH) for each polarization was calculated.
The results were converted from the linear to the decibel scale according to Equation (3).

σ0(db) = 10·log10

(
σ0
)

, (3)

where

σ0—Backscattering coefficient.

Based on a 2 × 2 covariance matrix, the DpRVI index was calculated according to
Equation (4) [2].

DpRVI = 1−mβ, (4)

where

m—Degree of polarization;
β—Measure of dominancy.

The state of polarization of an electromagnetic wave is characterized in terms of the
degree of polarization (m) as proposed by Barakat (1977) [34] and presented in Equation (5).

m =

√
1− 4|C2|

(Tr(C2))
2 (5)

where

C2—eigen-decomposition of a 2 × 2 covariance matrix.

The two non-negative eigenvalues (lambda1 ≥ lambda2 ≥ 0) are obtained from
the eigen-decomposition of the dual-pol C2 covariance matrix, and are then normalized
with the total power Span (Tr(C2) = lambda1 + lambda2). The eigenvalues quantify the
dominancy of scattering mechanisms. Hence, the parameter β in Equation (4) is introduced
as β = lambda1/Span [2].

For DpRVI products, the Lee Refined Filter was also applied in a 7 × 7 window to
remove the speckle effect. Then, the representative value for each field were calculated as
the average from the pixels within the boundaries of the field geometry.

Interferometric coherence (γ) was calculated in different manners. SAR images were
updated with precise orbital information and calibrated with the tool of Enhanced Spectral
Diversity. It was necessary to use the Back-Geocoding tool to perform coregistration
between neighboring acquisitions. After this, coherence (γ) was calculated according to
Equation (6). A multilooking factor of 4 × 1 was used to reduce the speckle effect and
Range Doppler Terrain Correction was used to transform slant range geometry into the
geographical coordinate system.

γ =
E[v1v∗2 ]√

E
[
|v1|2

]
E
[
|v2|2

] , (6)

where

E—weighted average, probability value;
*—Coupling of complex values;
v1, v2—complex values of radio wave.

However, for better graphical time series representation, we utilized inverse values of
the coherence inv(γ) according to Equation (7):

inv(γ) =
1
γ

(7)
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2.3.3. TerraSAR-X Data Processing

TerraSAR-X and TanDEM-X SAR acquisitions have slightly different characteristics
compared to Sentinel-1; thus, their pre-processing differed in some aspects. The main
differences are that there is no need to update the orbit information of TSX and TDX
data, as it is already included in the files provided by the DLR. Radiometric calibration,
multilooking (4 × 1), and image filtering (Lee Refined filtering 7 × 7) to remove speckle
effects were necessary to calculate the σ0

VV and σ0
VH . Then, similarly to Sentinel-1 data,

DpRVI index as well as inv(γ) were calculated and extracted for each field.

2.3.4. Temporal Filtering

For each of the investigated fields and plant species, all four indices were extracted
(DpRVI, inv(γ), σ0

VV and σ0
VH). The calculated deliverables were presented as graphs and

compared to field data of plant height, soil moisture, and phenological phase. Due to the
various decorrelation effects (temporal, geometrical) but also changes in the backscattering
properties, it was important to perform temporal filtering of the acquired signal. For that
reason, the moving average (M-A) and the Savitzky–Golay filtering method were evaluated.

The Savitzky–Golay (S-G) filtering method implies using polynomial approximation
of an impulse sequence [35]. In most studies of S-G filters, they focused on the frequency
domain properties, and offered an approximate formula for the 3-dB cutoff frequency as a
function of polynomial order and impulse response half-length [36,37]. The S-G filter was
applied to the SAR-delivered indices using the scipy.signal.savgol_filter function in Python
3.9.7. Although it was possible to adjust the characteristics of this filter in great detail, the
main focus was placed on the filter window’s size. The temporal filter was applied in
windows of sizes 15, 9, and 5 for S-1 data, while it was applied in windows of sizes 9 and
5 for TSX data due to the limited number of time series observation. The equation of this
filter is described by Equation (8) [38].

Yj
∗ =

∑i=m
i=−m CiYj+i

N
, (8)

where

Y—Original value;
Y*—Resultant value;
Ci—Coefficient for the ith value of the filter (smoothing window);
N—Number of convoluting integers (estimated based on poly order);
m—Half-width of the smoothing window;
j—Running index of the original ordinate data table.

The moving average (MA) was applied in Excel using data analysis tools. The math-
ematical representation of the temporal filtering is described by Equation (9) [37]. This
filter entails calculating the arithmetic mean of z values (a window of size z), making it
difficult to retrieve results for the n-1 initial values in the series. Thus, the MA filtering
methods have a significant drawback related to the inability to provide filtered values for
the beginning of the time series. The time series of all fields may be filtered using these,
just like with the Savitzky–Golay filter. The effectiveness of the two filters was compared
using the identical window sizes

y[n] =
1

2M + 1

n+M

∑
m=n−M

x[m] (9)

where

n—Central point;
M—Half width of the approximation interval;
N—Polynomial order;
x[m]—Sequence of samples of a signal;
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y[n]—Output.

The amount of data being filtered greatly influenced the selection of filtering settings.
The S-1 mission allowed for the acquisition of a much greater number of images than the
TSX mission, allowing for more thorough analyses to be carried out. Calculated correlations
between the generated values and in situ data were used to confirm the effectiveness of
the filtering.

2.3.5. Pearson Correlation Coefficient

An r-Pearson correlation coefficient was established between the acquired values and
the field data to capture information about the efficacy of the data, the derived indices and
coefficients, as well as the filters utilized in phenology development monitoring (BBCH
phase, soil moisture, plant height). Using this method, it was feasible to determine which
indices/coefficients have the strongest correlation with plant development and which ones
are influenced by other factors such as soil moisture. The r-Pearson correlation coefficient
is calculated according to Equation (10):

r(x, y) =
cov(x, y)

σx·σy
, (10)

where

x, y—Variables;
cov(x,y)—Covariance between the variables;
σ—Standard deviation.

Pearson correlations were calculated for time series between data captured in the
field and time series indices delivered from the SAR dataset. However, due to the limited
number of TSX data, tracking phenological stages was carried out for a limited period,
compared with S-1. Therefore, r was calculated in two manners; first, with long time series
of S-1 datasets, and secondly for shortened time series restricted by dates of TSX acquisition.

3. Results

In the following Sections 3.1 and 3.2, we present the results obtained from the corre-
lation analysis between the SAR dataset and the in situ data. Section 3.1 focuses on the
correlation analysis for a longer time series using only S-1 data, as they provided a greater
period of phenological tracking. In Section 3.2, we calculate correlation coefficients for the
same time series of S-1 and TSX, limited to the dates of TSX acquisitions. Furthermore, we
present the temporal behavior of these indices using graphical representation (Section 3.2).
The impact of temporal filtering is presented in Section 3.3.

3.1. Pearson Correlation between Field Information and SAR-Delivered Time Series Signal
3.1.1. Sentinel-1—Delivered Relationship with In Situ Data

Table 2 presents the correlation coefficients (r) between radar-derived indices calcu-
lated for field data, such as plant height, soil moisture, and the BBCH phenology scale,
with the indices derived from S-1. The individual values for each field are presented
in Appendix A, while Table 2 provides a synthetic overview of the average correlation
achieved for specific plant species.

From the achieved results, it can be observed that σ0
VH derived from S-1 data shows the

strongest correspondence with the phenological stages of corn, canola, and potato (r > 0.7).
Slightly less correspondence with the BBCH scale for corn, canola, and potato is observed
for σ0

VV and DpRVI (r > 0.5). The weakest correspondence is represented by interferometric
coherence (inv(γ)). Unfortunately, for winter wheat and rye, the correspondence between
the BBCH stage and any of the derived indices is weak (r ≈ 0.3/0.5). In general, for any of
the S-1-derived indices, the correspondence between BBCH scale or plant height for rye is
small. Additionally, significant fluctuation in achieved correlation indices between various
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fields of the same crop can be observed (e.g., for winter wheat, r ranges between 0.19 and
0.67) (see Appendix A).

Table 2. Pearson correlation coefficient (r) in the form of heatmap between S-1 indices and field
parameters (H represents average vegetation height, while BBCH represents phenological stage in
the BBCH scale and SM represents soil moisture). Bold values represent the highest r for particular
plant species and for BBCH development phases.

Sentinel-1 full time series

SAR Derivatives σ0
VH σ0

VV DpRVI inv(γ)

Field Parameter H SM BBCH H SM BBCH H SM BBCH H SM BBCH
Corn (BBCH BBCH0-80) 0.61 −0.03 0.79 −0.63 0.10 0.54 0.61 −0.03 0.79 0.57 −0.05 0.58

Winter wheat (BBCH BBCH21-100) 0.04 0.40 0.49 0.30 0.54 0.06 −0.46 −0.56 0.18 0.09 −0.36 0.38

Canola (BBCH26-100) 0.82 0.07 0.76 0.74 0.13 0.55 0.67 −0.29 0.60 0.51 0.26 0.51

Potato (BBCH0-96) 0.55 −0.06 0.84 0.61 −0.04 0.66 0.18 −0.42 0.73 0.29 −0.15 0.50

Rye (BBCH24-100) 0.04 −0.17 0.33 −0.14 0.11 0.11 0.21 −0.17 0.33 0.15 0.04 0.26

Considering vegetation height (H), significant correspondences with S-1 derivatives
can also be found. However, the index with the strongest link with that parameter could
not be clearly determined. All of σ0

VH , σ0
VV , and DpRVI show strong correlation with plant

height for corn, canola, and potato, while very low correspondence is seen for winter wheat
and rye (Table 2).

No discernible relationship is found between the S-1 indicators and soil moisture.
However, for most fields of winter wheat and potatoes, the correlation index is observed
to be moderate, reaching around 0.5 or even sometimes 0.72 (winter wheat, field 27b in
Appendix A).

3.1.2. Comparison of Sentinel-1 and TerraSAR-X Derived Indices and Their Relationship
with Crop Phenological Development

For X-band signal, the strongest correspondence with phenological stages is found
between corn and backscattering coefficients (σ0

VH and σ0
VV). However, for various plant

species, those indices correspond differently. For instance, in cases of corn and potato,
σ0

VH presents higher performance in tracking BBCH stages. For winter wheat and rye,
σ0

VV appears to correspond better than σ0
VH . Only in the case of canola fields, DpRVI

overperforms slightly σ0
VH and σ0

VV with r reaching 0.7; however, σ0
VH and σ0

VV represent
very similar correspondence (r = 0.68). For all plant species, an inverse of interferometric
coherence represents the smallest relationship with phenological phases when compared
with another X-band deliverable (r ≤ 0.5).

In the case of vegetation height, the correlation is moderate-to-small. Only for corn,
the correspondence between σ0

VH and vegetation height is strong (r = 0.81). However, for
some species, σ0

VV appeared to outperform σ0
VH (e.g., winter wheat, rye) but the correlation

is still low (r ≈ 0.3/0.4).
Considering soil moisture, it is really challenging to designate the SAR indices with

the strong correspondence with soil moisture. Only in the case of winter wheat, moderate
correspondence can be observed for both backscattering coefficients σ0

VH and σ0
VV (r ≈ 0.5).

Such a scenario was also found in the case of S-1 results (Tables 2 and 3).
When compared S-1-delivered indices, it can be observed that, for the same investi-

gated time period and specific phenological changes in some species (corn, rye and potato),
the TSX dataset presents slightly better results than S-1 indices.
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Table 3. Pearson correlation analysis represented in the form of heatmap of TSX indices and Sentinel-
1 (short time series) with field parameters (H represents average vegetation height, while BBCH
represents phenological stage in the BBCH scale and SM represents soil moisture).

TerraSAR-X

SAR Derivatives σ0
VH σ0

VV DpRVI inv(γ)

Field Parameter H SM BBCH H SM BBCH H SM BBCH H SM BBCH
Corn (BBCH15-80) 0.73 0.23 0.81 0.56 0.32 0.72 −0.46 0.22 −0.34 0.33 −0.18 0.28

Winter wheat (BBCH45-100) −0.14 0.54 0.72 −0.44 0.51 0.96 −0.36 0.07 0.18 0.33 0.16 0.46

Canola (BBCH80-100) 0.44 0.17 −0.68 −0.40 0.01 −0.61 −0.81 −0.13 0.70 0.11 0.34 0.51

Potato (BBCH12-96) 0.47 0.44 0.68 0.45 0.42 0.42 −0.32 0.09 −0.21 0.28 0.25 0.31

Rye (BBCH40-100) −0.07 0.54 0.37 −0.34 0.62 0.64 −0.31 0.17 0.48 0.01 0.19 0.11

Sentinel-1 (short time series)
SAR derivatives σ0

VH σ0
VV DpRVI inv(γ)

Field parameter H SM BBCH H SM BBCH H SM BBCH H SM BBCH
Corn (BBCH15-80) 0.61 −0.03 0.46 0.61 −0.03 0.50 −0.15 −0.44 0.15 0.57 −0.05 0.46

Winter wheat (BBCH45-100) 0.04 0.40 0.59 0.30 0.54 0.96 −0.46 −0.56 −0.81 0.09 −0.36 −0.48

Canola (BBCH80-100) 0.82 0.07 −0.88 0.74 0.13 −0.76 0.67 −0.29 0.60 0.51 0.26 −0.84

Potato (BBCH12-96) 0.55 −0.06 0.52 0.61 −0.04 0.50 0.18 −0.42 0.32 0.29 −0.15 0.11

Rye (BBCH40-100) 0.04 −0.17 0.04 −0.14 0.11 0.38 0.21 −0.17 0.04 0.15 0.04 −0.16

3.2. Temporal Behavior of SAR-Derived Time Series Indices and Phenology Development
3.2.1. Sentinel-1 Delivered Indices

In the following subsection, S-1-delivered indices were presented in the context of time
series phenology tracking for investigated crop types. Here, the results are represented for
full time series achieved by S-1 data.

• VH Backscattering—σ0
VH

Figure 6 presents σ0
VH delivered from S-1 in reference to time series information

captured in the field. Due to the space limitation, as an example, we present time series
behavior for the selected species, which represents the strongest correspondence between
phenology and S-1-derived indices (Figure 6a) and the smallest (Figure 6b).

Depending on the plant species being studied, the σ0
VH behaves very differently. In the

case of potato fields (Figure 6a), the lowest values overlap with the germination of the plant
(BBCH0-15), which is around mid-May. However, a small peak can be observed which can
be caused by soil moisture fluctuation. Regretfully, field data regarding soil moisture have
not yet been collected for this period, but when observing the precipitation chart (Figure 5),
during this time no significant precipitation appears. At the stages of development when
the potato is growing in height and flowering, there is a very large increase in the value
of the σ0

VH (BBCH20+). Such a moderate growth persists until BBCH70. When the plant
turns yellow and falls to the soil (BBCH80-100), values drastically decrease, reaching their
minimum peak around BBCH99, which perfectly captures the harvesting moment.

When observing height values and σ0
VH , similar behavior as with BBCH development

can be seen. Although the height of the plant has reached its maximum and does not
change anymore, the index values start to decrease. This can be an indicator that leaves
and other plant structures start to dry up and decline and the volumetric scattering starts
to decrease at that time.

Nevertheless, the σ0
VH index corresponds with phenology development rather fairly,

which is also reflected in the correlation index (r = 0.84). Satisfactory results were also
found for corn and canola fields (r = 0.79 and r = 0.76, respectively). For these species,
there is also some connection with plant height (r = 0.61 for maize, r = 0.82 for canola, and
r = 0.55 for potato).
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Figure 6. Time series of S-1-derived backscattering σ0
VH for potato (a) and rye (b) fields superimposed

with phenology development in BBCH scale, vegetation height (H), as well as soil moisture (SM).

Observing Figure 6b, it is clear that there is no connection between phenology de-
velopment and σ0

VH for rye. At the 25–30 BBCH stages of rye development, when the
plant starts to expand in height, a definite rise in value can be seen. The index value
dramatically decreases at the end of May (around the 35 BBCH stage), which is surely not
interconnected with the phenological development. At the beginning of July, the index
values increase strongly, coinciding with the mowing of rye (around BBCH60). The values
of the σ0

VH drastically decrease between the time the plant reaches its peak stage of maturity
(85–99 BBCH), and only after the cover crop appears do they begin to rise again (mid- to
late August). Correlation analysis confirmed that the behavior of this index is related to
rye development to a very small extent (r = 0.33). A very low level of correlation was also
observed for winter wheat fields (r = 0.49).

• VV Backscattering—σ0
VV

The σ0
VV coefficient’s usefulness in phenological stages’ tracking was not clearly visible.

In the case of potato (Figure 7a), very significant noise can be observed during the period
when the plant has not yet sprouted and bare earth was present. However, after late March
to mid-May, the behavior of the index rather clearly reflects the phenological development
of the potato (values lowest after germination, a significant increase during flowering). A
fairly notable level of association with potato phenological phases was also observed in the
correlation analysis (0.66); however, it was rather lower when compared with σ0

VH .
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with phenology development in BBCH scale, vegetation height (H), as well as soil moisture (SM).

The σ0
VV index shows a much lower level of correlation with wheat development

(Figure 7b). Between phases 45 and 85 BBCH (late May to mid-August), there is a clear
increase in value as winter wheat develops. However, the inability to determine the exact
moment the plant was harvested is a serious drawback. It is also noteworthy that σ0

VV
did not decrease after the harvest; in fact, it reached its highest values. The time series
behavior of this coefficient for winter wheat fields also does not clearly indicate a link with
the development of the cover crop. The unsatisfactory performance of the index is also
confirmed by correlation index (r = 0.06).
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The correlation analysis revealed that, while the σ0
VV coefficient does exhibit some

phenological phase association, it does so to a far lesser extent than the σ0
VH coefficient. It

would seem that, as crops mature, the value of the index should decline. However, the
correlation for winter wheat is almost nonexistent and even approaches negative values in
the case of some fields. For the other plants, the correlation level with phenological stages
was r = 0.54 for corn, r = 0.55 for canola, and r = 0.11 for rye. A higher level of correlation
was noted for plant height—in canola and potato fields, the correlation coefficient was
0.74 and 0.61, respectively, while the reverse correlation of r = −0.63 was observed for corn.

• DpRVI

In Figure 8, the relationship between DpRVI and the phenological development for
corn (Figure 8a) and winter wheat (Figure 8b) can be observed. The lowest values of these
crops are observed during the periods of occurrence of the early BBCH phases. The fastest
increase in values is observed in the BBCH30–35 for corn. From the 80 BBCH stage onwards
(late September), the values of the DpRVI for this crop remain relatively constant. However,
as the plant development progress further, the values begin to fluctuate. The correlation
between phenological phases and corn achieved satisfactory results (0.78). Unfortunately,
the DpRVI index does not indicate a strong correlation with plant height (−0.15) and soil
moisture (−0.44) in this case.
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Winter wheat (Figure 8b) exhibited the poorest correspondence with the vegetation
index, similar to the previously mentioned indices. The variations in values were difficult to
attribute to specific factors due to the high level of noise in the index values. In contrast, the
index values for wheat increased until the 65–70 BBCH stage and then declined thereafter
(early July). Significant changes in index values were observed after the plant reached
maturity and was harvested, which could be indicative of exposed soil or the emergence of
a cover crop. Correlation analysis for winter wheat indicated a low level of association with
both phenological stages (0.18) and other field parameters (0.21 for height and −0.17 for
soil moisture). In comparison, the results for another species such as potato and canola
were unquestionably better, as shown in Table 2.

• Inverse of interferometric coherence inv(γ)

The correlation between the coherence and phenological phases of plants was not
significantly high. The coherence values exhibited a considerable amount of noise, making
it challenging to attribute variations in the values to specific phenomena. Only in the
early phenological stages of corn, some speculations could be made regarding the onset of
plant development. A noticeable increase in coherence values was observed between the
0-15 BBCH stages, corresponding to the germination and sprouting of corn’s first leaves
(mid-May to mid-June). However, the inv(γ) remained relatively constant thereafter, with
occasional abrupt spikes and dips in early October. Correlation analysis revealed a close
correspondence between coherence and phenological stages (0.58) and plant height (0.57).
In contrast, the correlation with soil moisture was close to zero (−0.05).
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The results are least favorable (r = 0.26) for rye fields (Figure 9b). The achieved signal
exhibited a significant amount of noise, making it impossible to establish a significant
relationship with field parameters. Although there are many noises, it is possible to discern
that the potato’s maximum values are around the 65 BBCH stage, when it is in the flowering
stage, but extremely large fluctuations start to show as the potato reaches maturity (the
90–99 stage). Correlational analysis (Table 2) revealed a moderate correlation between the
coherence estimated for corn, canola, and potato fields and the phenological phases (the
mean r values for corn, canola, and potato were 0.58, 0.51, and 0.50, respectively), as well
as the height of corn and canola (mean r values of 0.56 and 0.51, respectively). In contrast,
winter wheat fields show a moderate degree of relationship with natural soil moisture
(inverse correlation at r = −0.36) and phenological stages (r = 0.38).
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3.2.2. Terra-SAR-X-Delivered Indices

• Backscattering σ0
VH

Due to the fact that TSX data are not freely available, the creation of a consistent time
series was severely limited, making it impossible to observe the complete life cycle of certain
plant species from sowing to harvesting. This limitation posed a significant challenge in
establishing a connection between the SAR signal and plant growth, potentially impacting
the findings of the correlation analysis.

In the case of corn (Figure 10a), a gradual increase in values was observed between
the 30 and 65 BBCH stages. However, σ0

VH started to decline as the plant matured (at stage
70 BBCH and beyond). This significant decrease appears just after corn flowering, when the
canopy starts to decay. It is noteworthy that the σ0

VH values did not exhibit the same abrupt
changes as in the case of Sentinel-1 data during the autumn period (November). In potato
fields (Figure 10b), an increase in σ0

VH was observed as the phenological stage progressed
(55–80 BBCH stages). The coefficient’s value significantly dropped once the potatoes
reached full maturity, the plants dried up, and collapsed to the ground (late September
to early October). On 7 September 2021, a single increase in value was observed for corn.
This increase may be attributed to the maximum soil moisture content observed during
this period, with an average of 14.04% for corn fields and 12.70% for potato fields. With
the exception of rye fields, the correlation analysis (Table 2) indicated a strong association
between the σ0

VH coefficient and the phenological phases of the plants. Unlike the Sentinel-1
data, a correlation between this indicator and wheat development was identified (average
r = 0.72), although it should be noted that this result only considers the plant’s final
phenological stages. The correlation indices for corn and potatoes with phenological stages
were 0.81 and 0.68, respectively. Despite the negative correlation (r = −0.68), the coefficient
values for canola fields also exhibited a significant degree of association with plant growth.
However, it is important to keep in mind that this dataset only allows for the observation
of the latter phenological stages of these plants.
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• Backscattering σ0
VV

The analysis of σ0
VV in TSX data revealed that it exhibited a similar behavior to the

σ0
VH index, with increases and decreases occurring at similar time periods for all crops. The

only meaningful differences were observed in the values calculated for corn (Figure 11a)
and canola. In the case of corn, there was a wider disparity in the index values among
the fields compared to the σ0

VH index. The correlation analysis (Table 2) using field data
indicated that the σ0

VV index was most closely associated with the phenological stages of
the plants. Although the results are not particularly high compared to the σ0

VH index, a
certain level of correlation (r = 0.64) between the σ0

VV index and the phenological stages of
rye was detected.
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VV backscattering for corn (a) and potato (b) fields su-

perimposed with phenology development in BBCH scale, vegetation height (H), as well as soil
moisture (SM).

Correlations were found for corn, wheat, and potatoes (Figure 11b) at levels of 0.72,
0.96, and 0.42, respectively, and for canola at a level of −0.62 for inverse correlation. Similar
to the σ0

VH index, it should be noted that these correlation coefficients were obtained for
plants in which only the later stages of their development could be studied (winter wheat,
rye, canola).

• DpRVI

The DpRVI index calculated for the TSX data did not show the same potential as the
σ0

VH and σ0
VV backscattering coefficients. There were multiple jumps in the values of this

index for all plant species, which interfered with their readability and made it challenging
to connect these values to plant development. This index showed the highest level of
linkage for canola development (Figure 12a). Unfortunately, it was only possible to relate
the last developmental stages of this plant due to the much smaller number of TSX images.
The index reached its highest values when the plant was fully grown and ready for harvest.
After the harvest was observed, DpRVI values decreased slightly, followed by an increase.
It is likely that this behavior was a signal response to the occurrence of cover crop in the
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crop fields. Correlation analysis (Table 2) also indicates that the DpRVI index is linked to
the height of the canola plant (r = −0.81).

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 29 
 

 

 
Figure 11. Time series of TSX-delivered 𝜎  backscattering for corn (a) and potato (b) fields super-
imposed with phenology development in BBCH scale, vegetation height (H), as well as soil moisture 
(SM). 

• DpRVI 
The DpRVI index calculated for the TSX data did not show the same potential as the 𝜎  and 𝜎  backscattering coefficients. There were multiple jumps in the values of this 

index for all plant species, which interfered with their readability and made it challenging 
to connect these values to plant development. This index showed the highest level of link-
age for canola development (Figure 12a). Unfortunately, it was only possible to relate the 
last developmental stages of this plant due to the much smaller number of TSX images. 
The index reached its highest values when the plant was fully grown and ready for har-
vest. After the harvest was observed, DpRVI values decreased slightly, followed by an in-
crease. It is likely that this behavior was a signal response to the occurrence of cover crop 
in the crop fields. Correlation analysis (Table 2) also indicates that the DpRVI index is 
linked to the height of the canola plant (r = −0.81). 

The DpRVI index failed to depict behavior that may arise as a result of winter wheat 
entering subsequent stages of development (Figure 12b). Additionally, the correlation 
analysis failed to provide a clear explanation of how the index may be related. In addition 
to variety between species, the values of the r coefficient also varied within specific fields. 
The DpRVI index calculated for winter wheat reached the lowest association level with 
phenological phases (r = 0.18). The results for other plant species are shown in Table 2. 

 
Figure 12. Time series of TSX-delivered DpRVI for canola (a) and winter wheat (b) fields superim-
posed with phenology development in BBCH scale, vegetation height (H), as well as soil moisture 
(SM). 

• Inverse of Coherence 𝑖𝑛𝑣(𝛾) 
Coherence had the lowest outcomes of all the indices and coefficients derived from 

the data in the correlation analysis. Throughout most of the potato growth period (Figure 
13a), coherence remained consistently stable, with only minimal fluctuations in values. 
Decreases in values were observed exclusively when the plant was ready for harvest (i.e., 
it was dried and fell to the soil). For soil moisture and plant height, the coherence showed 
no significant level of correspondence (0.25 and 0.28, respectively). 

Coherence behavior was very similar in the case of corn (Figure 13b). Throughout the 
development period, values remained at similar levels, and a decline was observed only 

Figure 12. Time series of TSX-delivered DpRVI for canola (a) and winter wheat (b) fields super-
imposed with phenology development in BBCH scale, vegetation height (H), as well as soil mois-
ture (SM).

The DpRVI index failed to depict behavior that may arise as a result of winter wheat
entering subsequent stages of development (Figure 12b). Additionally, the correlation
analysis failed to provide a clear explanation of how the index may be related. In addition
to variety between species, the values of the r coefficient also varied within specific fields.
The DpRVI index calculated for winter wheat reached the lowest association level with
phenological phases (r = 0.18). The results for other plant species are shown in Table 2.

• Inverse of Coherence inv(γ)

Coherence had the lowest outcomes of all the indices and coefficients derived from the
data in the correlation analysis. Throughout most of the potato growth period (Figure 13a),
coherence remained consistently stable, with only minimal fluctuations in values. Decreases
in values were observed exclusively when the plant was ready for harvest (i.e., it was dried
and fell to the soil). For soil moisture and plant height, the coherence showed no significant
level of correspondence (0.25 and 0.28, respectively).
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Figure 13. Time series of TSX-delivered coherence inv(γ) for potato (a) and corn (b) fields su-
perimposed with phenology development in BBCH scale, vegetation height (H), as well as soil
moisture (SM).

Coherence behavior was very similar in the case of corn (Figure 13b). Throughout the
development period, values remained at similar levels, and a decline was observed only
when the corn began to reach maturity. Correlation analysis did not show a significant
degree of association with the other field parameters (0.33 for height and −0.18 for soil
moisture). The one exception is canola (Table 2), where plant harvesting caused a visible
drop in coherence values. In cultivated areas, even those sowed with the same plant species,
the values of the r coefficient varied extremely significantly. This made it impossible to
relate coherence to any of the known plant parameters or soil moisture.
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3.3. Temporal Time Series Filtering

In Figure 14, the graphical representation of the temporal filtering methods is pre-
sented. As can be observed, in general, both methods allow for smoothing the acquired
signal and increasing the correspondence with phonological development phases captured
in the field. However, various window sizes of the filtering influence the final correlation
results. Specifically, a wider window size allows for a higher smoothing effect and, in most
cases, achieves better correlation results. This is mainly due to filtering out some of the
other backscattering contributions not related to phenological development, such as soil
moisture or soil roughness.
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Figure 14. The effect of S-G (a) and MA (b) filtering on S-1 DpRVI index for canola fields using
different window sizes.

The moving average (MA) method provides N-M-filtered values (N—number of
observations, M—window size), which results in the shortening of the time series at the
beginning of the observed time. Therefore, this filtering method can be applied to longer
time series with some additional observations before the investigated time to achieved
full time series for investigated period. In the case of Savitzky–Golay (SG) filtering, such
shortening of the time series is not preserved, making SG more appropriate for agricultural
monitoring. On the other hand, a higher polynomial degree in SG allows for a better fit
of the model into the time series dataset. However, when some noise (non-vegetation-
related contributions) is preserved in the time series, the filtered signal also represents
that noise. Therefore, in the case of numerous other backscattering contributions that do
not correspond to the phenological development, lower orders of the polynomials should
be used. Table 4 presents how correlation parameters change according to the various
parameters used. It can be observed that, in some cases, significant increases and decreases
in correlation can be found.

Table 4. An example of correlation changes for some plant species achieved by various filtering
methods and their parameters (window size or poly order) in the context of height (H) and phenology
stage (BBCH) in the form of heatmap.

Sentinel-1
SAR Derivatives σ0

VH(SG=15)—H σ0
VH(SG=15)—BBCH

Poly order 3 2 8 3 2 8
Corn (BBCH BBCH0-80) 0.82 0.89 0.77 0.90 0.92 0.83

Winter wheat

(BBCH BBCH21-100)
−0.14 −0.40 −0.03 0.60 0.76 0.57

Canola (BBCH26-100) 0.84 0.84 0.92 0.92 0.95 0.84
Potato (BBCH0-96) 0.65 0.72 0.74 0.85 0.90 0.89
Rye (BBCH24-100) −0.10 −0.40 −0.09 0.60 0.83 0.37
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4. Discussion
4.1. Effectiveness of Radar Indices in Phenological Stages Monitoring

When analyzing temporal time series and BBCH phases, strong correspondences
between phenological phases and SAR-delivered signals are observed, especially in those
phenological stages when plants are growing and undergoing structural changes (BBCH
10–70). In the very early stages of vegetation, strong contributions from soil and water
content are observed, which directly affect the correlation between SAR signal and BBCH
stages. This can also be seen in the Pearson correlation values for some plant species, such
as winter wheat. A statistically moderate correlation can be observed between σ0

VH or
DpRVI and soil moisture (r ≈ 0.5). However, when observing Table A2 in Appendix A,
various correlations are represented for different fields (0.1–0.72). This could be attributed
to variations in vegetation biomass or crop coverage. For example, when fewer plants are
sown, resulting in lower crop coverage, a greater proportion of backscatter comes from the
soil. Nonetheless, for all plant species, there is a significant decrease in values in the later
stages of plant development (BBCH 80+), which is also connected to structural changes
such as leaf withering and reduction in green mass. Various indices show that, during the
initial stages of the vegetation period, values increase or decrease and reach their maximum
or minimum during the booting stage. Time series profiles have the advantage of reflecting
the timing of barley head bending [39]. Mercier et al. (2020) [33] also observed highly
varying polarization during stem elongation due to heterogeneous plant structures, as
indicated by increasing Shannon entropy. Surprisingly, potato fields show a high correlation
with SAR-delivered indices, although it was expected that corn, due to its height, would
exhibit the highest volumetric scattering and therefore be the most correlated with the SAR
response. Another factor that could affect the high correlation achieved for potatoes (in
addition to soil moisture and vegetation water content) is surface roughness, which is also
considered a significant contribution to backscattering [40,41].

Depending on the type of plant being monitored, the radar indices and coefficients
computed from Sentinel-1 and TerraSAR-X data have various sensitivities. The process
of development of these crops looks rather different, and the entry into the next stages of
development took place at different times depending on the plant species, which could
affect the behavior of the remote sensing radar signal. For instance, compared to the
other species, the correlation between the development of rye and wheat and the σ0

VV and
σ0

VH indices derived from S1 data is rather low. The same indices calculated from TSX
data, revealed a substantially higher degree of association with wheat development. On
that basis, it may be concluded that various radar signal frequencies may exhibit varying
sensitivity to various crop species.

The high amount of noise present in the computed indices proved to be a significant
challenge when monitoring the phenological stages of crop plants. Significant fluctuations
in data values, characterized by rapid spikes and dips, introduced a notable level of noise in
the correlation between phenological stages and the rest of the in situ data for certain species.
Depending solely on these data could potentially lead to multiple errors in interpretation.
To pinpoint the sources of these inconsistencies, we collected additional information on soil
moisture and plant height. However, in the majority of cases, these factors did not exhibit a
significant disruptive effect on the results.

In some fields, we observed varying degrees of contamination by weeds. This occur-
rence might have caused the radar remote sensing signal to capture data not only from the
target plant species but also from other, unidentified species. Despite our efforts during
the field selection process to exclude heavily weed-infested areas from the experiment, in
certain instances, particularly in expansive fields, weeds may have been located in areas
that were challenging to identify during field inspections.

4.2. Effect of Filtering on the Degree of Correlation between Radar Data and Phenological Stages

Temporal filtering methods effectively smooth the signal and are beneficial for noise
removal in time series analysis. Depending on the filter window’s size and the vegetation
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index being filtered, different results were obtained. Using a larger polynomial order in
SG filtering produces filtered values that closely resemble the original signal. On the other
hand, the MA method may result in a shortened time series observation, especially with
larger window sizes. Therefore, for the MA method, neighboring time series observations
are needed. In this context, SG methods is more recommended. However, in some cases,
different window sizes allow for better correspondences with the in situ data. Generally,
wider window sizes provide a better smoothing of the signal and limit the effects caused by
temporal decorrelation or other non-BBCH-related aspects such as soil moisture, vegetation
water content, vegetation coverage, and biomass.

5. Conclusions

The goal of this study was to evaluate the behavior of the C-band (Sentinel-1) and
X-band (TerraSAR-X) radar signals to investigate their efficacy in the context of tracing
the phenological phases of crop plants. The obtained results from various SAR vegetation
indices were cross-referenced with information about soil moisture, plant height, and the
phenological stages estimated in BBCH scale. To reduce the impact of noise or information
which is caused by other non-phenological aspects (soil moisture, decorrelation, water
content), various temporal filtering methods with various parameters were analyzed.

According to a correlation analysis of radar indicators with field measurements, S-1 as
well as TSX data have a very high potential for tracking agricultural development. A rather
good degree of correlation between the C-band signal and the development of the majority
of plants was already attained without the use of filtering. After comparing the results of S-1
and TSX (X-band) data from the same time series, the X-band also showed clear potential
in monitoring plant development. In some instances, higher correlation coefficients with
field parameters were found with some plant species using this type of data (e.g., corn and
potato). The viewing geometry and incidence angle may have been a factor that influenced
the results since TSX and S-1 were acquired from different geometries. However, different
times of data acquisition between S-1 and TSX could also cause such effect. The rather
short time series that prohibited the study of major phenological phases of some plant
species is significant to mention despite the positive results achieved by the TSX data.
Future studies should create a long and consistent time series spanning the full growth
stage of the plants being observed to better comprehend the X-band signal. Moreover, for
a better comparison between S-1 and TSX, data from similar viewing geometry should
be considered. The greatest analytical outcomes for Sentinel-1 as well as TSX data were
backscattering coefficients, particularly the σ0

VH coefficient. Interferometric coherence and
DpRVI present smaller performance.

The potential of SAR data for plant monitoring was increased by the time series
filtering. Even for indices that produced incredibly subpar results, SG filters and moving
average greatly boosted the correlation level of the Sentinel-1 signal. The SG filter in a
window of size 15 was the best in this regard, raising the correlation level of the σ0

VH
coefficient even above 0.90 in individual cases (S-1). Although higher correlation values
were obtained after using a moving average in a window of size 9, this type of filtering cuts
off a portion of the data at the beginning of the time series, which makes it impossible to
monitor crops from sowing to harvest. For TSX data, however, this filter was utterly useless.
The key determining factor was the volume of data collected; due to the relatively limited
number of TSX images, it was nearly impossible to control the filter’s window, severely
restricting its usefulness. However, it can be foreseen that, for a higher number of TSX data,
such time series filtering should also be beneficial. The SG filter was clearly preferable in
the case of such a small dataset, but the outcomes were still inferior to those derived from
S-1 data.

The results of this experiment suggest that SAR data may one day be used to remotely
monitor crop plants, however still more studies is needed to define which index and
which sensor should be used for specific species and how other components such as
surface roughness, soil and vegetation water content contribute to the changes of the index.
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Creating a long, uniform time series that spans the whole period of plant development and
using the right filtering to reduce the impact of another components are the key factors to
increase SAR efficacy in vegetation monitoring.
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Śpitalniak for their help during laboratory works required to capture soil moisture information.
Authors would like to thank the anonymous reviewers who helped improve the original manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Sentinel-1 indices values before and after filtering using SG filter calculated for the
long time series.

Table A1. Correlation indices for corn before temporal filtering, after Savitzky–Golay (SG) filtering
(window size 15) calculated for σ0

VV , σ0
VH , DpRVI index, and interferometric coherence (inv(γ)) from

Sentinel-1 in the form of heatmap. Bold font represents the highest correlation index between specific
SAR vegetation index and in situ data of vegetation height (H), soil moisture (SM) and phenology
development in BBCH scale.

Corn

σ0
VH σ0

VH(SG)
σ0

VV σ0
VV(SG)

Field No. H SM BBCH H SM BBCH H SM BBCH H SM BBCH
11f 0.56 0.12 0.83 0.84 −0.03 0.90 −0.59 0.24 0.63 −0.92 −0.08 0.83
12e 0.68 0.07 0.83 0.84 −0.11 0.89 −0.80 0.04 0.70 −0.97 −0.24 0.84
13 0.53 −0.20 0.72 0.75 −0.34 0.90 −0.66 −0.11 0.43 −0.83 −0.38 0.77
14 0.54 −0.02 0.80 0.76 −0.16 0.88 −0.40 0.23 0.60 −0.73 −0.14 0.85
20 0.62 −0.12 0.73 0.84 −0.40 0.90 −0.44 0.18 0.17 −0.93 −0.44 0.53
8 0.56 0.06 0.80 0.80 −0.11 0.90 −0.73 0.09 0.62 −0.91 −0.21 0.86
24 0.79 −0.07 0.81 0.94 −0.24 0.93 −0.78 0.03 0.65 −0.97 −0.26 0.91

All Fields 0.61 −0.03 0.79 0.82 −0.20 0.90 −0.63 0.10 0.54 −0.89 −0.25 0.80
DpRVI DpRVISG inv(γ) inv(γ)SG

Field no. H SM BBCH H SM BBCH H SM BBCH H SM BBCH
11f −0.04 −0.38 0.74 −0.32 0.07 0.80 −0.59 0.24 0.63 0.70 0.09 0.77
12e 0.05 −0.33 0.69 −0.16 0.15 0.76 −0.80 0.04 0.70 0.56 0.17 0.69
13 −0.16 −0.45 0.81 −0.48 −0.31 0.84 −0.66 −0.11 0.43 0.35 −0.16 0.75
14 −0.34 −0.57 0.84 −0.71 −0.21 0.86 −0.40 0.23 0.60 0.67 −0.03 0.84
20 −0.54 −0.62 0.87 −0.65 −0.36 0.87 −0.44 0.18 0.17 0.30 −0.21 0.60
8 −0.01 −0.24 0.73 −0.59 −0.06 0.84 −0.73 0.09 0.62 0.38 0.16 0.77
24 −0.05 −0.51 0.77 −0.51 −0.20 0.79 −0.78 0.03 0.65 0.70 −0.10 0.79

All Fields −0.15 −0.44 0.78 −0.49 −0.13 0.82 −0.63 0.10 0.54 0.52 −0.01 0.74

https://scihub.copernicus.eu/
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Table A2. Correlation indices for winter wheat before temporal filtering, after Savitzky–Golay (SG)
filtering (window size 15) calculated for σ0

VV , σ0
VH , DpRVI index, and interferometric coherence

(inv(γ)) from Sentinel-1 in the form of heatmap. Bold font represents the highest correlation index
between specific SAR vegetation index and in situ data of vegetation height (H), soil moisture (SM)
and phenology development in BBCH scale.

Winter Wheat

σ0
VH σ0

VH(SG)
σ0

VV σ0
VV(SG)

Field No. H SM BBCH H SM BBCH H SM BBCH H SM BBCH
1 0.23 0.15 0.32 0.26 0.24 0.34 0.00 0.39 0.06 0.47 0.54 −0.11

27b −0.09 0.72 0.66 −0.38 0.69 0.72 0.55 0.64 −0.10 0.75 0.68 −0.30
5 0.09 0.10 0.22 −0.25 0.72 0.08 0.32 0.37 0.01 0.61 0.74 −0.12
2 −0.09 0.24 0.19 −0.32 0.82 0.74 0.36 0.60 0.22 0.51 0.72 0.30

21b 0.03 0.65 0.66 0.02 0.63 0.82 0.60 0.82 −0.04 0.69 0.85 −0.15
23e 0.26 0.49 0.69 −0.10 0.53 0.70 0.35 0.64 0.13 0.68 0.38 0.01
26a −0.15 0.46 0.67 −0.25 0.37 0.81 −0.04 0.27 0.15 0.13 0.27 0.19

All Fields 0.04 0.40 0.49 −0.14 0.57 0.60 0.30 0.54 0.06 0.55 0.60 -0.03
DpRVI DpRVISG inv(γ) inv(γ)SG

Field no. H SM BBCH H SM BBCH H SM BBCH H SM BBCH
1 −0.39 −0.54 0.05 −0.58 −0.56 0.20 0.60 −0.36 0.41 0.32 −0.74 0.54

27b −0.75 −0.54 0.52 −0.74 −0.56 0.60 0.04 −0.53 0.36 0.76 −0.69 0.55
5 −0.66 −0.51 0.02 −0.63 −0.67 0.08 0.43 −0.27 0.42 0.30 −0.62 0.40
2 −0.35 −0.79 −0.25 −0.64 −0.68 −0.06 0.38 −0.64 0.47 0.34 −0.72 0.46

21b −0.80 −0.73 0.32 −0.78 −0.84 0.35 −0.42 −0.40 0.18 0.72 −0.74 0.40
23e −0.39 −0.63 0.22 −0.75 −0.30 0.39 0.19 −0.12 0.54 0.73 −0.43 0.61
26a 0.12 −0.15 0.36 0.05 −0.28 0.30 −0.55 −0.18 0.31 −0.50 −0.25 0.50

All Fields −0.46 −0.56 0.18 −0.58 −0.56 0.27 0.09 −0.36 0.38 0.38 −0.60 0.49

Table A3. Correlation indices for canola before temporal filtering, after Savitzky–Golay (SG) filtering
(window size 15) calculated for σ0

VV , σ0
VH , DpRVI index, and interferometric coherence (inv(γ)) from

Sentinel-1 in the form of heatmap. Bold font represents the highest correlation index between specific
SAR vegetation index and in situ data of vegetation height (H), soil moisture (SM) and phenology
development in BBCH scale.

Canola

σ0
VH σ0

VH(SG)
σ0

VV σ0
VV(SG)

Field no. H SM BBCH H SM BBCH H SM BBCH H SM BBCH
4 0.82 0.02 0.70 0.87 −0.17 0.92 0.72 0.21 0.42 0.90 −0.03 0.95
9a 0.67 −0.01 0.78 0.71 −0.04 0.91 0.60 −0.02 0.54 0.73 −0.04 0.92
15 0.84 0.32 0.71 0.82 0.23 0.93 0.76 0.32 0.48 0.85 0.29 0.86
19a 0.87 −0.10 0.74 0.95 −0.05 0.90 0.77 −0.03 0.58 0.96 −0.02 0.88
18 0.88 0.13 0.86 0.86 −0.01 0.95 0.85 0.15 0.74 0.88 0.04 0.95

All Fields 0.82 0.07 0.76 0.84 −0.01 0.92 0.74 0.13 0.55 0.86 0.05 0.91
DpRVI DpRVISG inv(γ) inv(γ)SG

Field no. H SM BBCH H SM BBCH H SM BBCH H SM BBCH
4 0.80 −0.37 0.52 0.81 −0.36 0.78 0.49 0.07 0.45 0.43 −0.62 0.67
9a 0.59 −0.21 0.73 0.64 −0.09 0.85 0.55 −0.01 0.70 0.17 −0.32 0.72
15 0.43 −0.10 0.49 0.67 0.05 0.71 0.61 0.68 0.47 0.56 0.19 0.50
19a 0.86 −0.40 0.67 0.90 −0.12 0.80 0.47 0.28 0.60 0.78 −0.18 0.39
18 0.68 −0.36 0.62 0.78 −0.17 0.83 0.44 0.30 0.35 0.23 0.21 0.31

All Fields 0.67 −0.29 0.60 0.76 −0.14 0.79 0.51 0.26 0.51 0.43 −0.15 0.52

Table A4. Correlation indices for potato before temporal filtering, after Savitzky–Golay (SG) filtering
(window size 15) calculated for σ0

VV , σ0
VH , DpRVI index, and interferometric coherence (inv(γ)) from

Sentinel-1 in the form of heatmap. Bold font represents the highest correlation index between specific
SAR vegetation index and in situ data of vegetation height (H), soil moisture (SM) and phenology
development in BBCH scale.

Potato

σ0
VH σ0

VH(SG)
σ0

VV σ0
VV(SG)

Field No. H SM BBCH H SM BBCH H SM BBCH H SM BBCH
7a 0.57 −0.09 0.96 0.56 −0.16 0.97 0.50 −0.01 0.78 0.49 −0.13 0.90
7c 0.77 0.05 0.86 0.88 0.02 0.87 0.78 0.00 0.61 0.86 0.02 0.75

16_1 0.74 −0.15 0.77 0.73 −0.21 0.79 0.76 −0.12 0.62 0.74 −0.16 0.69
16_2 0.73 −0.15 0.77 0.70 −0.19 0.79 0.77 −0.13 0.61 0.73 −0.15 0.70
17 −0.12 −0.21 0.84 0.30 −0.10 0.87 0.07 −0.17 0.65 0.31 −0.05 0.81
6a 0.61 0.21 0.83 0.73 0.21 0.84 0.80 0.21 0.70 0.78 0.21 0.78

All Fields 0.55 −0.06 0.84 0.65 −0.07 0.85 0.61 −0.04 0.66 0.65 −0.04 0.77
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Table A4. Cont.

Potato

DpRVI DpRVISG inv(γ) inv(γ)SG
Field no. H SM BBCH H SM BBCH H SM BBCH H SM BBCH

7a 0.46 −0.63 0.68 0.66 −0.30 0.79 0.10 0.03 0.75 0.56 −0.23 0.93
7c −0.01 −0.06 0.69 0.58 0.00 0.74 0.79 −0.16 0.50 0.82 −0.33 0.64

16_1 0.42 −0.50 0.78 0.72 −0.35 0.84 0.39 −0.09 0.51 0.56 −0.04 0.79
16_2 0.43 −0.48 0.77 0.67 −0.34 0.82 0.35 −0.05 0.47 0.46 0.02 0.75
17 −0.02 −0.43 0.80 0.27 −0.20 0.88 −0.15 −0.72 0.34 0.31 −0.49 0.74
6a −0.18 −0.45 0.65 0.30 0.21 0.77 0.26 0.10 0.41 0.67 0.06 0.79

All Fields 0.18 −0.42 0.73 0.53 −0.17 0.81 0.29 −0.15 0.50 0.57 −0.17 0.77

Table A5. Correlation indices for rye before temporal filtering, after Savitzky–Golay (SG) filtering
(window size 15) calculated for σ0

VV , σ0
VH , DpRVI index, and interferometric coherence (inv(γ)) from

Sentinel-1 in the form of heatmap. Bold font represents the highest correlation index between specific
SAR vegetation index and in situ data of vegetation height (H), soil moisture (SM) and phenology
development in BBCH scale.

Rye

σ0
VH σ0

VH(SG)
σ0

VV σ0
VV(SG)

Field No. H SM BBCH H SM BBCH H SM BBCH H SM BBCH
6b −0.28 −0.35 −0.24 −0.38 0.08 0.47 −0.13 0.01 −0.32 −0.34 0.26 0.19
6d 0.00 0.11 0.53 0.18 0.47 0.93 −0.09 0.46 0.23 −0.27 0.53 0.41
9b 0.52 −0.45 0.26 −0.22 0.46 0.48 0.24 −0.28 0.21 −0.40 0.56 0.27
10b −0.08 −0.01 0.77 0.02 0.04 0.53 −0.59 0.23 0.34 −0.21 0.15 0.33

All Fields 0.04 −0.17 0.33 −0.10 0.26 0.60 −0.14 0.11 0.11 −0.31 0.38 0.30
DpRVI DpRVISG inv(γ) inv(γ)SG

Field no. H SM BBCH H SM BBCH H SM BBCH H SM BBCH
6b −0.34 −0.35 −0.24 −0.12 −0.67 0.32 0.16 0.16 0.30 0.15 0.32 0.54
6d −0.27 0.11 0.53 0.52 −0.27 0.37 0.04 0.12 −0.04 0.46 −0.50 −0.02
9b 0.79 −0.45 0.26 0.38 −0.52 0.26 0.08 −0.05 0.13 0.72 −0.28 0.51
10b 0.66 −0.01 0.77 0.34 −0.28 0.26 0.33 −0.07 0.64 0.89 0.17 0.50

All Fields 0.21 −0.17 0.33 0.28 −0.43 0.30 0.15 0.04 0.26 0.56 −0.07 0.38

Appendix B

TerraSAR-X indices values before and after filtering using Savitzky–Golay filter.

Table A6. Correlation indices for corn before temporal filtering, after Savitzky–Golay (SG) filtering
(window size 9) calculated for σ0

VV , σ0
VH , DpRVI index, and interferometric coherence (inv(γ)) from

TerraSAR-X in the form of heatmap. Bold font represents the highest correlation index between
specific SAR vegetation index and in situ data of vegetation height (H), soil moisture (SM) and
phenology development in BBCH scale.

Corn

σ0
VH σ0

VH(SG)
σ0

VV σ0
VV(SG)

Field No. H SM BBCH H SM BBCH H SM BBCH H SM BBCH
11f 0.72 0.31 0.83 0.96 −0.07 0.93 0.56 0.37 0.75 0.82 −0.14 0.94
12e 0.74 0.06 0.87 0.95 −0.32 0.94 0.66 0.13 0.82 0.92 −0.34 0.95
13 0.73 0.09 0.76 0.94 −0.31 0.93 0.56 0.14 0.67 0.83 −0.37 0.93
14 0.70 0.33 0.84 0.94 −0.08 0.96 0.44 0.48 0.68 0.83 −0.01 0.95
20 0.74 0.27 0.74 0.96 −0.23 0.89 0.55 0.45 0.63 0.89 −0.06 0.94
8 0.71 0.13 0.83 0.96 −0.31 0.94 0.53 0.18 0.71 0.87 −0.42 0.96
24 0.78 0.41 0.83 0.97 0.00 0.93 0.64 0.46 0.77 0.87 −0.02 0.97

All Fields 0.73 0.23 0.81 0.95 −0.19 0.93 0.56 0.32 0.72 0.86 −0.19 0.95
DpRVI DpRVISG inv(γ) inv(γ)SG

Field no. H SM BBCH H SM BBCH H SM BBCH H SM BBCH
11f −0.71 0.20 −0.59 −0.92 0.19 −0.95 −0.04 −0.40 0.05 −0.57 0.00 −0.58
12e −0.26 0.08 −0.17 −0.85 0.42 −0.91 0.40 −0.24 0.32 0.59 0.20 0.37
13 −0.71 0.16 −0.46 −0.93 0.35 −0.94 0.38 −0.04 0.26 −0.49 0.14 −0.46
14 −0.43 0.25 −0.26 −0.80 0.12 −0.93 0.38 −0.35 0.35 −0.26 −0.32 −0.34
20 −0.44 0.28 −0.26 −0.86 0.03 −0.86 0.38 0.46 0.35 0.33 −0.11 0.20
8 −0.36 0.17 −0.41 −0.61 0.18 −0.78 0.53 −0.31 0.67 0.22 −0.35 0.10
24 −0.33 0.37 −0.25 −0.63 0.06 −0.82 0.29 −0.38 −0.01 0.02 −0.14 −0.23

All Fields −0.46 0.22 −0.34 −0.80 0.19 −0.88 0.33 −0.18 0.28 −0.02 −0.08 −0.13
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Table A7. Correlation indices for winter wheat before temporal filtering, after Savitzky–Golay (SG)
filtering (window size 9) calculated for σ0

VV , σ0
VH , DpRVI index, and interferometric coherence (inv(γ))

from TerraSAR-X in the form of heatmap. Bold font represents the highest correlation index between
specific SAR vegetation index and in situ data of vegetation height (H), soil moisture (SM) and
phenology development in BBCH scale.

Winter Wheat

σ0
VH σ0

VH(SG)
σ0

VV σ0
VV(SG)

Field No. H SM BBCH H SM BBCH H SM BBCH H SM BBCH
1 0.08 0.81 0.37 −0.51 0.56 −0.96 −0.42 0.71 0.94 −0.70 0.43 0.97

27b −0.18 0.46 0.93 −0.76 0.59 0.97 −0.53 0.55 1.00 −0.79 0.48 1.00
5 0.05 0.82 0.71 −0.55 0.76 0.95 −0.44 0.80 0.98 −0.69 0.68 1.00
2 −0.14 0.79 0.54 −0.59 0.68 0.97 −0.38 0.85 0.91 −0.66 0.71 0.99

21b −0.34 0.62 0.91 −0.81 0.71 0.98 −0.60 0.66 0.94 −0.84 0.71 1.00
23e −0.27 0.31 0.80 −0.73 −0.03 0.98 −0.59 0.02 0.99 −0.83 −0.17 1.00
26a −0.16 −0.02 0.77 0.19 −0.20 0.34 −0.10 −0.04 0.97 0.07 −0.10 0.74

All Fields −0.14 0.54 0.72 −0.54 0.44 0.60 −0.44 0.51 0.96 −0.64 0.39 0.95
DpRVI DpRVISG inv(γ) inv(γ)SG

Field no. H SM BBCH H SM BBCH H SM BBCH H SM BBCH
1 −0.43 −0.26 0.14 −0.45 0.15 1.00 0.66 0.18 0.97 0.67 −0.42 −0.90

27b −0.61 0.31 −0.06 −0.61 0.75 0.95 0.05 0.45 0.59 0.39 0.18 0.99
5 −0.58 0.33 0.79 −0.42 0.57 0.97 0.43 0.08 0.96 0.64 −0.71 −1.00
2 −0.78 0.42 0.81 −0.59 0.78 0.98 0.44 0.28 0.85 0.20 −0.31 0.24

21b −0.19 −0.22 −0.11 −0.39 0.58 0.99 0.25 −0.29 −0.25 0.71 −0.30 0.53
23e 0.12 0.26 0.6 0.06 0.63 0.96 0.38 0.16 0.32 0.79 0.64 0.73
26a −0.05 −0.35 −0.91 0.32 −0.78 −0.95 0.13 0.24 −0.21 0.07 0.01 −0.91

All Fields −0.36 0.07 0.18 −0.30 0.38 0.70 0.33 0.16 0.46 0.50 −0.13 −0.05

Table A8. Correlation indices for canola before temporal filtering, after Savitzky–Golay (SG) filtering
(window size 9) calculated for σ0

VV , σ0
VH , DpRVI index, and interferometric coherence (inv(γ)) from

TerraSAR-X in the form of heatmap. Bold font represents the highest correlation index between
specific SAR vegetation index and in situ data of vegetation height (H), soil moisture (SM) and
phenology development in BBCH scale.

Canola

σ0
VH σ0

VH(SG)
σ0

VV σ0
VV(SG)

Field No. H SM BBCH H SM BBCH H SM BBCH H SM BBCH
4 0.42 0.24 −0.52 0.32 −0.48 −0.95 −0.51 −0.06 −0.24 −0.80 −0.55 −0.88
9a 0.35 0.04 −0.77 0.12 −0.54 −0.93 −0.33 −0.06 −0.71 −0.80 −0.70 −0.77
15 0.38 0.13 −0.74 0.18 −0.42 −1.00 −0.56 −0.27 −0.73 −0.83 −0.63 −0.88
19a 0.56 0.24 −0.74 0.63 −0.30 −0.98 −0.34 0.33 −0.74 −0.74 −0.44 −0.84
18 0.51 0.21 −0.65 0.40 −0.45 −0.97 −0.24 0.11 −0.65 −0.78 −0.60 −0.91

All Fields 0.42 0.24 −0.52 0.33 −0.44 −0.96 −0.51 −0.06 −0.24 −0.79 −0.59 −0.86
DpRVI DpRVISG inv(γ) inv(γ)SG

Field no. H SM BBCH H SM BBCH H SM BBCH H SM BBCH
4 −0.79 −0.20 0.46 −0.85 0.03 0.99 0.04 0.69 0.95 −0.36 0.50 0.69
9a −0.79 −0.04 0.91 −0.70 0.08 0.98 0.43 0.22 0.60 0.66 −0.07 −0.96
15 −0.90 −0.30 0.79 −0.83 −0.16 0.85 0.15 −0.02 −0.30 0.16 −0.52 −1.00
19a −0.68 −0.02 0.68 −0.77 0.08 0.87 −0.30 0.12 0.45 0.10 0.28 0.98
18 −0.88 −0.10 0.65 −0.83 0.01 0.84 0.26 0.66 0.84 −0.11 0.56 0.97

All Fields −0.81 −0.13 0.70 −0.80 0.01 0.91 0.11 0.34 0.51 0.09 0.15 0.14

Table A9. Correlation indices for potato before temporal filtering, after Savitzky–Golay (SG) filtering
(window size 9) calculated for σ0

VV , σ0
VH , DpRVI index, and interferometric coherence (inv(γ)) from

TerraSAR-X in the form of heatmap. Bold font represents the highest correlation index between
specific SAR vegetation index and in situ data of vegetation height (H), soil moisture (SM) and
phenology development in BBCH scale.

Potato

σ0
VH σ0

VH(SG)
σ0

VV σ0
VV(SG)

Field No. H SM BBCH H SM BBCH H SM BBCH H SM BBCH
7a 0.67 0.39 0.90 0.68 0.00 0.92 0.65 0.50 0.79 0.69 0.03 0.93
7c 0.49 0.84 0.79 0.82 0.48 0.63 0.82 0.70 0.39 0.95 0.31 0.34

16_1 0.70 0.28 0.61 0.84 0.00 0.56 0.67 0.25 0.41 0.84 0.05 0.50
16_2 0.69 0.34 0.57 0.83 0.03 0.53 0.64 0.30 0.36 0.83 0.08 0.46
17 −0.09 0.18 0.54 −0.11 −0.02 0.55 −0.47 0.11 0.17 −0.22 −0.12 0.34
6a 0.37 0.63 0.66 0.59 0.29 0.70 0.39 0.66 0.38 0.78 0.20 0.69

All Fields 0.47 0.44 0.68 0.61 0.13 0.65 0.45 0.42 0.42 0.64 0.09 0.54
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Table A9. Cont.

Potato

DpRVI DpRVISG inv(γ) inv(γ)SG
Field no. H SM BBCH H SM BBCH H SM BBCH H SM BBCH

7a 0.73 0.05 0.42 0.24 0.14 0.41 0.56 0.48 0.83 0.36 0.16 0.54
7c −0.07 0.59 0.09 −0.53 −0.01 0.09 0.54 0.49 0.79 0.76 −0.26 −0.31

16_1 −0.73 0.18 −0.53 −0.98 −0.08 −0.88 −0.29 0.04 −0.63 −0.36 0.10 −0.69
16_2 −0.61 0.15 −0.56 −0.84 0.00 −0.99 0.03 −0.03 −0.11 −0.37 0.04 −0.63
17 −0.77 −0.18 −0.49 −0.76 −0.29 −0.89 0.42 −0.13 0.80 −0.65 −0.12 −0.16
6a −0.47 −0.24 −0.17 −0.71 −0.41 −0.91 0.44 0.63 0.17 0.06 −0.09 −0.53

All Fields −0.32 0.09 −0.21 −0.60 −0.11 −0.53 0.28 0.25 0.31 −0.03 −0.03 −0.30

Table A10. Correlation indices for rye before temporal filtering, after Savitzky–Golay (SG) filtering
(window size 9) calculated for σ0

VV , σ0
VH , DpRVI index, and interferometric coherence (inv(γ)) from

TerraSAR-X in the form of heatmap. Bold font represents the highest correlation index between
specific SAR vegetation index and in situ data of vegetation height (H), soil moisture (SM) and
phenology development in BBCH scale.

Rye

σ0
VH σ0

VH(SG)
σ0

VV σ0
VV(SG)

Field No. H SM BBCH H SM BBCH H SM BBCH H SM BBCH
6b 0.30 0.72 0.22 0.06 0.31 0.98 0.10 0.78 0.65 −0.24 0.35 0.99
6d −0.16 0.58 0.52 −0.67 0.44 0.99 −0.37 0.67 0.90 −0.75 0.55 0.99
9b 0.45 0.24 0.03 −0.64 0.66 0.96 −0.18 0.53 0.09 −0.81 0.80 0.99
10b −0.86 0.61 0.71 −0.80 0.44 0.97 −0.89 0.51 0.91 −0.70 0.50 0.99

All Fields −0.07 0.54 0.37 −0.51 0.46 0.98 −0.34 0.62 0.64 −0.63 0.55 0.99
DpRVI DpRVISG inv(γ) inv(γ)SG

Field no. H SM BBCH H SM BBCH H SM BBCH H SM BBCH
6b −0.46 0.40 0.95 −0.41 0.46 0.99 −0.04 0.73 0.86 −0.27 0.58 0.98
6d −0.15 0.08 0.66 0.02 0.63 1.00 0.38 0.16 0.74 0.43 0.53 0.95
9b −0.72 0.12 −0.40 −0.65 0.79 0.99 0.42 −0.23 −0.61 −0.06 0.57 0.96
10b 0.10 0.07 0.73 −0.28 0.57 0.99 −0.73 0.08 −0.58 0.40 0.58 0.94

All Fields −0.31 0.17 0.48 −0.33 0.61 0.99 0.01 0.19 0.11 0.12 0.56 0.96
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