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Abstract: Tree species information is important for forest management, especially in seedling stands.
To mitigate the spectral admixture of understory reflectance with small and lesser foliaged seedling
canopies, we proposed an image pre-processing step based on the canopy threshold (Cth) applied on
drone-based multispectral images prior to feeding classifiers. This study focused on (1) improving
the classification of seedlings by applying the introduced technique; (2) comparing the classifica-
tion accuracies of the convolutional neural network (CNN) and random forest (RF) methods; and
(3) improving classification accuracy by fusing vegetation indices to multispectral data. A classifi-
cation of 5417 field-located seedlings from 75 sample plots showed that applying the Cth technique
improved the overall accuracy (OA) of species classification from 75.7% to 78.5% on the Cth-affected
subset of the test dataset in CNN method (1). The OA was more accurate in CNN (79.9%) compared
to RF (68.3%) (2). Moreover, fusing vegetation indices with multispectral data improved the OA from
75.1% to 79.3% in CNN (3). Further analysis revealed that shorter seedlings and tensors with a higher
proportion of Cth-affected pixels have negative impacts on the OA in seedling forests. Based on the
obtained results, the proposed method could be used to improve species classification of single-tree
detected seedlings in operational forest inventory.

Keywords: seedling forest; species classification; canopy height threshold (Cth); image pre-processing;
UAV; random forest; artificial intelligence

1. Introduction

Classification of tree species is one of the key steps in remote sensing (RS)-based forest
inventory to provide accurate estimates of structural characteristics of forests, such as
species-specific tree densities and heights. However, it has been a challenging task for RS-
based forest inventories [1], and it is an even more challenging in seedling stands [2], which
are defined as homogenous forest stands in their early regeneration stages, i.e., with the
mean height of dominating tree species being <7 or <9 m in coniferous or deciduous forests
in Finland, respectively [3]. Therefore, new methods are needed in orderto improve the
classification of seedlings. Seedling classification is challenging because the tree canopies in
seedling stands often have lesser canopy foliage and variable canopy size. This is because
some of the seedlings may have been planted while others—in Finland, often birches and
other deciduous trees—are naturally regenerated within the same stand. This allows for a
higher impact of reflectance from understory vegetation [4–6]. The seedlings may also be
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dense and even grow in thicket-like patterns, which causes mixed-canopy reflectance and
hampers tree species classification. Therefore, this research aimed to introduce and explore
a novel methodological approach to investigating the effect of tree height and foliage on
species classification, explained as ecological factors that challenge the seedling species
classification process.

RS technologies could support or replace field visits [7,8] carried out to collect the
required information for the management of seedling stands. Such information includes
tree species, height, and the number of trees per hectare (i.e., tree density). This information
is needed in order to allocate tending and thinning operations in seedling forests, defined
as the removal of competing understory vegetation and clustered and unwanted tree
species from crop trees, respectively. This information plays a crucial role in assisting forest
managers in the allocation of silvicultural operations, aiming at ensuring tree growth of the
species of interest and future wood supply [3,9–12], as well as other ecological functions
of seedling stands [13,14]; for example, it is important to give more growing space for
coniferous seedlings than dominating and often unwanted deciduous seedlings [15] and
understory [16,17], as deciduous seedlings, especially birches, outgrow coniferous seedlings
during the early growth stages [15,18,19]. An RS-based forest inventory could collect the
required information in a more spatially explicit and timely manner compared to field
visits, which are considered to be time-consuming, costly, laborious, and often subjective.

Over the past few decades, several approaches to species classification have uti-
lized machine learning. These approaches can be grouped into supervised, semi(weakly)-
supervised, and unsupervised methods, all of which have been widely used in different
forest RS tasks [1,20,21]. In particular, the random forest (RF) classifier and the rather-new
deep learning methods (particularly convolutional neural networks (CNNs)) have been
extensively utilized in tree species classification [21,22]. RF is an ensemble learning method
that works by building several uncorrelated and independent decision trees, which predict
the target response (i.e., species class [23]). It averages the probabilistic prediction of each
class from the decision trees [24]. On the other hand, CNNs are based on a network of
connected processing units organized in layers of intercorrelated nodes. The input images
are converted to new feature maps based on a set of weights and biases applied in each
layer [25]. In the simplest form, the data flow through each convolutional layer and pass
forward to the next layer. Finally, a decision (species class) is made based on the values
produced by the last layer [25–27]. In theory, a CNN is able to automatically extract relevant
features and employ them in its own automatic manner during training with the least prior
knowledge of the given task [28,29]. This is in contrast to traditional or conventional meth-
ods, such as RF, which usually require users to provide the features used in the classification
task [30]. Using CNNs for classifying tree species in mature forests has been studied with
different inputs of red–green–blue (RGB) and multi- and hyper-spectral data acquired from
drone, air-, and space-borne RS platforms (e.g., [31–35]). CNNs have proven to be more
accurate tree-classifiers than RF in different conditions, such as in mature forests [30,33] and
urban or suburban environments [36,37]. However, the feasibility of CNNs compared to RF
is still not understood in seedling stands where forest structure is complex due to different
canopy sizes, canopy foliage cover percentages, and densely and unevenly located canopies.
Only a few studies applied CNNs in mapping and attribute derivation in seedling trials;
for example, Pearse et al. [38] and Hartley et al. [39] used a CNN for detecting seedlings,
and estimating their heights in forestry seedling trials, respectively. However, these studies
were conducted in trial forest conditions. There are numerous gaps in our knowledge
related to the capabilities of CNN methods in the real-world operational management of
seedling stands using low-cost operational multispectral drone (a.k.a., unmanned aerial
vehicle (UAV)) data. Hence, it is an open question as to whether CNNs could classify
seedlings more accurately compared to the RF classifier. Based on recent literature pub-
lished on this matter, only two seedling studies carried out in real forest conditions used
CNNs and drone-imagery. The first of these used a CNN to delineate and assess the height
of seedlings in leaf-off conditions [40]; whereas the latter utilized a CNN for separating



Remote Sens. 2023, 15, 5233 3 of 27

coniferous seedlings from non-seedling objects [41]. Hence, the use of multispectral drone
imagery and CNNs to classify seedlings in real-forest conditions remains an unexplored
topic; although Imangholiloo et al. [2] classified individual seedlings into spruce, birch,
and non-tree classes using the intensity of multispectral airborne laser scanning (mALS)
data via RF, the performance of RF on multispectral drone imagery with higher species
classes needs more exploration.

The applied methodological improvement in this study—using canopy threshold
(Cth)-based image pre-processing prior to feeding to CNN classifiers—was inspired by
other seedling studies using ALS data. The studies usually applied Cths between 0 and 1 m
for the removal of laser returns from understory/ground [2,10,42–45]. Cths between 0.5
and 1 m were also applied in seedling classification using conventional classifiers such as
RF on hyper- or multi-spectral data [46]. However, the use of a Cth is a novel pre-processing
option for CNNs, which has not been explored for tree species classification in seedlings or
even mature trees. Furthermore, CNNs have not been compared against RF in seedling
classification. Hence, this research aims to address the following research questions:

1. Can the species classification accuracy of seedlings be improved by applying a
Cth-based image pre-processing prior to feeding the CNN and RF classifiers?

2. Can the species classification accuracy be improved when a new dataset is created by
merging the Cth-affected and not-Cth-affected tensors together?

3. Can CNN yield a more accurate seedling species classification accuracy than RF due
to its higher capability of representing nonlinearity?

4. Can species classification be improved by adding vegetation indices (VIs) into multi-
spectral data in CNNs?

Moreover, the effects of the number of Cth-affected pixels and the height of seedlings
on the classification accuracy were analyzed and discussed.

2. Materials and Methods

2.1. Study Area and Field Data Collection

The study area is located in Evo, southern Finland (61.20◦N, 25.08◦E (Figure 1)). The
area consists of a forested area of ~2000 ha, with elevation varying from 125 m to 185 m
above sea level. The forests in the Evo area are characterized by typical southern boreal for-
est conditions. Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.)
are the dominant tree species in the area, whereas deciduous species comprise approxi-
mately one fifth of the total stem volume. Silver birch (Betula pendula Roth.) and white
birch (Betula pubescens Ehrh.) are the main deciduous tree species in the area.

The field data were collected from 75 square shaped (10 × 10 m) sample plots that
were placed on seedling stands within the study area. At first, existing forest resource
information was used to determine stands that were classified as seedling stands within
the study area. The existing forest resource information was used to classify the stands
in different strata based on the main tree species and seedling density of the stand. Then,
stratified sampling of seedling stands was performed by selecting a subsample from each
seedling stand stratum to cover the whole variation of tree species classes and different
seedling densities of the seedling stands on the study area. In total, 14 stands were selected
to represent the whole variation of seedling stands. Then, the number of plots created on
each stand was determined so that all the species classes and different seedling density
classes were represented in the data. The field work was performed on these stands. For the
collection of RS data, five data collection zones were created. Each of these zones covered
approximately 10 ha.
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Figure 1. A map of the study area in southern Finland (A) showing the five flight zones with drone-
based red, green, blue (RGB) orthomosaics (B), together with a drone-based multispectral orthomo-
saic in a flight zone (C) and zooming into a single forest stand (D) and forest plot (10 × 10 m, (E)), 
showing tensors of field-measured trees (10 × 10 pixels). Numbers 1, 2, 3, and 4 in (E) show species 
classes of pine, spruce, birch, and other species, respectively. The topographical map in (B) is from 
the National Land Survey of Finland (NLS). 

The field data were collected from 75 square shaped (10 × 10 m) sample plots that 
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ered approximately 10 ha. 

During the field work, 75 sample plots were placed on the stands. On each stand, the 
longest intersecting line through the stand was created, and the sample plots were placed 
along it. The interval between the plots along the line was dependent on the area and 
shape of the stand. An additional line was created abeam of the intersecting line if the field 
crew noticed that it was not possible to place enough plots along the intersecting line due 

Figure 1. A map of the study area in southern Finland (A) showing the five flight zones with
drone-based red, green, blue (RGB) orthomosaics (B), together with a drone-based multispec-
tral orthomosaic in a flight zone (C) and zooming into a single forest stand (D) and forest plot
(10 × 10 m, (E)), showing tensors of field-measured trees (10 × 10 pixels). Numbers 1, 2, 3, and 4
in (E) show species classes of pine, spruce, birch, and other species, respectively. The topographical
map in (B) is from the National Land Survey of Finland (NLS).

During the field work, 75 sample plots were placed on the stands. On each stand, the
longest intersecting line through the stand was created, and the sample plots were placed
along it. The interval between the plots along the line was dependent on the area and shape
of the stand. An additional line was created abeam of the intersecting line if the field crew
noticed that it was not possible to place enough plots along the intersecting line due to
the shape of the stand or other factors causing the rejection of any predefined sample plot
locations. The starting point for the additional line was always one of the existing sample
plot locations. The plot interval was fixed within the whole stand.

In the field, the field crew determined the direction of the line and the location of
the plot center using a magnetic compass and measurement tape. If the structure of the
forest was not representative of the stand in general, or the pre-defined plot had lots of
variation within, the field crew was instructed to move the plot center to a location where
the structure was more homogeneous and similar to the rest of the seedling stand area.
The plot center was marked on the field and its location was determined with a real-
time-kinematic (RTK) global navigation satellite system (GNSS) measurement (Trimble R2
and TSC7).

All trees located inside the 10 × 10 m plot and exceeding the height of one meter were
tallied. Tree species were determined, and tree height was measured either by using a
measurement stick or an electrical clinometer (Vertex IV, Haglöfs, Stockholm, Sweden). The
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use of the measurement device depended on the size of the tree. The location of each tree
was determined by placing the receiver pole in an upright position as close as possible
to the stump of the tree. Finally, the location was defined as an average of three RTK
measurements, with an average horizontal error of 1.8 cm.

During the early development phase of a forest stand, there are typically several
thickets of mainly deciduous saplings. In this study, these thickets were located with the
RTK as one thicket in the measurements because it would not be possible to extract all the
unique saplings belonging to the thickets from the RS data and measure their location with
the RTK accurately. However, if the sapling thickets exceeded one meter in height, the
number of unique individuals forming the thickets and their tree species were recorded.

A total of 5417 trees, including pine (13.6%), spruce (28.7%), birch (48.4%), and
other species (9.3%), were measured inside the 75 plots. The other species class included
rowan (Sorbus aucuparia L., 45.8%), willow (Salix spp., 30.5%), aspen (Populus tremula L.,
17.5%), grey alder (Alnus incana L., 5.2%), juniper (Juniperus communis L., 0.6%), and larch
(Larix sibirica Ledeb., 0.4%).

2.2. Remote Sensing Data

RS data acquisition was carried out using a quadcopter drone Geocopter X4 built by
Videodrone Oy. The drone was equipped with post-processed kinematic (PPK)-level GNSS
positioning technology.

The camera payload of the drone included two RGB and MicaSense (Seattle, WA, USA)
multispectral cameras. Cameras were synchronized to capture images exactly at the same
time to avoid any perspective differences between RGB and multispectral results, as well
as with the PPK GNSS system to enable precise direct georeferencing.

The MicaSense multispectral camera was integrated with a light metering sensor
DLS (downwelling light sensor), which was used in data processing to compensate for
illumination differences between images within one flight. The MicaSense camera kit 50%
reflectance panel was applied for each flight to set the right level for reflectances.

Drone images were collected during two days in five separate flights (Table 1). Weather
conditions were cloudy or light overcast during both operating days. Due to the overcast
conditions, both the DLS and the reflectance panels are recommended to be used in radio-
metric calibration by instructions of MicaSense. The panel was set to the ground for each
flight corresponding to the lightning conditions during the flight by avoiding any shadows
or distortions. Reference panel images were collected right before and right after each
flight to obtain two baseline measurements with which to observe how the illumination
conditions changed during the flight. DLS data were auto-saved to refer to illumination
conditions of the individual image files.

Table 1. Summary of remote sensing data used for this study. FWHM: full width at half maximum;
GSD: ground sampling distance; RGB: red, green, blue; NIR: near-infrared.

Multispectral Images RGB Images

Name of Sensor MicaSense MX Red-Edge
Sony A6000-series 24 Megapixel
frame camera with 21 mm
Voigtländer lens

Spectral bands RGB, RedEdge, NIR RGB
Central wavelength (nm) 475, 560, 668, 717, 840 -
FWHM (nm) 20, 20, 10, 10, 40 -
Resolution (GSD, cm) 5.5 1.3
Flight Altitude (m) 70 70
Drone speed (m/s) 8–9 8–9
Date 11 * and 15 ** September 2021 11 * and 15 ** September 2021
Time (UTC + 3) 12:30 to 14:30 * and 10:30 to 11:50 ** 12:30 to 14:30 * and 10:30 to 11:50 **
Forward and side overlap (%) 80 and 75 85 and 80

* three flights; ** two flights.
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2.3. Creating Dense Point Clouds and Orthomosaics

Image positions were initially estimated by employing the GNSS (Rinex) log data
available from Trimble Virtual Reference Station (VRS) with the RTKLIB, version 2.4.3 b02
(www.rtklib.com, accessed on 10 October 2021) software. The initial positions of images
were forwarded to a photogrammetric suite to find the accurate orientation and rotation
of each image through photogrammetric adjustment. Photogrammetric processing was
carried out with Agisoft Mestashape, version 1.7. Both camera datasets of each flight were
processed separately.

The photogrammetric process included radiometric calibration and geometric calibra-
tion, in which image orientations and positions were accurately estimated. Afterwards,
dense point clouds from RGB images and orthomosaics from multispectral data were
created by employing adjusted parameters. The RGB camera system was geometrically
calibrated earlier; therefore, no ground control point was used. The process of generat-
ing dense photogrammetric point clouds resulted in around 3 cm point distance (about
1400 points/m2). Orthomosaics were processed by applying a 3 m resolution DSM to avoid
distortion of trees. Five-band multispectral orthomosaics were finally exported in 16-bit
TIFF format.

2.4. Image Preprocessing

Canopy height models (CHMs) were created using drone photogrammetric point
clouds (PPC) that were height-normalized using ground-classified laser returns of point
clouds collected by a drone-based laser scanner (DJI Zenmuse L1 Lidar, Shenzhen, China).
The flight was carried out on the 10 September 2021 at flight speed of 5 m/s and altitude of
55 m with planned point density of >700 points/m2. The resolution of the CHM was 5 cm
to match with multispectral data. The possible few null (empty) pixels in the CHM were
filled using a 7 × 7 moving kernel over the null pixels only.

Next, we used a bounding box of 10 × 10 pixels (5 cm each pixel size, so it will be
50 × 50 cm as seedlings canopy) around the field-measured treetop location to create image
data cubes (to call as tensors from now onward (Figure 1C)) for both classifiers identically.
This dataset was created from the original multispectral data and called noCth.

This step was followed by applying canopy threshold (Cth)-based image pre-processing
on the noCth dataset to minimize the effects of understory reflectance. This dataset is called
withCth. During the Cth-based image pre-processing, pixels of multispectral data were
nullified if CHM values were ≤0.4 m. This step was followed by extracting handcrafted
features for RF method and filling the nullified pixels by means of 8-closest pixels in a
3 × 3 moving kernel around the gap pixels for the CNN method. This gap-filling for tensors
was needed for the CNN methods because they cannot handle the gaps yet. However, the
gaps were not a problem for handcrafted features in RF because the features were at the
tensor level. The noCth dataset was created to be able to compare the effect of applying
the proposed Cth-based image pre-processing method. The created noCth dataset included
all the same tensors as the withCth dataset but no Cth-based images pre-processing was
applied on them.

The introduced Cth-based image pre-processing method is depicted in Figure 2, with
RGB for visual check (resolution 1.3 cm), CHM, the original tensors (i.e., noCth dataset), and
filled (after processing; withCth dataset). The appearance of the colors of tensors become
more homogenous.

www.rtklib.com
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Figure 2. Visualizing the effect of applying the canopy threshold (Cth)-based image pre-processing
method introduced in this research on two sample pine trees with height 1.4 m (upper row) and
1.3 m (lower row). The pixel size of the RGB image is 1.4 cm, but CHM and multispectral images are
5 cm. The multispectral images (noCth and withCth) visualized colored infrared bands (bands 5, 3, 2).
The CHM is pseudo-colored by height (legend in each separately). The white pixels in CHM denote
nullified (Cth-affected) pixels after image pre-processing due to a height of ≤0.4. The + symbol in the
middle of the images shows the location of a field-measured treetop.

2.5. Extracting Features for the Random Forest Classifier

Several spectral features (totaling 17, explained in Table 2) were extracted from each
band of MicaSense data of each tensor using Zonal Statistics in Python.

Table 2. A list of 17 extracted features from each band of multispectral data (MicaSense) from each
tensor of 10 × 10 pixels (assuming it as a tree segment boundary).

Feature Name Description of Features Meaning

Min Minimum of reflectance within pixels of each tensor.
Max Maximum of reflectance within pixels of each tensor.
Mean Mean of reflectance within pixels of each tensor.
Stdev Standard deviation of reflectance within pixels of each tensor.
Range Range (Max-Min) of reflectance within pixels of each tensor.

Percentiles Percentiles of the reflectance values of pixels of each tensor. Percentiles 10–90 (every 10%) and
percentiles 5 and 95% were calculated, totaling 11 features.

NoData Number of NoData pixels of each tensor which were omitted assuming as understory reflectance.

Next, eight vegetation indices (VIs) were calculated for each extracted feature of the
tensors (Table 3). The VIs and their equations are given in Table 3. This came to 221 features.
The value of all handcrafted features (Tables 2 and 3) in RF and tensors in the CNN methods
were standard scaled.

Table 3. List of vegetation indices (VIs) applied in this study with their equations.

Full Name Abbreviation Equation

1 Normalized Difference Vegetation Index NDVI (NIR − Red)/(NIR + Red)
2 RedEdge NDVI NDRE (NIR − RedEdge)/(NIR + RedEdge)
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Table 3. Cont.

Full Name Abbreviation Equation

3 Green NDVI GNDVI (NIR − Green)/(NIR + Green)
4 Simple ratio SR NIR/Red
5 NDVI times SR NDVI × SR NDVI × SR
6 Chlorophyll Vegetation Index CVI (NIR/Green) × (Red/Green)
7 Normalized Difference Greenness Index NDGI Green − Red/Green + Red
8 Difference Vegetation Index DVI NIR − Red

2.6. Preparing Tensors for the Convolutional Neural Network Classifier

The input image tensors for the CNN contained a 3D shape of 10 (width) × 10 (height) × 5
(depth), including 500 floating point numbers. These tensors were used as training (80%),
validating (10%), and testing (10%) sets for hyper-tuning inside a cross-validation (CV)
process, while the testing data remained untouched until the end of this process. Table 4
shows the number of training, validation, and test sets of each species class used equally
for both classifiers.

Table 4. A summary of the number of training, validation, and test sets per each tree species class.

Species Number (%) of
Training Set

Number (%)
of Validation Set

Number (%) of Test
Set

Pine 579 (13.4%) 79 (14.6%) 81 (14.9%)
Spruce 1255 (29.0%) 150 (27.7%) 149 (27.5%)
Birch 2103 (48.5%) 258 (47.6%) 261 (48.2%)
Other species 396 (9.1%) 55 (10.1%) 51 (9.4%)

Total (5417) 4333 (80.0%) 542 (10.0%) 542 (10.0%)

To address research question 4, a total number of 8 VIs (Table 3) were created and
fused to the 5 bands of multispectral tensors to verify the importance of VIs in improv-
ing the overall accuracy. Therefore, the tensors of this analysis had a dimension of
10 (width) × 10 (height) × 13 (depth), yielding 1300 floating point numbers.

2.7. Training and Validation of the Random Forest Classifier

A 5-fold CV mechanism was employed using the grid_search functionality in the Scikit-
learn library in Python [24] for hyper-tuning the training phase (i.e., training the RF with
all possible combinations of given grid values of each parameter) and finding the RF with
the highest validation accuracy (val_acc).

CV enables the examining of multiple values for each parameter of an estimator (RF).
Table 5 represents the selected parameters for hyper-tuning, their short description, our
given list of values for the grid_search CV mechanism, as well as the default values.

Table 5. List of selected parameters for hyper-tuning inside grid_search CV with a short description,
as well as the given list of values as input for the grid_search CV mechanism and the default values.

Parameter Name Description (Pedregosa et al. [24]) Given Values for Grid Default Value

max_depth The maximum depth of the tree. [None, 2, 10, 50, 80, 100] None

min_samples_split The minimum number of samples required to split an
internal node. [2, 3, 5, 8, 10, 12] 2 *

min_samples_leaf The minimum number of samples required to be at a
leaf node. [1, 2, 3, 5, 20, 100] 1

max_features The number of features to consider when looking for
the best split ** [0, 2, ‘auto’, ‘log2’, ‘sqrt’, None] sqrt

n_estimators
The number of trees in the forest. Usually, the bigger
the better, but a larger number slows down the
computation.

[75, 100, 125, 200, 500, 1000] 100

* Must be >1, gives error in 1. ** For classification usually “sqrt” is recommended, which is the default.
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N_estimators and max_features were the recommended main parameters for hyper-
tuning, and the use of the CV method was underlined to find the best parameter values [24],
the values in the default values for RF parameters, and more values around the defaults for
hyper-tuning. This grid resulted in 7776 model combinations that were trained with 5-fold
CV. Consequently, the best-trained model was selected out of 38,880 (7776 × 5) models.

For this CV step in RF, the training (80%) and validation sets (10%) were combined as
input to grid_search, which splits the data into five and uses one split at a time for validation
and the other four splits for training.

The most important features were analyzed from the CV-nominated best model, which
had the highest val_acc. At this step, the features were sorted based on their importance
(extracted from RF feature importance), and their intercorrelations with each other were
checked. Finally, the five most important and not intercorrelated (<0.8) features were
selected for training and predicting species classes. The same test dataset was used for both
RF and the CNN.

2.8. Training and Validation of the Convolutional Neural Network

A sequential multi-layer perceptron (MLP) CNN was considered for this research by
employing the Keras module [47], which is a part of the TensorFlow library [48]. In the
sequential MLP CNN used in this research, an encoder segment with four convolutional
blocks was considered, such that each convolution was followed by a batch normalization
block. The encoder part was followed by a flatten block that vectorized the first two
dimensions of its input tensor to fit into an MLP neural network. The architecture of the
proposed network is depicted in (Figure 3) using Net2Vis v.3.18.3 software [49].
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Figure 3 illustrates the structure of the CNN architecture. After obtaining the input
tensors, the first Conv2D layer applies 16 random spatial convolutions over the input tensor
shaped 10 × 10 × 5 (in noVIs, but 13 in withVIs), followed by batch normalization which
normalizes the data such that they have a mean output of zero and a standard deviation
of 1 [47]. These two steps—Conv2D and batch-normalization—are repeated three times,
resulting in an output tensor of size 2 × 2 × 128 (Figure 3; Appendix A). Next, a flattening
operation is carried out to convert the input tensor of 2 × 2 × 128 to a flat 512 × 1 tensor.
This step is followed by applying dense, dropout, and batch normalization twice before
finishing with a dense layer that outputs the probability of the input belonging to each of
the 4 species classes.

The dense layer is a fully connected layer, meaning that each neuron inside it receives
values from all the neurons on the previous layer [27]. It passes a weighted sum of its input
to an activation function as (activation (dot (kernel, input) + bias). The activation function,
by default, is a piecewise linear transform; however, other activation functions, such as
rectified linear unit (relu) or hyperbolic tangent (tanh), are accessible. To avoid overfitting,
one strategy is to select a few random nodes and add accidental noise to them by employing
dropout layers [50,51].

The relu activation function was used in the conv2D and dense layers, except the last
dense layer, where the softmax activation function was considered. The Relu activation
function also increases the nonlinearity of the CNN models [32,52]. The softmax activation
function in the last layer calculates the probability of each tensor being classified for each
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outcome (four species classes); hence, it outputs a vector of 4 values representing the
4 species classes. Finally, the adaptive moment estimation (Adam) optimizer with default
settings and categorical_crosssentropy loss function was used in model.compile() (i.e., for
training the model). The default values were used in this study for all hyperparameters
apart from the dropout rates, dense units, and batches sizes, which were hyper-tuned. A
Python code was developed to construct a dictionary including all possible combinations
(7350) from the below grid. The code recorded all possible combinations:

Dropout rate 1 = [0.0, 0.2, 0.4, 0.6, 0.8];
Dropout rate 2 = [0.0, 0.2, 0.4, 0.6, 0.8];
Dense unit 1 = [10, 50, 100, 150, 200, 250, 300];
Dense unit 2 = [10, 50, 100, 150, 200, 250, 300];
Batch_size = [32, 64, 128, 256, 1024, 1500].

Next, an index-parallelized for-loop was used to run and hyper-tune all possible com-
binations of the considered grid for optimizing and hyper-tuning the CNN methods. The
for-loop was indexed from 0 to 7350 then run in parallel on tasks of each 1000 combinations
in a CPU node (tasks 0–1000, 1000–2000, 2000–3000, . . ., 6000–7500). This was implemented
to make the training phase efficient. After experimenting with the optimal computation re-
sources, each task was submitted to a single-node computing unit with 10 CPUs. Each task
used around 40% of 10 CPUs. All model training was implemented using the computation
nodes of the Puhti supercomputer provided by the CSC–IT Center for Science, Finland [53].

Considering that the maximum epoch number was 300 iterations, the total possible
run of CNN could be up to 2,205,000 model runs, but it never reached this due to the early
stop function that was employed in the callback function (i.e., if val_acc was not improved
after 100 epochs, then the training was stopped). A customized callback function was
used in order to (1) save the best model when improvement is observed (when validation
accuracy of an epoch is more than the earlier epoch) and (2) provide an early stop function
(with patience of 100; i.e., if a model does not see improvement of validation accuracy after
100 runs, it stops).

To address research question 1, both the CNN and RF classifiers were trained on both
withCth and noCth datasets separately to predict the tree species classes of the test datasets.
As for research question 2, the test datasets of both the noCth and withCth datasets were
divided into Cth-affected and not-Cth-affected subdatasets. Next, the trained models were
used to predict only the corresponding subset of the test set, meaning that the model trained
using the withCth dataset was used to predict the withCth subset of the test dataset, and
the model trained with the noCth dataset was used to predict the noCth subset of the test
dataset (Figure 4). In this analysis, only the Cth-affected tensors (181 out of 542 test tensors
(33.4%)) and the not-Cth-affected tensors (361 out of 542 test tensors (66.6%)) were used
as subsets of the test datasets, and there was no need for re-running the classifiers, as the
species classes were already predicted, and we just switched the predicted species classes
for the subsets of the test dataset (Figure 4). In this analysis, it was hypothesized that the
Cth-affected tensors (corresponding to shorter seedlings) could be classified more accurately
in the withCth dataset, and the not-Cth-affected tensors could be classified more accurately
in the noCth dataset because the classifiers could select the most suitable model parameter
settings for each input dataset automatically. Figure 4 shows the idea in a schematic way.

To study research question 3, the species classification accuracies of RF and the CNN
were compared. In addressing research question 4, the CNN models were trained on the
noVIs dataset with only 5 multispectral bands (tensors shape 10 × 10 × 5) and the withVIs
dataset with 8 additional VIs (10 × 10 × 13).

Of note, the random seed was set to be fixed in CNN using the following commands:
np.random.seed(42), python_random.seed(42), tf.random.set_seed(42). Similarly, random_state = 42 in
Scikit-learn was applied for RF. This was applied to obtain reproducible results and reduce the
randomness of outputs.



Remote Sens. 2023, 15, 5233 11 of 27

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 29 
 

 

and the model trained with the noCth dataset was used to predict the noCth subset of the 
test dataset (Figure 4). In this analysis, only the Cth-affected tensors (181 out of 542 test 
tensors (33.4%)) and the not-Cth-affected tensors (361 out of 542 test tensors (66.6%)) were 
used as subsets of the test datasets, and there was no need for re-running the classifiers, 
as the species classes were already predicted, and we just switched the predicted species 
classes for the subsets of the test dataset (Figure 4). In this analysis, it was hypothesized 
that the Cth-affected tensors (corresponding to shorter seedlings) could be classified more 
accurately in the withCth dataset, and the not-Cth-affected tensors could be classified more 
accurately in the noCth dataset because the classifiers could select the most suitable model 
parameter settings for each input dataset automatically. Figure 4 shows the idea in a sche-
matic way. 

 
Figure 4. A schematic graph of the methodological principles behind introducing canopy threshold 
(Cth)-based image pre-processing and combining two subsets of the test dataset based on whether 
or not it was affected by Cth processing. 

To study research question 3, the species classification accuracies of RF and the CNN 
were compared. In addressing research question 4, the CNN models were trained on the 
noVIs dataset with only 5 multispectral bands (tensors shape 10 × 10 × 5) and the withVIs 
dataset with 8 additional VIs (10 × 10 × 13). 

Of note, the random seed was set to be fixed in CNN using the following commands: 
np.random.seed(42), python_random.seed(42), tf.random.set_seed(42). Similarly, random_state = 
42 in Scikit-learn was applied for RF. This was applied to obtain reproducible results and 
reduce the randomness of outputs. 

2.9. Accuracy Assessments 
The species classification was assessed via overall accuracy (OA), kappa coefficient, 

precision (a.k.a., positive predictive value or user accuracy for positives), recall (a.k.a., true 
positive rate or producer accuracy for positives), and F1 scores (Equations (1)–(5)): 

OA = TP+TN
TP+TN+FP+FN

, (1) 

Kappa =  2×(TP ×TN−FN ×FP)
(TP+FP)×(FP + TN)+(TP+FN) ×(FN +TN)

, (2) 

Precision = TP
TP+FP

, (3) 

Recall = TP
TP+FN

, (4) 

F1 = 2 × Precision×Recall
Precision+Recall

, (5) 

where TP is true positives, TN is true negatives, FP is false positive, and FN is false nega-
tives. 

Figure 4. A schematic graph of the methodological principles behind introducing canopy threshold
(Cth)-based image pre-processing and combining two subsets of the test dataset based on whether or
not it was affected by Cth processing.

2.9. Accuracy Assessments

The species classification was assessed via overall accuracy (OA), kappa coefficient,
precision (a.k.a., positive predictive value or user accuracy for positives), recall (a.k.a., true
positive rate or producer accuracy for positives), and F1 scores (Equations (1)–(5)):

OA =
TP + TN

TP + TN + FP + FN
, (1)

Kappa =
2 × (TP × TN − FN × FP)

(TP + FP)× (FP + TN) + (TP + FN)× (FN + TN)
, (2)

Precision =
TP

TP + FP
, (3)

Recall =
TP

TP + FN
, (4)

F1 = 2 × Precision × Recall
Precision + Recall

, (5)

where TP is true positives, TN is true negatives, FP is false positive, and FN is
false negatives.

2.10. Analyzing the Effects of the Number of Cth-Affected Cells and Seedlings Height on
Classification Accuracy

After obtaining the overall classification and accuracy assessments, the results were
analyzed to explore the effects of the number of Cth-affected pixels on species classification,
hypothesizing that Cth-affected tensors would be more accurately classified. For this, the
test dataset (reference and predicted labels) was separated into 5 subsets of 1–5, 5–20,
20–40, and >40%. The uneven binning in these subsets was implemented to include a fair
amount of (at least 30) data inside each bin. In fact, this binning process helps scratch the
Cth-affected bins into four bins and retain the not-Cth-affected bins as one bin as a baseline.
Considering the fact that the tensors had a dimension of 10 × 10 pixels (100 pixels), the
numbers represent both real numbers and the percentages of Cth-affection rates per tensor.

The impact of seedling height on classification accuracy was also examined, assuming
that smaller seedlings could be challenging for the classifiers (inspired by
Imangholiloo 2020, 2021). The methodological improvement introduced in this research
was expected to deal with the challenge. For this, the true and predicted labels of the test
datasets were indexed by their field-measured height and grouped into 4 bins of seedling
heights, namely, <1.5, 1.5–2, 2–4, and >4 m. To ensure the reliability of the results, the aim
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was to include at least 100 observations in each bin. The resulting bin counts were 150, 108,
172, and 112, respectively.

Finally, the accuracy assessment metrics presented Section 2.8 were used for all analyses.

3. Results

3.1. The Effects of Applying a Canopy Threshold (Cth) on the Accuracy of Species Classification in
the CNN and RF Methods

Analyzing the Cth-affected (n = 181, 33.4%) and not-Cth-affected (n = 361, 66.6%)
subsets of the test dataset in the noCth and withCth datasets revealed that the species
classification accuracy was always improved in the Cth-affected subset of the test dataset
when applying Cth-based image pre-processing (withCth dataset) compared to when Cth
was not applied (noCth dataset). The species classification accuracy was increased from
an OA of 75.7% to 78.5% before and after applying Cth-based image pre-processing in
the CNN withVIs dataset (Figure 5). As for the classification accuracy within the not-
Cth-affected subsets of the test dataset, the tree species classification was improved in RF
(from an OA of 67.9% to 70.4%) in contrast to that classified via the CNN methods, which
slightly declined (from an OA of 79.2% to 75.9% and from 80.6% to 79.8% in noVIs and with
VIs, respectively).
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Figure 5. Overall accuracy within the canopy threshold (Cth)-affected (n = 161, 33.4%) and not-
affected (n = 361, 66.6%) subsets of the test set (n = 542) in RF, CNN noVIs (without vegetation indices,
five bands), and CNN withVIs (after fusing 8 VIs to tensors pixels, 13 bands) in the original (noCth)
and Cth-applied (withCth) datasets.

To compare the results of fusing VIs in the CNN method, the species classification
accuracy in the Cth-affected subset of the test dataset was improved from an OA of 72.4
to 73.5% and from 75.7% to 78.5% with regard to not fusing VIs (noVIs) and fusing VIs
(withVIs) data to CNN, respectively. The amount of improvement was greatest with respect
to fusing Vis (improved by 2.8 percentage points (pp)).

To compare the accuracy of two classifiers (CNN vs. RF), the results showed that the
species classification accuracy was improved from 61.3% to 64.1% in RF, similar to the
CNN noVIs (from 72.4% to 73.5%) and withVIs (from 75.7% to 78.5%). Hence, species
classification was more accurate in the CNN compared to RF, in general.

Further analyzing the effects of the proportion of Cth-affection rates on the species
classification accuracy (Figure 6) revealed that the species classification accuracy was
highest at 1–5%-affections and lowest at >40%-affections in both noVIs and withVIs datasets.
The OA varied from 59.4% to 79.2% in the noCth dataset and from 70.8% to 78.8% in the
withCth noVIs dataset. Fusing VIs made the OA vary from 65.6% to 81.9% in noCth and
from 68.8% to 83.3% in withCth (Figure 6).
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Figure 6. Plotting overall accuracy of species classification within different Cth-affection rates (%); in
fact, 0 refers to not-Cth-affected, and the rest of bars are barplots of Cth-affection (%, also real numbers
too because it was 10 × 10). The italic number “n=” shows the number of test datasets included in
that bin. noVIs: without fusing vegetation indices (VIs) to CNN; withVIs: with fusing VIs.

Applying Cth-based image pre-processing improved the classification accuracy of
seedlings on different Cth-affection rates; for example, when it was affected by over 40%,
the OA was improved from 59.4% (noCth) to 71.9% (withCth) in the noVIs dataset, similar to
that of withVIs (from 65.6% to 68.8%). As Figure 6 shows, the magnitude of improvement
was highest at the tensors > 40% Cth-affected.

Seedling height was found to be another factor affecting the accuracy of species
classification using CNNs. The OA was the highest (≥82%) for bins withCth and withVIs if
tree height was >1.5 m (bins of 1.5–2, 2–4, and >4 m) (Figure 7). For these bins, OA was also
higher than the general OA (79.3%). The accuracy of species classification was lowest where
seedlings were <1.5 m (which reached an OA of 60.0% at the highest in withVIs withCth;
Figure 7). The OA was lowest when seedlings were <1.5 m (OA = 58%) and highest at
the tallest seedlings (>4 m, OA = 89.3%). Moreover, adding Vis improved the OA by 2,
5.6, 8.1, and 0.0 pp in the bins of <1.5, 1–2, 2–4, and >4 m, respectively. Thus, the highest
improvement was when the seedling had a height of 2–4 m.
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As Figure 7 shows, applying the Cth-based image classification improved the OA in
the bin of <1.5 m from 56% to 58% (in noVIs) and in the bin of 1.5–2 m from 80.6% to 82.4%
(withVIs).
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Generally, employing Cth-based image pre-processing improved the OA from 67.9%
to 68.3% in RF and from 79.0% to 79.3% in the CNN in the withVIs dataset (Figure 8).
However, the OA slightly declined (1.8 pp, from 76.9% to 75.1%) in the noVIs dataset of
CNN. Figure 8 summarizes the species classification accuracies using the two classifiers
(RF and CNN) in the noCth and withCth datasets.

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 29 
 

 

 
Figure 8. The summary of species classification accuracies in the normalized confusion matrix to-
gether with overall accuracy and kappa values. RF: random forest classifier; CNN: convolutional 
neural network; Vis: vegetation indices. Values inside each cell show the recall values of the cell – 
proportion of correctly classified class over the total observations of the class. 

Comparing the performance of CNN with RF revealed that the CNN achieved a 
higher tree species classification accuracy compared to RF. The OA was at the lowest when 
using RF without Cth (67.9%), while it was boosted by 11.4 pp (to 79.3%) when using the 
CNN in the withCth withVIs dataset. Moreover, fusing VIs improved the OA from 76.9% 
to 79.0% and from 75.1% to 79.3% in the noCth and withCth datasets when using the CNN 
method.  

As for the species-specific classification accuracy, pines were more accurately classi-
fied with the CNN method (using both noVIs and withVIs) compared to RF. The recall of 
pines was 0.6 in CNN withVIs, while the recall for RF was only 0.3 (Table 6). Moreover, a 
significant fraction of other species were misclassified as birches in almost all the 

Figure 8. The summary of species classification accuracies in the normalized confusion matrix
together with overall accuracy and kappa values. RF: random forest classifier; CNN: convolutional
neural network; Vis: vegetation indices. Values inside each cell show the recall values of the
cell – proportion of correctly classified class over the total observations of the class.

Comparing the performance of CNN with RF revealed that the CNN achieved a higher
tree species classification accuracy compared to RF. The OA was at the lowest when using
RF without Cth (67.9%), while it was boosted by 11.4 pp (to 79.3%) when using the CNN in
the withCth withVIs dataset. Moreover, fusing VIs improved the OA from 76.9% to 79.0%
and from 75.1% to 79.3% in the noCth and withCth datasets when using the CNN method.
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As for the species-specific classification accuracy, pines were more accurately classified
with the CNN method (using both noVIs and withVIs) compared to RF. The recall of
pines was 0.6 in CNN withVIs, while the recall for RF was only 0.3 (Table 6). Moreover, a
significant fraction of other species were misclassified as birches in almost all the classifiers
and datasets; for example, 40% of other species were misclassified as birch when using the
CNN method on the withVIs withCth dataset. The recall for RF and the CNN noVIs was
even higher (0.6 in both), which caused a decline in the OA of species classification. Table 6
gives a detailed summary of the accuracy metrics.

Table 6. Evaluation of classification accuracy for each dataset and classifier (method) in the
detailed metrics.

Dataset Classifier OA
(%) Kappa Overall Precision

(Per Species) *
Overall Recall
(Per Species) *

Overall F1 Macro
(Per Species) *

Overall F1
Micro

NoCth

RF 67.9 0.5 0.7
(0.5, 0. 7, 0.7, 1.0)

0.6
(0.3, 0.7, 0.8, 0.4)

0.6
(0.3, 0.7, 0.8, 0.6) 0.7

CNN noVIs 76.9 0.6 0.8
(0.7, 0.8, 0.8, 0.8)

0.7
(0.6, 0.8, 0.9, 0.4)

0.7
(0.6, 0.8, 0.8, 0.5) 0.8

CNN withVIs 79.0 0.7 0.8
(0.7, 0.9, 0. 8, 0.7)

0.7
(0.6, 0.8, 0.9, 0.5)

0.7
(0.7, 0.9, 0.8, 0.6) 0.8

WithCth

RF 68.3 0.5 0.7
(0.6, 0.7, 0.7, 0.8)

0.7
(0.3, 0.8, 0.8, 0.4)

0.6
(0.4, 0.7, 0.8, 0.5) 0.7

CNN noVIs 75.1 0.6 0.7
(0.7, 0.8, 0.7, 0.7)

0.7
(0.6, 0.8, 0.8, 0.4)

0.7
(0.6, 0.8, 0.8, 0.5) 0.8

CNN withVIs 79.3 0.7 0.8
(0.8, 0.8, 0.8, 0.8)

0.7
(0.6, 0.8, 0.9, 0.5)

0.7
(0.7, 0.8, 0.8, 0.6) 0.8

Combined
dataset

RF 66.6 0.5 0.7
(0.6, 0.6, 0.7, 0.9)

0.5
(0.2, 0.7, 0.9, 0.4)

0.6
(0.3, 0.7, 0.8, 0.6) 0.7

CNN noVIs 77.3 0.6 0.8
(0.7, 0.8, 0.8, 0.8)

0.7
(0.5, 0.8, 0.9, 0.4)

0.7
(0.6, 0.8, 0.8, 0.5) 0.8

CNN withVIs 79.9 0.7 0.8
(0.8, 0.9, 0. 8, 0.7)

0.7
(0.6, 0.8, 0.9, 0.5)

0.7
(0.7, 0.9, 0.8, 0.6) 0.8

* The four numbers inside the parentheses show the accuracy metrics for each species of pine, spruce, birch, and
other-species classes, respectively.

3.2. The Effects of Combining the Subsets of the Test Dataset on the Accuracy of Species
Classification in the CNN and RF Methods

Analyzing the effects of the Cth-affection rates on species classification accuracy
(Figure 9) for the combined dataset revealed that the species classification accuracy in
the withVIs dataset reached its highest value at 1–5%-affections (83.3%) and its lowest
value at >40%-bin, similar to noCth and withCth dataset (Section 3.1). However, the OA in
noVIs was highest at the 0% bin (79.2%) and lowest at the 1–5% bin (70.8%). Fusing VIs
improved the OA of species classification in all bins (especially 1–5%-bin), except in the
20–40% bin, which did not change, and the >40% bin, which slightly declined (Figure 9).

Combining the subsets of the test dataset seemed to improve the OA of species
classification by smartly selecting the subset of the dataset that was classified with higher
accuracy. This can be observed in the different Cth-affection bins in Figure 9. Comparing
Figures 6 and 9 reveals that the more accurately classified subsets of the test dataset in
each Cth-affection bin were selected in both noVIs and withVIs; for example, the OA in the
combined dataset was 68.8% in the >40%-bin in the withVIs dataset. In fact, this number
comes from the withCth dataset of the same data (withVIs, Section 3.1). Because the OA
in noCth was 65.6%, and because it was improved to 68.8% in that bin, the consequence
of combining the datasets would take that result. This smart selection of the higher
accuracy resulted in the combined dataset having the same trend in all bins, even for the
0%-affected bins. For example, the OA was 80.6% in noCth and 79.8% in withCth in the 0%
bin in the withVIs dataset, and as a result, it selected the higher accuracy (80.6%) in the
combined method.
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the combined dataset. Similarly for CNN withVIs, it improved OA of species classification 
from 79.0% (noCth, F micro: 0.8) and 79.3% (withCth, F micro: 0.8) to 79.9% (F micro: 0.8). 
The amount of improvement was higher in the withVIs dataset (0.9 pp) compared to noVIs 
(0.3 pp). The same trend also exists when comparing the combined dataset with the 
withCth dataset; for example, the OA improved from 75.1% in withCth to 77.3% in the 

Figure 9. Plotting overall accuracy of species classification within different Cth-affection rates (%);
in fact, 0 refers to not-Cth-affected, and the rest of bars are barplots of Cth-affection (%). The italic
number “n=” shows the number of tensors included in that bin. noVIs: without fusing vegetation
indices (VIs) to CNN; withVIs: with fusing VIs.

An analysis of the effect of seedling heights on the performance of species classification
accuracy (another influential factor (Figure 10)) in the CNN in a combined method showed
similar results as in the withCth dataset (Section 3.1).
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Figure 10. Visualizing overall accuracy of species classification regarding seedlings height (meter).
The italic number “n=” shows the number of tensors that the height bin included. noVIs: without
fusing vegetation indices (VIs) to CNN; withVIs: with fusing VIs.

Overall (when not zooming to Cth-affection or seedling height), combining the
Cth-affected and not-Cth-affected subsets of the test dataset improved the OA of species clas-
sification in the CNN methods; for example, the OA of species classification in CNN noVIs
was improved from 76.9% (original, noCth) and 75.1% (at withCth) to 77.3% by employing
the combined dataset. Similarly for CNN withVIs, it improved OA of species classification
from 79.0% (noCth, F micro: 0.8) and 79.3% (withCth, F micro: 0.8) to 79.9% (F micro: 0.8).
The amount of improvement was higher in the withVIs dataset (0.9 pp) compared to noVIs
(0.3 pp). The same trend also exists when comparing the combined dataset with the withCth
dataset; for example, the OA improved from 75.1% in withCth to 77.3% in the combined
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method on noVIs dataset, similarly to the withCth dataset (which improved from 79.3% to
79.9%). The amount of improvement was greatest in the noVIs dataset (2.2 pp) compared
to all others. However, the combined method did not improve the OA in RF (reached to
66.6%) compared to the noCth (67.9%) and withCth (68.3%) datasets. Figure 11 summarizes
the species classification accuracies using the two classifiers (RF and CNN) in the combined
dataset applied in this study.
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Figure 11. The summary of species classification accuracies in the normalized confusion matrix
including overall accuracy and kappa values. RF: random forest classifier; CNN: convolutional
neural network; VIs: vegetation indices. Values inside each cell are the recall of the cell.

The OA of species classification reached the highest values (79.9%) when applying the
combined dataset in CNN and withVIs. Applying the combined method improved species
classification accuracy in both CNN datasets (withVIs and noVIs).

When comparing the accuracy of the two classifiers (CNN vs. RF), CNN was the
more accurate classifier compared to RF in the combined method too, similarly to that of
Cths when applied alone (Section 3.1). The OA of species classification of the combined
method reached 66.6% in RF, while it was 77.3% and 79.9% in the CNN with the noVIs
and withVIs datasets. Hence, the species classification was more accurate in CNN (up to
13.3 pp) compared to RF, in general. To compare the results when fusing VIs in the CNN
method, the species classification accuracy was improved by up to 2.6 pp (from 77.3% to
79.9%) by fusing the VIs in CNN method in general.

Regarding the species-specific classification accuracy in the combined idea, the pine
class was more accurately classified in the CNN method (using both noVIs and withVIs),
compared to that in RF. More information is provided in Table 6.

3.3. Feature Importance in RF and Configurations of the Classifiers

The most important features in both datasets (noCth and withCth) were lower per-
centiles of NDGI (percentile 5 and 30 in noCth and withCth, respectively). These were
followed by the higher percentile (90) of NDRE identically in both datasets (Figure 12).
In the noCth dataset, the standard deviation of NDRE, the 10th percentile of NDVI × S,
and the standard deviation of band 4 were the following most important and uncorrelated
features. The same (similar) features were selected for the withCth dataset too, but they
were only ranked/ordered differently.

According to the results, it seemed that NDRE was an important VI (used twice in
both datasets (in percentile 90 and standard deviation)). Moreover, the redEdge band
seemed important. In addition, there were many highly intercorrelated features that were
dropped when checking whether the correlations were <0.8; for example, in the withCth
dataset, the following features were between the second (p90_NDRE) and third (std_b4)
features: p30_NDRE (0.9); p80_NDRE (1.0); p5_NDGI (0.9); p60_NDRE (0.9); mean_NDRE
(1.0); p20_NDGI (1.0); p50_NDRE (0.9); p40_NDGI (1.0); min_NDGI (0.8); p70_NDRE
(1.0); p10_NDGI (1.0); p10_SR (0.8); max_NDRE (0.9). The features were sorted via RF
importance, and the values in parentheses show the correlation with either the second or
third selected feature.
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As for the CNN models, the best validation accuracy was achieved in epochs 33
(val_acc: 80.8%) and 40 (val_acc: 81.6) using the withVIs dataset in noCth and withCth
conditions, respectively. Appendix B presents a visualization of the training and validation
accuracy in every epoch for the CNN models on the noCth and withCth datasets. The early-
stop function in the callback stopped the models from running further if, after 100 epochs,
val_acc was not increased. Moreover, the withCth figure was less susceptible to overfitting
due to a smaller difference between training and validation accuracy compared to that of
noCth (Appendix C), although both are acceptable and not susceptible to overfitting at all.

The CNN models created in this research have higher nonlinearity and are less (not)
susceptible to overfitting; in fact, our CNN model is not overfitting due to the hyper-tuned
dropout rate, which was set to 0.6 and 0.8 (Appendix C), as well as the fact that val_acc is
not much different from test_acc. The difference between val_acc and test_acc in the CNN
was even smaller than in RF. This indicates that our CNN models are not overfitting at all,
with even less overfitting (if any) than RF.

4. Discussion

4.1. The Effects of Applying Canopy Threshold (Cth)-Based Image Pre-Processing on the Accuracy
of Species Classification in CNN and RF

Improving seedling–tree species classification by employing Cth-based image pre-
processing on input images prior to feeding to two classifiers—CNN and RF—was one
of the main objectives of this research. Based on the results obtained in this research, the
process improved the OA of species classification by up to 2.8 pp in the Cth-affected subset
of the dataset in seedling forests. This could be attributed to minimizing the admixture of
reflectance from the understory, especially in younger (shorter) seedlings (Figure 2).

To the best of the authors’ knowledge, the proposed methods have not been employed
in seedling (or mature) stands. Hence, the results of this research could be discussed
with respect to studies carried out in forests of different growing stages. An improve-
ment of the OA of species classification between 1–4.3 pp was documented in mature
forests by hybridizing the CNN and k-nearest neighbors [54], combining Res-Net and
U-net structures [55], using their proposed 3D-1D-CNN method [56], and using a novel
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two-phase CNN [57]. Hence, the magnitude of improving the OA of classifying seedlings
in this study was in line with the aforementioned literature of mature forests.

4.2. The Effects of Combining Subsets of Test Dataset on the Accuracy of Species Classification in
CNN and RF

Creating a new dataset by merging Cth-affected and not-Cth-affected subsets of the test
dataset further improved the accuracy of species classification; for example, it improved
the OA of the Cth-affected tensors (33.4% of test set) by up to 2.8 pp (from 75.7% to 78.5%)
in the CNN withVIs dataset. However, it slightly declined the OA in the not-Cth-affected
tensors (from 80.6% to 79.8%). This was because the Cth-affected tensors of this study
comprised only 33.4% of the dataset, and the rest of the data were not affected as their
cells were all above the Cth of 0.4 m. It should be noted that apart from one of the forest
plots in this study (1 of 75 plots), all of the plots were in advanced seedling (mean tree
height > 1.3 m, AdS) stands, while in the study by Imangholiloo et al. [2], there were four
plots in young seedling (mean tree height ≤ 1.3 m, YoS) stands plus ten plots in AdS. Hence,
the methodology developed in this study could help in inventorying YoS more accurately,
although it was documented to be challenging for characterizing seedling stands using
hyperspectral and RGB photogrammetric point clouds [46] and using ALS [2,45].

The results of this study were in line with studies using a rather similar approach;
for example, Martins et al. [58] developed a rather similar—albeit a post-processing—step
in a multitask CNN (DeepLabv3+ with Res-Net backbone) based on combining the two
outputs of the multitask CNN—semantic segmentation (labeled images) and regression
outputs—for each image (a regression branch showing a distance map transform). They
achieved an improvement of species classification to average F-score of 79.3 ± 8.6% in
classifying tropical urban trees in Brazil. Similarly, Anderson et al. [59] achieved a higher
OA when combining CNN and OBIA methods (91%) than when using CNN alone (88%)
for the classification of an invasive species in wetlands using drone-based RGB imagery.

Unlike in the CNN, combining subsets of the test dataset to create a new dataset
was not successful in RF based on our results. This could be attributed to the fact that
the nullified pixels in the withCth dataset were not filled because filling was not needed
due to the nature of handcrafted features that worked on the tensor level, not the pixel
level, unlike CNN tenors which must be filled with 3 × 3 average filling kernels of
nullified pixels.

4.3. Comparing the Performances of CNN and RF in Seedling–Tree Species Classification

This research used RF as a benchmark model against which to compare the CNN.
Based on our results, the CNN outperformed RF in tree species classification by up to
13.3 pp in the combined CNN method in the withVIs dataset (an OA of 66.6% and 79.9% in
RF and CNN, respectively). The higher seedling species classification accuracy of the CNN
over RF was in line with similar studies comparing these two machine learning methods for
the classification of mature trees (by 4.4–38.6 pp [22,30,56,59–63]). For example, Xi et al. [60]
documented the outperformance of a one-dimensional CNN compared to RF by 4.4 pp (an
OA of 85.0% and 80.6%, respectively) in tree species classification using hyperspectral data
from the OHS-1 satellite. Similarly, Mäyrä et al. [30] achieved a 16.7 pp higher classification
accuracy with a CNN than with RF (87.0% and 70.3%, respectively) when employing aerial
hyperspectral and laser scanning data for classifying pines, spruces, birches, and aspens in
Finland. To the best of our knowledge, comparing CNN and RF has not been carried out in
the classification of seedling forests. Therefore, we compared our results for seedlings with
similar studies carried out in mature forests.

Comparing the classification accuracy of this study (up to an OA of 79.9%) with
other studies carried out in the seedling forest environment showed that the results vary
per paper depending on the species composition, forest conditions, input data, and used
classification model. For example, Imangholiloo et al. [2] used the intensity of multispectral
ALS (mALS) data for classifying seedlings. They achieved an overall species classification
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accuracy of up to 96.7% in leaf-off conditions using a Cth of 1 m. However, when the Cth
was 0.4 m, their accuracy was 94.6% in leaf-off conditions. They used the RF classifier on
the handcrafted features from mALS data to classify spruce, birch, and non-tree classes.
However, they did not include the pine class, which was used in this study. Furthermore,
they used different input data.

To discuss the species-specific accuracy in the CNN and RF, the results of this study
showed that the CNN improved the classification of pines when compared to RF. This
was in line with the study by Trier et al. [64], who reported classification accuracies of
26% and 86% for birches when using their index method and a CNN, respectively, for
classifying trees from hyperspectral imagery. Moreover, the recall for the main tree species
(pine, spruce, and birch) was more accurate (0.6, 0.8, 0.9, respectively) than the recall of
other species (0.5 in the withVIs dataset (combined method)) because the other species
class was often misclassified as birch (e.g., 0.5 in the withVIs dataset using the combined
method (Figure 11)). This was not a surprise, as the other species class included 99% of
the other deciduous and 1% of the other coniferous trees. This caused a large number of
seedlings belonging to the other species class to be classified as birches (0.6, discussed
in Section 4.2). Merging the other class to the main classes (i.e., to birch and pine) could
improve the OA results; but then, the results would not be a realistic estimate of real-life
operational performance. Alternatively, the other classes could be converted into two new
classes—i.e., other deciduous and other coniferous—but this would require more field data
for the other species class.

4.4. The Effects of Fusing VIs on the Accuracy of Species Classification in CNN

The results obtained in this research showed that the fusion of VIs improved the OA of
species classification in seedling forests. It was striking that the OA of species classification
was always higher in the withVIs dataset, even at its minimal (79.0%), compared to the
maximally reached OA in the noVIs dataset (76.9%; Figure 8) in CNN method. This might
be due to the higher number of bands in VIs (13 bands) compared to noVIs (5 bands), which
seemed to assist the data-hungry CNN method.

A similar increase in OA by fusing VIs was also reported in other studies (between
3–6.7 pp) when using satellite images (Worldview, Sentinel 2) for species classification in
urban trees or mountainous protected area [61,63,65]. Hence, fusing Vis, when available,
could improve CNN classifiers.

4.5. The Effects of Seedling-Tree Height and Number of Cth-Affected Pixels on the Accuracy of
Species Classification in CNN and RF

This study discovered two influential factors with respect to the performance of species
classification accuracy, including (1) the proportion of Cth-affected pixels inside a tensor;
and (2) the seedling heights.

Based on the results obtained in this research, the classification of short trees (i.e.,
shorter than 1.5 m) was challenging, as was the classification of tensors with a
>40%-Cth-affection rate. These two factors hampered the classification of seedlings in
general and could be considered as a similar factor observed from different perspectives;
i.e., most of the >40%-affected tensors represented trees shorter than 1.5 m. However, our
developed method improved the classification of shorter seedlings (<1.5 m) by up to 8 pp,
although it was (and still is) a challenge for the classifiers. The OA was highest at bins of
2–4 m and >4 m, which could be attributed to the fact that those tensors have a smaller
number of nullified pixels. There was no improvement when trees were >4 m because there
were no Cth-affected tensors, so they remained unchanged.

The not-Cth-affected tensors were generally more accurately predicted than the withCth
tensors in both classifiers and datasets of withVIs and noVIs. This is not a surprise, as
they often represent taller seedlings and have higher foliage canopies, which allow for a
lower effect of understory, especially as the size of the tensors used was rather small. This
small tensor size was to support the smaller seedlings because their canopy was often even
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smaller. The selected tensor size was based on a visual experiment performed to fit most of
the seedlings.

Based on the results obtained in this research, the effect of employing the Cth seemed
very influential on the tensors that were affected by >40% of their pixels (with an improved
OA of species classification up to 12.5 pp). This was an interesting and important finding of
this research because these challenging seedlings hamper species classification in general.

4.6. Feature Importance and Model Configurations of the Classifiers

The RedEdge band of the MicaSense camera was found to be important according
to the selected features by RF. The VIs in which RedEdge was used were found to be the
most important features in both the noCth and withCth datasets of RF. The importance
of RedEdge was also documented in another article [66]. Moreover, there was high inter-
collinearity between the features, and it is good that this was checked.

As for the CNN and RF model configurations, it was observed that an automatic
procedure in both classifiers was useful in order to obtain the most-suitable parameters for
the given input data and save time. It was also learned that using only default values of RF
parameters yielded 67.343% using the top-five features that were selected inside the grid;
hence, using GridSearch improved the accuracy by 1 pp (from 67.3% to 68.3%), which refers
to an experiment carried out on the withCth dataset (results not shown). Including dropout
in CNN was useful in order to avoid overfitting and increase the generalization of the
models used in this research, which was in line with Zhang et al. [56]; they suggested that
using a dropout rate of 0.5 was useful, which confirmed our values (0.6 and 0.8) achieved
after hyper-tuning.

4.7. General Discussion and Future Research

The dimension of the tensors was an influential parameter with respect to species
classification accuracy [37,56,67]; for example, tensor dimensions of 13 × 13 (compared to
5 × 5) and 64 × 64 (compared to 32 × 32 and 48 × 48) were found to yield more accurate tree
species classification in mature forests by Zhang et al. [56] and Sun et al. [67], respectively.
Similarly large tensor dimensions were suggested by Li et al. [37] for tensors ranging from
16 to 64 pixels. However, considering the GSD of multispectral data used in this research
(5 cm), and the smaller size of seedlings compared to mature trees, it was not possible
for us, in this study, to use such large tensor dimensions, as a large tensor could include
multiple seedling canopies or large understory reflectance.

Another issue was that about 7% of the field data (the tensors) had impurity of species
classes, meaning that there was at least one other tree class under the main species of
the tensor; for example, the main species was pine, but it included few grass/thicket-
like birches. This phenomenon is common and expectable in dense and unthinned
seedling stands.

Further studies using the whole dataset with Cth-affected pixels are needed, as well as
those examining different heights of Cths and filling strategies (different kernel size and
kernel types such as max kernel, inverse weighted average, etc.). Moreover, further studies
could investigate another approach in which training and predicting the Cth-affected and
Cth-not-affected sub-datasets are undertaken separately, after which the predictions of each
sub-dataset are merged. This would require more field data, especially for the Cth-affected
sub-dataset. Moreover, using hyperspectral images and better atmospheric correction
might further improve results; using hyperspectral data could enable the adding of more
VI-bands than were used in this study. In other words, there was only one band for R, G, B,
NIR, and RedEdge, which enabled us to add at least eight VIs with them, but the existence
of hyperspectral data would enable many more VIs. Furthermore, a more complex and
deeper CNN structure could be used, for example, to retrain the best-trained model with
a new learning rate optimizer and change the activation function. The results of one of
our experiments showed an improvement in the OA of up to 1.1 pp when applying the
idea, but the results were not consistent (results were not shown). Finally, the GSD of the
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multispectral dataset used in this study was 5 cm. This limited the tensor size to 10 × 10,
and, particularly for small seedlings, a large portion was nullified. It is likely that a finer
resolution would improve the results, and fast development of camera technologies already
allow for the collecting of multispectral imagery with a 1 cm GSD with the flight heights
used in this study.

5. Conclusions

The aim of this research was to improve the species classification accuracy of seedlings
using multispectral drone imagery and a state-of-the-art CNN classifier, as well as to
propose and assess several methodological improvements. Successful species classification
could support the smarter planning of the required silvicultural treatments in seedling
stands. The applied methodological improvement on species classification using CNN
and RF classifiers enhanced the classification accuracy of seedlings in boreal seedling
stands. Compared to classification accuracies of CNN and RF in noCth datasets, the OA
was improved by 2.8 and 0.4 pp, respectively. Moreover, merging the Cth-affected and
not-Cth-affected tensors into a new dataset improved the accuracy of species classification
in CNN (up to 2.8 pp), as did adding the vegetation indices (up to 4.3 pp). In general,
the CNN had a 13.3 pp-higher species classification accuracy than RF. Most notably, the
difference for pine seedlings was over 50 pp.

According to the results, seedling classification was most accurate when seedlings were
taller than 1.5 m and contained fewer Cth-affected cells. Although seedlings shorter than
1.5 m and containing a higher number of Cth-affected cells were challenging for both CNN
and RF, applying the methodological approaches introduced in this research improved
the classification of those challenging seedlings as well. In conclusion, it seems that the
methodological improvement introduced in this study could be carefully included in drone-
imagery-based forest inventories of seedling stands to assist silvicultural decision-making
in sustainable forest management.
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Appendix A

Table A1. Summary of the multilayer perceptron (MLP) sequential convolutional neural network
(CNN) model.

Layer Type Output Shape Number of Parameters

conv2d_2000 (Conv2D) (None, 8, 8, 16) 1888
batch_normalization_3000 (None, 8, 8, 16) 64
conv2d_2001 (Conv2D) (None, 6, 6, 32) 4640
batch_normalization_3001 (None, 6, 6, 32) 128
conv2d_2002 (Conv2D) (None, 4, 4, 64) 18,496
batch_normalization_3002 (None, 4, 4, 64) 256
conv2d_2003 (Conv2D) (None, 2, 2, 128) 73,856
batch_normalization_3003 (None, 2, 2, 128) 512
flatten_500 (Flatten) (None, 512) 0
dense_1500 (Dense) (None, 50) 25,650
dropout_1000 (Dropout) (None, 50) 0
batch_normalization_3004 (None, 50) 200
dense_1501 (Dense) (None, 100) 5100
dropout_1001 (Dropout) (None, 100) 0
batch_normalization_3005 (None, 100) 400
dense_1502 (Dense) (None, 4) 404

Total params: 131,594
Trainable params: 130,814
Non-trainable params: 780
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Figure A1. Visualization of the training and validation accuracy in every epoch for the CNN models
on the noCth and withCth datasets.

Appendix C

Summary of used parameters in model configuration for each classifier and each
dataset. Table A2 summarizes the useful/relative parameters such as processing time,
model configuration, etc., for the withCth and noCth datasets. The combined is the sum
of the two; hence, it is not given. More information about the computation efficiency and
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time of the classifiers, as well as other extensive information regarding the effect of each
hyper-tuned parameter, is provided.

Table A2. Model configurations selected for each classifier, together with other information regarding
training and validation accuracies, as well as run time measurements. The model configuration and
other information for the combined two methods were the combination of the configuration and
other information of the two other methods.

Dataset Classifier Model Best Param (Out
of GridSearch) a

Tunable
Param Total Param

Max Train
Accuracy in

the Best
Model

Max
Validation

Accuracy in
the Best
Model

Number of
Epochs Ran
before Early
Stop in the
Best Model

Mean Train
Time per
Epoch in

Best Model

St.dev of
Train Time
per Epoch

in Best
Model

Total Training
Time

(GridSearch
Time)

Prediction
Time

noCth
RF None, 0, 2, 2, 1000 7776 b NA 0.99 0.7754 NA 36.03 e 1.94 e 3 h 32 min 9 ms

CNN noVIs 32, 0.8, 0.4, 150, 100 165,762 166,742 0.86 0.80627 300 0.63 0.07 106.8 h (15.25 h) f 0.3 ms/step
CNN withVIs 32, 0.6, 0, 100, 50 c 130,814 131,594 0.99 0.80812 133 0.75 0.19 0.3 ms/step

withCth
RF None, 0, 1, 2, 1000 7776 b NA 1.00 0.7641 NA 8.25 e 0.38 e 9 ms

CNN noVIs 32, 0.6, 0.2, 200, 150 d 206,862 208,042 0.99 0. 80812 119 0.64 0.11 102.8 h (14.68 h) f 0.3 ms/step
CNN withVIs 32, 0.8, 0.2, 150, 250 266,664 267,944 0.92 0.81550 140 0.68 0.18 0.3 ms/step

a Batch size, rate 1, rate 2, unit 1, unit 2, respectively; in fact, batch size is the tuned batch size, rate 1 and rate 2
are dropout rates, and unit 1 and unit 2 are the number of filter units in the layers 00, 00, 00, and 00 of the CNN
models. In RF, these numbers are max_depth, max_features, min_samples_leaf, min_samples_split, and n_estimators,
respectively. b The number of GridSearch runs, i.e., possible grid combinations with this given grid to RF. The
equivalent number for this parameter in CNN was 7350. c Although we rounded the val_acc to give decimals and
selected the topmost accurate model for predicting in CNN, the program selected the first-created one. Hence, this
(32, 0.6, 0.8, 50, 300, and 32, 0.8, 0.6, 200, 50) also had the exact same val_acc within the five decimals. Our code
selected the most accurate one from them automatically (the first row). d Although we rounded the val_acc to five
decimals and selected the topmost accurate model for predicting in CNN, the program selected the first-created
one. Hence, this (32, 0.8, 0.2, 100, 100) also had the exact same val_acc within the five decimals. Our code selected
the most accurate one from them automatically (the first row). e Mean and “st dev” of fit time (within the five-fold
in that GridSearch combination). f The number in parenthesis is the mean of seven parallel runs.
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