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Abstract: The cotton bollworm (Helicoverpa armigera, Lepidoptera: Noctuidae) poses significant
risks to maize. Changes in the maize plant, such as its phenology, influence the short-distance
movement and oviposition of cotton bollworm adults and, thus, the distribution of the subsequent
larval damage. We aim to provide an overview of future approaches to the surveillance of maize ear
damage by cotton bollworm larvae based on remote sensing. We focus on finding a near-optimal
combination of Landsat 8 or Sentinel-2 spectral bands, vegetation indices, and maize phenology to
achieve the best predictions. The study areas were 21 sweet and grain maze fields in Hungary in
2017, 2020, and 2021. Correlations among the percentage of damage and the time series of satellite
images were explored. Based on our results, Sentinel-2 satellite imagery is suggested for damage
surveillance, as 82% of all the extremes of the correlation coefficients were stronger, and this satellite
provided 20–64% more cloud-free images. We identified that the maturity groups of maize are
an essential factor in cotton bollworm surveillance. No correlations were found before canopy
closure (BBCH 18). Visible bands were the most suitable for damage surveillance in mid–late grain
maize (|rmedian| = 0.49–0.51), while the SWIR bands, NDWI, NDVI, and PSRI were suitable in mid–
late grain maize fields (|rmedian| = 0.25–0.49) and sweet maize fields (|rmedian| = 0.24–0.41). Our
findings aim to support prediction tools for cotton bollworm damage, providing information for the
pest management decisions of advisors and farmers.

Keywords: integrated pest management; Sentinel-2; Landsat 8; maize; damage prediction; pest detection;
precision agriculture

1. Introduction

The cotton bollworm [Helicoverpa armigera, Hübner (Lepidoptera: Noctuidae), CBW]
is a polyphagous migratory moth pest spread worldwide [1,2]. The pest poses a high
risk to important crops such as maize, cotton, soybean, tomato, and several horticultural
crops [3–5]. Globally, crop damage by CBW is estimated at $2 billion annually [6]. The
CBW is a drought and heat-tolerant species; arid and hot weather promotes its population
growth, resulting in high larval abundance [3]. Global warming has increased CBW adult
populations [7,8]. Climate change has made an impact on the life cycle of CBW. The
number of days from adults’ first and last appearance showed abrupt changes recently,
corresponding to changes in degree days [8,9]. Therefore, as the frequency of arid years
increases, more severe CBW damage is expected worldwide [10].
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One of the CBW’s main hosts is maize. CBW larvae feed on maize silks and kernels,
causing yield and quality loss in sweet corn, seed maize production, and commercial grain
maize [3,5,11,12]. Female adults lay their eggs on maize silks. The yield loss depends on
the coincidence of maize silking and the peak of CBW adult occurrence [13]. Due to the
larvae’s cryptic behavior, control interventions (targeting larvae) should be timed before
the newly hatched larvae move to under the husk, usually limited to a two to five day
timeframe [12].

Plant protection decisions targeting the CBW currently rely on CBW adult traps (sex
pheromone or light traps). Light traps are designed to exploit the adults’ flight-to-light
behavior but are not species-specific. Thus, CBW adult monitoring by light traps requires
time and a high level of entomological knowledge. These traps do not adequately detect
adult populations when large numbers are immigrating into a field [14]. Furthermore,
weather parameters (minimum and maximum temperature, relative humidity, wind direc-
tion, and strength [11], moon phases [15], geomagnetic H-index [14], and parameters of
light traps [16] impact light-trap catches. Pheromone traps are based on the attraction of
males using a synthetic CBW female sex hormone lure [17]. Counting the trapped adults
still requires a significant investment of time. Most recently, an automated pheromone trap
was studied for CBW adult monitoring [18].

Various approaches for modeling CBW adult flight have been studied and evaluated
over time. The Helicoverpa armigera and punctigera Simulation (HEAPS) model is one of
these models that predicts CBW dynamics to identify the drivers of regional population
distribution and provide a framework for data-driven decision making [19]. An artificial
neural network (ANN) model has also been used to model the population dynamics of the
CBW [20]. Other models focus on the development of the pest [21,22], as well as forecasting
the peak of adult appearance based on weather parameters [23–25]. Satellite-based remote
sensing has also been used to estimate CBW population dynamics, with a progressive
prediction of CBW adult appearance based on a growing degree day method driven by
satellite imagery, namely Terra-MODIS Land Surface Temperature (LST) images [26,27].
Satellites were used to estimate flood effects on the CBW adult population as well [28].
However, these studies focus on adult populations. A larval damage estimation and early
detection would be more helpful for integrated pest management (IPM) and a precision
plant protection strategy for farmers.

Even though pheromone traps are much more sensitive to detect immigrating adults,
and automated trap designs reduce the amount of time and labor to process the results,
the oviposition preference and the subsequent larval damage of the CBW still cannot
be estimated based on the number of trapped adults [3,4,19]. Damage detection so far
relies on visual inspections by farmers and advisors themselves. Sampling and the visual
inspection of sampled maize ears is still laborious and time consuming. The prediction
or early detection of larvae presence could help to decide where to apply pest control
interventions [5]. A cost- and labor-effective surveillance technology could thus contribute
to a more efficient and successful CBW pest management program.

There are models for estimating CBW larval damage on some crops (e.g., pigeon-
pea [29], common pea [30], and tomato [31]). However, no model is available for CBW
larval damage detection in maize, and remote sensing was not applied for CBW damage
prediction or monitoring in maize (except for preliminary studies by the authors [32]).

Understanding the oviposition preference of female CBW adults may enable the
estimation of its larval density and damage from satellites, as the CBW does not change
the host plant from hatching (egg stage) to pupation [30]. Furthermore, studies have
shown that CBW adults have a preference based on visual stimuli. There are disagreements
about the importance of different wavelengths or colors in the color preference of CBW
adults. The CWB has the ability to detect colors [33]. Three sensitivity electroretinogram
amplitudes were detected at 562 nm (green), 483 nm (blue), and 400 nm (UV), indicating
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the presence of at least three types of receptors. The compound eye of CBW adults has
a strong adaptability to detect these differences under low-light conditions [33]. Similar
results suggest that CBW adults are sensitive to light at peak wavelengths of 380 (UV),
455 (blue), and 585 nm (green) [34]. Some studies found that CBW adults prefer green
light (500–565 nm), especially when the dark-adapted time is increased [35], while others
revealed that they prefer yellow [36] or blue [37]. Monochromatic light at 395 nm and
385 nm (UV) wavelengths caught the most adults in light taps [16]. Similarly, UV light
traps are found to be the most effective for CBW adult monitoring at low intensity for both
sexes [38]. Some studies indicate that trap color influences CBW adult captures since they
have a preference for bright colors [39].

Precision agriculture techniques for implementing integrated pest management (IPM)
rely on remote sensing. The various satellites’ improved temporal, spatial, and spectral
resolution facilitates the integration of satellite imagery in crop protection [40]. This tech-
nology detects biotic stress indicators within crops, providing insights that aid data-driven
decision making. Remote sensing has become increasingly important in insect pest manage-
ment. This technology is used for pest detection, migration monitoring, damage detection,
outbreak prediction, and to reveal actual insect activity based on measuring the damage
by insect pests [41–44]. Remote sensing helps to assess insect pest responses to control
interventions [43,45,46]. Therefore, it may play an important role in the implementation of
the European Commission’s (2019) “European Green Deal”.

Open-source policies of Earth observation satellites such as Landsat and Sentinel
constellations promote the utilization of satellite products in different farming systems over
vast areas, at farm scale, and beyond. Both Landsat and Sentinel satellite constellations
provide global coverage, matching the distribution of the CBW [2]. The spatial resolution
of the bands is also suitable for CBW surveillance, with Sentinel-2 offering 10 m visible and
near-infrared (NIR) bands, 20 m red-edge, NIR, and short-wave infrared (SWIR) bands,
and Landsat providing a 30 m resolution, as CBW damage is usually estimated in this
magnitude [32]. Additionally, the automatic revisiting time (for the Sentinel constellation,
this averages 3 to 5 days, while Landsat revisits every 16 days), allows for the frequent
monitoring of pest infestations, matching it with important phenological phases [13,47].
Furthermore, these satellites offer a greater spectral resolution (with thirteen spectral bands
of Sentinel-2 and nine bands of Landsat), including visible and non-visible bands over
a wide range of electromagnetic radiation, which can aid in identifying and monitoring
pest-related vegetation changes [40].

Satellite-based optical and Synthetic Aperture Radar (SAR) of the Sentinel constella-
tion, or a combination of different satellite sensor recordings, enables maize crops to be
identified over large areas [48–51], even in mixed pixels, by super resolution mapping [52].
Based on satellite imagery, sweet, seed, and commercial grain maize crops [53], and vari-
eties and hybrids [54], can be differentiated. Changes in maize phenology [55,56] can be
detected. Further, the yield estimation of maize relies on optical remote sensing, primarily
based on the time series of satellite imagery [55,57]. The accuracy of surface reflectance
measurements and SAR is growing due to the development of correction models [58–60].

The abiotic stress of cereal crops was identified with Landsat 8 and Sentinel-2; specif-
ically, nitrogen deficiency [61,62], insufficient crop water content [63], and response to
water deficit [64] were identified. In the realm of biotic stressors, researchers focus on
diseases affecting cereal crops, such as wheat stripe rust [65], fusarium detection in winter
wheat [66], maize streak virus severity [67], and maize gray leafy spot [68]. The ability to
discriminate stress factors from each other is also established, such as the differentiation
of powdery mildew from aphids in winter wheat [69] or wheat yellow rust from nitrogen
deficiency [70]. However, insect pest detection in maize primarily focuses on the fall army-
worm [45,71–74], and there is limited demonstrated ability to detect other pest species such
as the CBW.
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According to our review, there is no rapid, cost- and labor-effective CBW damage
surveillance method for maize, despite the high economic impact of the CBW. Satellite-
derived surface reflectance provides insights into the visual characteristics and changes in
maize [47,55,56,70] that play an important role in determining the oviposition preferences
of CBW adults under maize field conditions [13,30,33–39,75]. Our hypothesis is that models,
based on satellite imagery, can be developed, that will improve CBW surveillance (including
both monitoring and prediction) for maize crops, aligned with an optimal time period
and maize phenology. This surveillance method should be robust for various weather
conditions, cultivation purposes, and maize hybrids.

No multispectral satellite imagery has been used for CBW larval damage surveillance,
except for the preliminary study of authors [32]). A comprehensive study on the perfor-
mance of different satellite imagery for CBW damage surveillance has not been conducted
so far. No optimal time periods or phenology of maize were determined to be used to
predict or monitor CBW larval damage during the maize growing period. Seasonality
in the performance of different spectral bands and vegetation indices has not, to date,
been examined.

Based on these previous findings and the main gaps described in CBW- and satellite-
related publications and reviews, the main aim was to establish the relationship between
CBW larval damage in maize fields and their surface reflectance. Thus, the objectives were
the following:

(i) Compare the performance of Sentinel-2 and Landsat 8 satellites in the surveillance of
damage caused by CBW larvae in maize;

(ii) Find the optimal (highest correlated) time periods and maize phenological phases for
satellite-based CBW damage surveillance;

(iii) Identify a spectral band or vegetation index that reliably estimates the damage (r ≥ 0.4
Pearson correlation, consistently) under the optimal phenological phases and is robust
against various circumstances (showing similar correlation coefficients);

(iv) Identify other agronomic factors that influence satellite imagery performance (result-
ing in inconsistent correlations) in predicting and monitoring the cotton bollworm.

In this study, we used time series remote sensing images to establish a surveillance
method for CBW larvae damage in maize. Time series Sentinel-2 and Landsat 8 images
were adopted in this study with detailed in situ observations. During 2017, 2020, and
2021, 7560 plants were visually inspected on three different farms in 21 different maize
fields. One hundred and one satellite images (including Landsat 8 and Sentinel-2) were
available during the vegetation period in these years, from which nine different indices
were calculated. Pearson correlations were calculated between CBW larval ear damage
and the time series of surface reflectance measured by the two satellites, or the vegetation
indexes calculated from surface reflectance; then, correlation coefficients were grouped,
and the groups were compared. Agronomic factors were identified that must be considered
during CBW surveillance. The K-means clustering algorithm was used to select factors
influencing correlations between satellite imagery and CBW damage. The time dependency
of the correlations was explored with a linear regression analysis.

In this study, we demonstrate the potential of optical satellite imagery for CBW
monitoring and prediction at a stage before the larvae appear in the field. We suggest the
use of Sentinel-2 for CBW surveillance. Furthermore, we identify agronomic factors that
should be considered when applying multispectral satellite products for CBW surveillance
of maize. We highlight the importance of incorporating surface reflectance directly into
CBW damage surveillance models.

We believe our study contributes to the overall resilience of precision and integrated
pest management strategies and insights to guide CBW management in the field. Once
further validated, this approach is expected to provide a rapid, cost- and labor-effective
assessment of CBW damage quantity to maize crops over vast areas. Due to that, highly
endangered fields or zones could become the focus of pest eradication actions.
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2. Materials and Methods
2.1. Study Area

Field investigations were conducted in north-eastern and south-eastern Hungary, with
three farms participating (Figure 1). In 2017, field data were collected from 3 maize fields
of Farm 1 (north-eastern Hungary). In this year, no other farm was included. In 2020,
altogether, eleven fields were monitored. Three fields belonged to Farm 1, four fields
belonged to Farm 2 (south-eastern Hungary), and the rest four belonged to Farm 3 (south-
eastern Hungary). In 2021, three fields from Farm 2 and four from Farm 3 were involved.
Two of the investigated fields were sweet maize in 2020 and 2021, and the rest were grain
maize. Due to crop rotation, the observed fields were mostly different from year to year.
The field coordinates are in Table A1 in the Appendix A.

Figure 1. Location of all 21 study fields (purple) in Hungary in each farm and each year with the
background Sentinel-2 satellite actual color image (10 m resolution).

2.2. Satellite Remote Sensing Imagery Retrieving

Sentinel-2 images were provided by the ESA Copernicus Open Access Hub [76] at
level 2A. Landsat images were obtained from Arlula [77] at level L1TP.

Landsat 8 and Sentinel-2 satellite images were collected with cloud cover below 60%
(as only a tiny part of the picture was used). The recording time of the collected images
was in the maize growing season (04.15–09.30 in 2017, 2020, and 2021).
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All satellite images were collected with radiometric and geometric corrections previ-
ously applied by the providers. Sentinel-2 images at level 2A include a Scene Classification
and an Atmospheric Correction providing Surface Reflectance data [78] that have been
systematically generated using Sen2Cor processor [79]. Level-2A products included cloud
and snow masks at a 60 m resolution. For the Landsat L1TP product, DOS1 atmospheric
correction was applied in QuantumGIS (version 3.28.10) with a Semiautomatic Classifi-
cation Pugin (SCP) developed by Condego [80]. An image was used only if all observed
fields were cloud-free.

An extra quality control procedure was applied for sweet maize fields: the true color
satellite images were visually reviewed in QGIS. The satellite image was excluded if
the irrigation system (linear) was visible during the irrigation cycle (other than the zero
position) and affected the selected sampling zones. This step could be omitted in grain
maize fields, as none of the fields were irrigated.

Altogether, 101 satellite images (including Landsat 8 and Sentinel-2 products of all
years and locations) were available. The spectral bands of the two satellites utilized in the
study are listed in Table 1. The number of available recordings for each field and for both
satellites are in Table A1 in the Appendix A.

Table 1. Considered spectral bands (‘B’) with their central wavelength and bandwidth and their
original and processed resolution of Sentinel-2 and Landsat 8.

Sentinel-2 Landsat 8

Spectral
Band

Central
Wavelength

(nm)

Bandwidth
(nm) Resolution Resolution

of Use (m)
Spectral

Band

Central
Wavelength

(nm)

Bandwidth
(nm) Resolution Resolution

of Use (m)

Blue B02 492.7 65 10

20

B2 482 60 30

30

Green B03 559.8 35 10 B3 561.5 57 30
Red B04 664.6 30 10 B4 654.5 37 30

Red-edge B05 704.1 14 20
Red-edge B06 740.5 14 20
Red-edge B07 782.8 19 20

Near Infrared
(NIR) B08 832.8 105 10 B5 865 28 30

Short-Wave
Infrared (SWIR) B11 1613.7 90 20 B6 1608.5 85 30

Short-Wave
Infrared (SWIR) B12 2202.4 174 20 B7 2200.5 187 30

2.3. Vegetation Index Selection and Calculation

To analyze the suitability of different vegetation indices (VIs) for CBW surveillance,
9 VIs were selected (Table 2). The selection was based on two criteria: the index can be
determined using Landsat 8 and/or Sentinel-2 spectral bands and has the potential to
monitor or predict CBW damage. Three general VIs, namely the Normalized Difference
Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), and Enhanced Vegetation
Index (EVI), were selected. We assumed that the number of CBW larvae and their damage
depends on the coincidence of silking and the peak of adult appearance [13]. To characterize
maize phenology, general VIs can be used. The NDVI was one of the earliest VIs created [81],
and it can also be used to monitor maize phenology [47,54]. The SAVI was derived from
the NDVI to reduce the noise generated by the reflectance of the soil [82]. Similar to the
NDVI, the SAVI was able to estimate maize phenology [83]. By adding blue bands, the
EVI was designed to be more sensitive to the structural variability of plant cover, surface
type, and surface structure, and less sensitive to atmospheric effects and background
noise [84]. As a signal of olfactory and color changes in maize, fruit ripening may affect
the CWB oviposition preference. The Plant Senescence Reflectance Index (PSRI) has been
proposed for determining the leaf aging and fruit ripening stage due to its sensitivity
to plants’ carotenoid/chlorophyll ratio [85]. The discoloration can be important in host
selection due to the CBW’s affinity for yellow [36] or blue [37]. Plants’ blue and purple
discoloration is a result of anthocyanin pigments. The Anthocyanin Reflectance Index (ARI)
is sensitive to the anthocyanin pigment concentration in the leaves [86], whereas the CRI
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(Carotenoid reflectance vegetation index) is used to measure the overall carotenoid content
of the leaves [87]. Plant water stress has been determined to affect the CBW’s preference
for oviposition and feeding performance [88]. The NDMI has been commonly used to
monitor forest ecosystem moisture, and thus, the overall forest health and condition [89],
while the NDWI has been developed to indicate the water content and availability [90].
VIs were calculated from Landsat 8 and Sentinel-2 recordings (Table 2). The reflectance
measurements retrieved from Landsat 8 and Sentinel-2 satellites differ in spectral resolution.
The bands of the satellites cover different wavelengths in certain spectral ranges. The bands’
central wavelengths are also different (Table 1). Therefore, the value of a VI calculated
from the bands of the two satellite sensors differ due to the wavelengths covered [40].
Different atmospheric correction models were used for pre-processing the images of the
two satellites, which also influenced the value of the VI [60]. Therefore, the two satellites’
performance were compared to determine their efficacy for the surveillance of the CBW
larval ear damage.

Table 2. Abbreviation, name, and formula of vegetation indices that were calculated based on
Sentinel-2 and Landsat 8 spectral bands.

Abbr. Name Sentinel-2 Landsat 8

Moisture-related vegetation indices

NDWI normalized difference water index B03−B08
B03+B08

B3−B5
B3+B5 [90]

NDMI normalized difference moisture index B08−B11
B08+B11

B5−B6
B5+B6 [91]

Pigment-related vegetation indices

NPCRI normalized pigment chlorophyll ratio index B04−B02
B04+B02

B4−B2
B4+B2 [86]

ARI anthocyanin reflectance index 1
B03 − 1

B05 - [86]
CRI carotenoid reflectance index 1

B02 − 1
B03

1
B2 − 1

B3 [87]

General vegetation indices

EVI enhanced vegetation index 2.5 ∗ B08−B04
B08+6∗B04−7.5∗B02+1 2.5 ∗ B5−B4

B5+6∗B4−7.5∗B2+1 [84]
NDVI normalized difference vegetation index B08−B04

B08+B04
B5−B4
B5+B4 [81]

SAVI soil adjusted vegetation index 1.5 ∗ B08−B04
B08+B04+0.5 1.5 ∗ B5−B4

B5+B4+0.5 [82]

Senescence- and ripening-related vegetation index

PSRI plant senescence reflectance index B04−B02
B06

B4−B2
B5 [85]

2.4. Cotton Bollworm Larval Damage Observations

The following intra-field sampling method was applied for the distribution analysis
of maize ear damage caused by CBW larvae (Figure 2):

• Sampling zone selection: Georeferencing of field boundaries was performed manually.
For each field, the NDVI was calculated based on Sentinel-2 imagery with a 20 m
spatial resolution, and a grid of 20 × 20 m zones was applied to the fields. Ten sampling
zones were selected in each field by the following method: The field’s NDVI values
range was divided into ten equal sub-ranges. From each sub-range, one sampling
zone was selected.

• Deploying sampling zones: The center point of the selected sampling zones was retrieved
in QGIS and deployed on the fields based on GPS coordinates using a Trimble Juno 3B
GPS device.

• Sample plant selection: In each sampling zone, 36 sample plants were selected following
a spiral line from the sampling zone’s center with an equal distribution on the zone’s
grid points.

• Damage observation: The ears of sample plants were visually inspected. The presence of
apparent CBW larvae damage was observed by removing the ears’ husk and checking
for chowed kernels and the typical excrement of the CBW (Figure 2). The extent of the
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damage to the ears was assumed to be negligible information and not estimated. The
percentage of damaged ears was considered as characteristic of the sampling zone.

Figure 2. Method of (a) selecting sampling zones by NDVI of the fields: dividing the NDVI range
by an equal number of intervals and designating the central point of selected sampling zones and
(b) selecting sample plants in the sampling zones. (c) On the ears of the sample plants, consumed
kernels and typical CBW excrement were searched.

Field observations were conducted in the first week of August in sweet maize fields in
2020 and 2021. In grain maize fields, the larval damage distribution was investigated in the
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first week of September 2021 and in the second week of September 2017 and 2020. During
2017, 2020, and 2021, altogether, 7560 plants were visually inspected on the three different
farms in the sampling zones of different maize fields.

As a quality control measure of the field data, some sampling zones were excluded
from the data analysis due to the following reasons:

• maize plant density dropped below 60% due to waterlogging;
• maize plant density dropped below 60% due to agronomic failure;
• a large object was found in the sampling zone (e.g., light pole)

2.5. Cotton Bollworm Adult Flight Monitoring

Adult CBW flight activity was observed in particular fields (Table A1 of the Appendix A).
For adult monitoring, CSALOMON® VARL funnel sex pheromone traps (Plant Protec-
tion Institute CAR, ELKH, Budapest, Hungary, www.csalomoncsapdak.hu, (accessed on
28 May 2023) were used, where a CBW sex pheromone lure was used as an attractant [4].
The traps were fixed to a 200 cm tall wooden pole. The pheromone attractant was a
pheromone-impregnated rubber ring attached to a plastic sheet fixed to the trap’s upper
portion. For CBW termination, lambda-cyhalothrin insecticide was used on a 3-by-3 cm
sponge. The trap was placed on the field 200 m from the boundary. In 2017, adult flight
activity was observed in all fields. In 2020, adult flight activity was observed at Farm 1
and in 2021 at Farm 3, according to Table A1. Each year, traps were installed at the end of
May and maintained until the beginning of September. The number of captured adults was
counted weekly in all traps.

2.6. Additional Field Observations

Maize phenology was recorded, as it affects the host selection of CBW adults, larval
feeding, and subsequent damage. Phenology was grouped according to the general BBCH
scale [92]:

• BBCH 05–BBCH 17 Emergence, establishment, and mid-early development
• BBCH 18–BBCH 52 Canopy closure, organ, and stem elongation
• BBCH 53–BBCH 64 Tasseling, silking, pollination, and fertilization
• BBCH 65–BBCH 84 Grain filling
• BBCH 85–BBCH 89 Physiological maturation
• BBCH 99– After harvest

The maize hybrids of the observed fields were recorded as a field characteristic
(Figure A1 of the Appendix A). The different maize hybrids were classified based on
their cultivation purposes (sweet maize–commercial grain maize fields). Commercial grain
maize fields were subdivided according to the maturity group of the maize hybrids planted
in the field (based on their FAO numbers [93]). Two maturation categories were used:

• FAO 300 maize hybrids: consists of mid–early maturing grain maize hybrids from
FAO 290 to FAO 389;

• FAO 400 maize hybrids: consists of mid–late maturing grain maize hybrids from FAO
390 to FAO 489.

Meteorological data (minimum, maximum, average daily temperature, and daily
sum of precipitation) were also recorded and plotted in Figure A1 annually by farm. The
weather during the maize growing season was more arid in 2017 and 2021. The sum of
precipitation was 255 mm in Farm 1 in the maize growing season of 2017. In 2021, the sum
of precipitation was 180 mm in Farm 2 and 138 mm in Farm 3. In contrast, the weather in
2020 was more humid on all surveyed fields; the rainfall was 323 mm, 333 mm, and 394
mm in Farm 1, Farm 2, and Farm 3, respectively.

2.7. Statistical Analysis and Visualization

We would like to establish the existence of the relationship and its circumstances
between the CBW larval damage (percentage of ears damaged) in the sampling zones and

www.csalomoncsapdak.hu
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their surface reflectance on different bands of Landsat 8 and Sentinel-2 or VIs. Correlations
were therefore estimated between the damage and the spectral data. The relationship was
evaluated in terms of a correlation analysis over each field and each date.

As the data did not deviate significantly from a normal distribution, we used the
Pearson correlation method, and Pearson correlation coefficients (PCCs) were calculated for
each field and date separately. Correlations were deemed to be significant when p < 0.05.
For the interpretation of correlation coefficients, Table 3 was considered [94].

Table 3. Interpretation of correlation coefficients of Pearson correlation analysis.

Pearson Correlation Coefficient Interpretation

−1 1 Perfect
−0.95–−0.99 +0.95–+0.99 Very Strong
−0.75–−0.95 +0.75–+0.95 Strong
−0.3–−0.75 +0.3–+0.75 Moderate
−0.1–−0.3 +0.1–+0.3 Low

0–−0.1 0–+0.1 No correlation

In order to clarify the paired data, where the PCCs were calculated, we present the
data structure below (Figure 3).

Figure 3. Correlation analysis of percentage of ears damaged in the sampling zones and satellite
spectral bands/vegetation indexes aligned with agronomic factors—data structure.

In order to explore the agricultural meanings of the correlations, we grouped the
PCCs by satellite, and by bands and VIs. The PCCs of the groups were inconsistent (see
Section 3.3). As a consequent step, in order to find patterns of the PCCs, a K-means clus-
tering analysis [95] was conducted on the PCCs of each spectral band and VI, considering
other field parameters such as farm, date, maize cultivation purpose, and maturity group.
The Within-Cluster Sum of Square elbow method [95] was used to find the optimal number
of clusters.
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From the results of the K-means clustering analysis, we could identify the relevant
factors for the consistency of the PCCs. After identifying the relevant agronomic groups,
we could search for the highest PCCs with respect to time along with phenology, spectral
bands, and VIs.

The differences among groups of Pearson correlation coefficients (PCCs) were analyzed
by ANOVA and post hoc tests (Tukey’s Honest Significant Difference (Tukey HSD)) since
ANOVA and Tukey HSD tests are standard methods to compare more than two means.
The difference was considered as significant when p < 0.05. ANOVA and Tukey HSD tests
were conducted only when the PCCs satisfied all criteria of ANOVA and Tukey HSD tests
(e.g., grouped data were independent). We found that Mengarelli’s method (of performing
ANOVA tests on Spearman correlation coefficients) was suitable whenever differences
between the PCC groups were examined [96].

When assumptions of the ANOVA test were not fulfilled, only the mean, median, and
standard deviations were analyzed. In the correlation strength analysis, the absolute values
of the PCCs were used, which is similar to the approach used in remote sensing research,
where the suitability of the VIs for different purposes are compared [97].

ANOVA and Tukey HSD tests were also applied for the damage percentages of the
sampling zones. Differences were determined among fields, farms by each year, and years.
The significance of variance analysis and pairwise comparisons were analyzed considering
an error probability < 0.05.

To estimate the dependence of the correlations (grouped PCCs) on time, linear regres-
sion models were also fit on the grouped PCCs (this approach has been recently used in
healthcare research [98]) to find whether the changes in the PCCs have a time dependency
(week of the year). The significance of the linear models was analyzed considering an error
probability < 0.05.

The analysis and visualization were made by Microsoft Excel (version 2310), Visplore
(version v2023a) [99], and R Studio (version 2022.07.02) [100] with the use of the packages
‘reshape’ [101], ‘ggplot2’ [102], ‘dplyr’ [103], ‘emmeans’ [104], and ‘multcomp’ [105].

2.8. Summary of Methodology

Field observations were conducted in north-eastern and south-eastern Hungary, with
21 fields on three farms. On-farm investigations were conducted in 2017, 2020 and 2021.
Satellite images of Landsat-8 and Sentinel-2 were collected. VIs were selected based on
two criteria: they can be determined using Landsat-8 and/or Sentinel-2 bands and have
the probability to be impacted by CBW feeding. The selected VIs are as follows: EVI,
NDVI, SAVI, NDMI, NDWI, ARI, CRI, NPCRI, and PSRI. Intra-field, NDVI-based sampling
methods were used to measure damage distribution. Adult CBW flight activity was
observed with CSALOMON® VAR-type traps. Pearson correlation coefficients between the
ear damage caused by CBW larvae and the surface reflectance (recorded by Landsat 8 and
Sentinel-2) or VIs (computed using surface reflectance) were calculated field-by-field (PCCs).
The strength of correlations was analyzed by converting the PCCs to absolute values.

The correlation results were analyzed by examining differences between multispectral
satellites, spectral ranges and VIs, date (calendar week, thus coincidence of important crop
phenology and CBW flight activity), farm, and field. It must be highlighted that these
factors may also affect each other. The reflectance was measured on different dates, and the
maize hybrids were also different annually in the investigated fields (due to crop rotation).
ANOVA and Tukey HSD post hoc tests and K-means clustering and linear regression
models were used to evaluate the correlation between the percentage of ears damaged
and the VIs. Data were processed according to Figure 4. The aim of this analysis was to
determine which parameters, under which conditions, should be considered or removed
from the model, leading to the highest PCCs trend-wise.
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Figure 4. Workflow of different processing steps of the cotton bollworm surveillance analysis, maize
field characteristics, and reflectance to select the most important parameters.

3. Results
3.1. Cotton Bollworm Larval Damage to Maize Ears on Fields, Farms, and Years

Although the weather conditions in the sampling years were different, the yearly
average ear damage on all farms and fields was similar, around 35% each year. Damage
appeared highly variable (Table 4). The percentage of damaged ears on the farms were
different in different years. The average damage on Farm 3 was significantly higher
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(p < 0.01) in 2021 (37.2 ± 25.6) than in 2020 (25.8 ± 18.5). The average damage on Farm
1 was higher in 2020 than in 2017 (46.9 ± 14.3 and 35.6 ± 14.7, respectively). Still, the
difference was insignificant (p = 0.14) due to the high within-field variability of the damage
(SD ranging from 6.5 to 18.6). There were significant differences between the average
damage on the farms in the same year. In 2020, the damage was significantly higher on
Farm 1 (46.9 ± 14.3) than on Farm 2 (34.5 ± 10.4, p = 0.01).

Table 4. Larval damage of cotton bollworm to maize fields in each farm and year.

Year Farm Field Cultivation
Purpose Mean ± SD 1 CLD 2 Median Min Max CV 3 Mean ± SD of Farms CLD Mean ± SD of

the Year CLD

2017 Farm 1
F1_1 Grain 48.8 ± 11.9 abc 47.0 28.0 68.8 0.24

35.6 ± 14.7 AB 35.6 ± 14.7 aF1_2 Grain 32.1 ± 6.7 adefg 33.3 19.4 38.9 0.21
F1_3 Grain 23.0 ± 10.8 ehi 20.8 8.3 39.4 0.47

2020

Farm 1
F1_1 Grain 53.9 ± 18.6 bc 53.5 19.4 80.6 0.35

46.9 ± 14.3 A

34.5 ± 16.7 a

F1_4 Grain 44.7 ± 10.8 bf 46.0 29.7 67.7 0.24
F1_5 Grain 40.0 ± 6.5 efg 41.7 33.3 50.0 0.16

Farm 2

F2_2 Grain 43.2 ± 7.9 cf 44.6 29.7 59.5 0.18

34.5 ± 10.4 BC
F2_3 Grain 34.1 ± 9.5 adefg 31.1 24.3 51.3 0.28
F2_4 Grain 30.4 ± 10.8 defg 25.7 16.2 48.7 0.35
F2_5 Grain 31.1 ± 9.0 defg 29.7 18.9 48.7 0.29

Farm 3

Nm1 Sweet 21.0 ± 12.9 dhi 14.3 8.6 42.9 0.61

25.8 ± 18.5 B
Nm2 Sweet 1.7 ± 2.4 j 0.0 0.0 5.7 1.40
F3_3 Grain 41.7 ± 5.4 cfg 41.4 31.4 51.4 0.13
F3_4 Grain 38.3 ± 11.5 cefg 37.1 20.0 60.0 0.30

2021

Farm 2
Gy1 Grain 26.2 ± 12.1 gi 23.0 10.8 48.7 0.46

30.5 ± 12.6 BC

32.4 ± 20.0 a

Gy2 Grain 38.6 ± 11.1 cefg 33.8 24.3 54.0 0.29
Gy3 Grain 26.5 ± 11.4 gi 24.3 16.2 54.0 0.43

Farm 3

Kd Grain 60.0 ± 8.7 b 58.0 44.0 76.0 0.14

37.2 ± 25.6 AC
Nm1 Sweet 10.5 ± 4.8 ij 10.0 4.0 20.0 0.45
Nm2 Sweet 6.3 ± 3.9 hj 4.0 4.0 12.0 0.62
Nm5 Grain 54.7 ± 7.2 bc 52.0 44.0 68.0 0.13

All 33.9 ± 17.7 33.3 0.0 80.6 0.5

1 SD = standard deviation of mean. 2 CLD = Compact letter display of groups (ANOVA, Tukey’s post hoc).
3 CV = Coefficient of variation.

There were significant differences among the damages to the fields, even if they were
measured in the same year and farm. On Farm 1, there was a significant difference among
the fields in both years (F1_1 versus F1_3 (p < 0.01) in 2017 and F1_1 versus F1_5 (p = 0.03)
in 2020 Table 4). On Farm 2, there was no significant difference among the fields. On
Farm 3, there were significant differences between damage to commercial grain maize
fields and sweet maize fields in 2020 and 2021 (Table 4).

The intra-field variability of the damage was high in each year and at each farm in
each field (Table 4). The SD of the fields ranged from 2.4 (Nm2) to 18.6 (F1_1), and the
coefficient of variation ranged from 0.13 (Nm5) to 0.62 (Nm2).

3.2. Cotton Bollworm Adult Monitoring and Annual Peaks of Their Appearance

The prediction and monitoring of CBW damage rely on the concurrence of generative
maize phenological stages (silking and tasseling) and the peak density of adult populations.
If the peak occurs during the vegetative developmental stage of maize plants, long before
silking, the maize plant will not be damaged. If the silking and CBW adult population
density peak are close to each other, or the peak occurs during the reproductive phenological
stage, the maize ears will be damaged.

In our study, the period of CBW adult flights varied between years (Figure 5). In
2017, two adult population peaks were observed, and only the second peak resulted in ear
damage. In 2020, both generations resulted in damaged maize ears as both peaks were close
to silking. In 2021, three peaks were observed. The first peak appeared during the vegetative
development of the maize, unlikely affecting maize ears. The second peak appeared two
weeks after silking and highly influenced the ear damage. The third generation appeared
late when the maize grains were close to physiological maturity and, therefore, had little
impact on damage.
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Figure 5. Weekly average catches of male adults of cotton bollworm of all observed sex pheromone
traps per year. Vegetative development = BBCH 05–BBCH 52, Silk/Tassel (emergence) = BBCH
54–BBCH 64, Grain filling, ripening = BBCH 65–BBCH 98, Harvest = BBCH 99–.

3.3. Suitability of Landsat 8 versus Sentinel-2 Satellites for Cotton Bollworm Damage Surveillance
in Maize

Pearson correlation coefficients (PCCs) of the ear damage caused by CBW larvae, with
surface reflectance (recorded by Landsat 8 and Sentinel-2) or VIs (computed using surface
reflectance), showed a wide range from no correlation to a correlation up to r = +/−0.93,
regardless of the satellite. Although the PCCs showed different distribution patterns when
the bands and VIs of the two satellites were compared, the correlation strengths were not
considerably different. Sentinel-2 bands and indices reached higher correlation strengths,
regardless of the chosen band or VI (Figure 6 and Table 5), which is likely due to the more
frequent cloud-free images. Therefore, Sentinel-2 was slightly better for CBW surveillance
than Landsat 8.
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Figure 6. Overall distribution of Pearson correlation coefficients between spectral ranges of bands
or vegetation indices and ear damage by larvae of cotton bollworm distinguished by multispectral
sensor of the Sentinel-2 and Landsat 8 satellites (a) and by spectral bands and VIs (b). The width
of the violin plots around the boxplots represents the density of correlation coefficients. The mean
values of the different groups are shown as grey dots. Tukey’s post hoc test based groups denoted by
letters above the boxplot (Spectral bands and vegetation indices were analyzed separately).

The average value of all Pearson correlation coefficients (PCCs) was 0.017 ± 0.42 and
0.37 ± 0.22 when the absolute value of the PCCs was considered. Moderate correlations
were found to be more frequent. All measured bands and vegetation indices (VIs) of the two
satellites were collectively analyzed (Figure 6a), as well as the bands and indices separately
(Figure 6b). When analyzing all correlations collectively by satellite (considering all bands,
all VIs, dates, farms, and fields), the PCCs had no significant difference between the two
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satellites (Figure 6a). The density of the PCCs exhibits dual peaks around −0.3 and +0.3 for
both satellites, denoting that moderate correlations are the most frequent for both satellites.
The peak at −0.3 is slightly higher for Sentinel-2. In contrast, Landsat 8 has a higher peak
at +0.3 to +0.5, implying that some of the parameters of the satellites may influence the
suitability of their imagery for CBW surveillance.

Table 5. Pearson correlation coefficients between ear damage caused by cotton bollworm larvae and
spectral bands or vegetation indices of Sentinel-2 and corresponding Landsat 8 satellite imagery.

Sentinel-2 Landsat 8

Mean SD Min Max Mean SD Min Max

B02 0.11 0.42 −0.85 0.90 B2 −0.04 0.40 −0.84 0.65
B03 0.11 0.44 −0.86 0.90 B3 0.00 0.42 −0.84 0.69
B04 0.09 0.42 −0.86 0.87 B4 −0.03 0.40 −0.88 0.72
B05 0.10 0.43 −0.89 0.88
B06 0.04 0.42 −0.89 0.88
B07 0.01 0.42 −0.86 0.86
B8A 0.01 0.42 −0.84 0.85 B5 0.12 0.38 −0.72 0.80
B11 0.06 0.39 −0.92 0.85 B6 0.00 0.38 −0.87 0.65
B12 0.07 0.42 −0.93 0.84 B7 −0.01 0.40 −0.92 0.67

ARI*1000 −0.13 0.38 −0.92 0.79
CRI*1000CRI*1000 −0.08 0.40 −0.89 0.87 0.11 0.41 −0.76 0.93

EVI −0.05 0.41 −0.87 0.86 EVI 0.03 0.42 −0.80 0.90
NDMI −0.04 0.45 −0.82 0.90 NDMI 0.09 0.43 −0.70 0.92
NDVI −0.08 0.43 −0.85 0.84 NDVI 0.10 0.41 −0.76 0.79
NDWI 0.09 0.43 −0.82 0.88 NDWI −0.10 0.39 −0.73 0.75
NPCRI −0.02 0.40 −0.80 0.92 NPCRI 0.02 0.42 −0.88 0.85

PSRI 0.04 0.41 −0.85 0.89 PRSI −0.02 0.41 −0.88 0.80
SAVI −0.08 0.43 −0.85 0.84 SAVI 0.10 0.41 −0.76 0.79

All 0.015 0.42 −0.93 0.92 All 0.021 0.41 −0.92 0.93

The differences of the PCCs of VIs and the bands of the two satellites are presented
in Figure 6b and Table 5. The mean, median, minimum, and maximum values of the
PCC groups were analyzed. There was no significant difference between the mean of the
PCCs based on the different satellite bands, neither between the satellites nor the different
spectral ranges (Figure 6b). There was no significant difference when only the mean of the
absolute values of the PCCs were considered. However, the Sentinel-2 satellite had stronger
maximum positive PCCs and stronger negative minimum PCCs in almost all bands in a
trend-wise manner (92% of all extremes of Sentinel-2 PCCs was higher Table 5).

The mean PCCs of the two satellites’ VIs differed from each other (Figure 6b and
Table 5). Moreover, there were significant differences between the same VI’s PCCs derived
from the two different satellites. The NDWI and PSRI, derived from Sentinel-2, had higher
PCCs than the other indices. As for Landsat 8, only the NDWI’s PCCs were significantly
stronger (lower in the negative range) than the other VIs. Comparing the same VIs of the
two satellites, CRI, NDWI, NDVI, and SAVI produced significantly different PCC means
and distributions (Figure 6b). The CRI, NDVI, and SAVI based on Sentinel-2 showed rather
negative PCCs, while the same indices based on Landsat 8 showed rather positive PCCs.
In the case of the NDWI, only the strength of the correlation was similar, but the direction
was not. In general, the Sentinel-2 satellite produced stronger maximum positive PCCs
and stronger negative minimum PCCs, and 69% of all extremes of PCCs (regarding the
satellites’ bands, Table 5).

Although there were differences in the distributions of the PCCs of the spectral bands
and VIs derived from the two satellites, the mean of the absolute value of the correlations
was not significantly different. However, the maximum correlation strengths were higher
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with Sentinel-2 reflectance measurements (regarding the majority of the bands and VIs);
altogether, 82% of all extremes of the PCCs (regarding the vegetation indexes) were stronger,
which was likely due to the shorter orbiting period with a higher number of retrievable
cloud-free images (Figure 7). Moreover, cloud-free images are more likely to be captured
during the growing season. The number of cloud-free images ranged from three to eight
considering Landsat, while the number ranged from seven to eleven considering Sentinel-2.
Landsat 8 provides 20–64% fewer cloud-free images than Sentinel-2. Therefore, only
Sentinel-2 satellite-derived images are considered in the following sections.

Figure 7. Number of Landsat 8 and Sentinel-2 satellite images where) the maximal cloud cover of the
whole image was below 60%, the area of each observed field was free of clouds (0%), and the date of
recording was within the maize vegetation period (from 15 April to 10 September). (N/A = no field
data recorded).

3.4. Cotton Bollworm Surveillance via Remote Sensing, Depending on Year, Maize Cultivation
Purpose, and Maturity Group

In the following sections, correlations between CBW damage with the Sentinel-2
recorded surface reflectance and VIs were investigated, and similar and distinct repetitive
patterns were found among the correlations over all recorded spectral and field data. One
of the major contributors to the observed PCCs was the year, as the weather conditions
of these years differed (Table A1). Another important factor of the PCCs was the maize
cultivation purpose (sweet or grain maize) and maturity group of the grain maize hybrids.
The PCCs showed a similar pattern in the two arid years (2017 and 2021) and differed in
the humid year (2020). There were also significant differences between sweet and grain
maize fields’ PCCs (Figure 8).

The PCCs and correlation strengths were compared year-by-year and between sweet
and grain maize. In each year, the mean values of the PCCs (considering grain maize in
2017, 2020, and 2021, as well as sweet maize in 2020 and 2021) were around zero (0.07, −0.02,
0.09, 0.03, and −0.03, respectively). The PCCs had a negative and a positive density peak
in fields with both cultivation purposes. For the sake of accuracy, the strength of the PCCs
were used. The mean of correlation strength was around 0.40 (grain maize 2017 = 0.39,
grain maize 2021 = 0.38, sweet maize 2020 = 0.41, and 2021 = 0.42), except for grain maize
fields in 2020, where the mean (0.29) was significantly (p < 0.01) lower than in the other
years. There were no significant differences between the PCCs in grain maize in 2017 and
2021. However, in 2021, the PCCs of sweet maize fields were significantly stronger than the
PCCs of grain maize fields. Similarly, in 2020, the correlation strength of sweet maize fields
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was significantly higher than in grain maize fields. Due to the differences, sweet maize and
grain maize will be analyzed separately.

It was observed that the PCCs of grain maize hybrids show no consistent pattern,
neither in terms of the sign nor in terms of the strength of the correlations. Therefore, a
K-means clustering analysis was conducted on the grain maize fields’ PCCs (Figure 9),
examining all the recorded field data, year, week of the year, all bands, and vegetation
indices. Sweet maize fields were excluded, as suggested before.

Figure 8. Distribution, amount (light grey dots), and quartiles of Pearson correlation coefficients of
all Sentinel-2-derived spectral bands and vegetation indices calculated from the bands with larval ear
damage by cotton bollworm considering all available and suitable images and grouped by maize
types and years. The width of the violin plots around the boxplots represents the density of correlation
values. Tukey’s post hoc test based on groups denoted by letters above the boxplot.

Two elbows were found using the Within-Cluster Sum of Square method (2 and 5,
Figure 9a). Using two clusters resulted only in dividing the negative and positive PCCs
while applying five clusters; the different maturity groups of the grain maize hybrids were
also identified by the clusters (Figure 9b). A high number of Cluster 5 points belonged to
the mid–early hybrids (FAO 300 group, 846 points out of 918), while Clusters 1–4 belonged
to the mid–late (FAO 400) maize hybrids (Figure 9b). The two maturity groups show
opposite directions of the PCCs, especially in the visible spectrum (B02, B03, and B04—blue,
green, and red, respectively), in the short-wave infrared (SWIR) range and all inspected
vegetation indices (Figure 9c).

The PCCs of the mid–late (FAO 400) maize hybrids were mainly positive in the visible
spectrum B02, B03, B04, and B05 SWIR bands (B11, B12), and the NDWI, PCRI, and PRSI,
while the PCCs of the mid–early hybrids (FAO 300 group) were primarily negative in these
bands and VIs. The PCCs of the mid–late hybrids were negative in the NIR (B7, B8A) bands
and the general vegetation indices EVI, NDVI, SAVI, and NDMI, while the PCCs of the
mid–early (FAO 300) hybrids were primarily positive in these bands and VIs.

The cluster analysis also endorsed the differences of the PCCs across the years, as
the majority of the Cluster 1 points belonged to the year 2017 (Figure 9b). The other three
clusters could not be divided by any recorded attributes. There was no difference in the
density of clusters among the bands and VIs.
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Figure 9. K-means clustering analysis of the Pearson correlation coefficients between ear damage by
cotton bollworm larvae with the Sentinel-2 satellite’s bands and vegetation indices of grain maize
fields. The following factors were considered: FAO number of the maize variety, date, spectral bands
(B02, B03, B04, B05, B06, B07, B8A, B11, and B12), and vegetation indices (ARI*1000, EVI, NDMI,
NDVI, NDWI, NPCRI, PRSI, SAVI, and CRI*1000). (a) The optimal number of clusters was identified
with the elbow method by finding the sum of the square distance between points in a cluster and the
cluster centroid—WCSS (Within-Cluster Sum of Square). (b) The clusters are shown as jittered points
divided by FAO number types and years. (c) Coefficients and larval ear damage with Sentinel-2
spectral band-measured surface reflectance or VIs (facets) grouped by maize FAO type (colors).
* Maize groups = maturity group of the observed commercial gain maize hybrids, FAO_300 = mid–
early maize hybrids with FAO number from FAO 290 to FAO 380, FAO_400 = mid–late maize hybrids
with FAO number from FAO 390 to FAO 490.

3.5. The Optimal Maize Phenology for Cotton Bollworm Surveillance

Not all maize phenological phases were suitable for the CBW damage surveillance
because the PCCs differ remarkably between the groups of the BBCH stages. The PCCs were
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low in the early phenological phases (before canopy closure) of the sweet, mid–early, and
mid–late grain maize hybrids, considering each band and the VIs. In the late (physiological
maturation) phenological phases of the mid–late (FAO 400) maize hybrids, consistently low
PCCs were exhibited, regardless of the chosen band or VI (Figure 10). The recordings of the
BBCH stages included the most important phenological groups. Due to the lack of weekly
cloud-free satellite images, a more precise analysis is not possible within the scope of this
study. Humid weather conditions reduced the correlation strength.

Figure 10. Absolute value of Pearson correlation coefficients between larval ear damage of cotton
bollworm and all Sentinel-2 spectral bands and vegetation indices per week and phenological stage
grouped by maize cultivation purpose and maturity group and year.

Means, medians, and standard deviations of the absolute values of the PCCs were
analyzed and grouped by the weeks of the year, year, maize cultivation purpose, and
maturity group. Means and medians were close to each other within each category. The
mean of the absolute values of the PCCs in each week of the early phenological phase
(BBCH 05–BBCH 17) were mainly around 0.25 in the grain maize fields (the PCC means
of mid–early hybrids ranged from 0.11 to 0.27, and the PCC means of mid–late hybrids
ranged from 0.13 to 0.46) and were between 0.35 and 0.39 in the sweet maize fields.

The PCC means after the canopy closure to the harvest (BBCH 18–BBCH 98) ranged
from 0.38 to 0.47 for the sweet maize fields, but other weeks that were be not suitable for
CBW surveillance could not be distinguished. In the mid–early (FAO 300) grain maize
fields, the weekly mean of all the PCCs after the canopy closure ranged from 0.16 to 0.50
(except for one week in 2017, where the PCC mean was 0.04).

The highest values in these fields were reached during ripening (BBCH 85–BBCH 89),
ranging from 0.24 to 0.43 (Figure 10). In the mid–late (FAO 400) grain maize hybrids, the
weekly average of the PCCs ranged from 0.23 to 0.6 (mostly around 0.5) from the canopy
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closure to the end of grain filling (BBCH 18–BBCH 84). However, during ripening and
senescence, the average of the PCCs’ strength falls to between 0.18 and 0.38.

Generally, the correlation strength in the mid–late (FAO 400) grain maize group was
higher than in both other groups (Figure 10). For the comparison of seasonality effect, the
PCCs were found to be stronger in the two arid years (2017 and 2021) than in the humid
year (2020) for the grain maize fields. The average strength of the PCCs for the sweet maize
fields were not different year by year, as these fields were irrigated.

In summary, the early period of maize development (before canopy closure) was
inappropriate for CBW larval damage surveillance in each group of maize hybrids. More-
over, the correlations were weak in the late-ripening period of the mid–late maize hybrids,
contrary to the sweet maize and mid–early hybrids. Therefore, the time period that is found
to be sufficient for the surveillance of damage (considering the maize phenological phases
and the dependence on maize cultivation purpose and maturity group) will be referred to
as the Digital Evaluation Period of CBW damage (DEPC) in the following sections.

3.6. Suitability of Different Spectral Bands and Vegetation Indices for Cotton
Bollworm Surveillance

To ascertain the optimal band or index for surveillance, an analysis was conducted
on the mean, standard deviation (SD), median, and maximum frequency of the PCCs
associated with each band and VI, focusing on the DEPC (Figure 11 and Table 6). The
mid–late (FAO 400) hybrids’ PCC means and medians were generally more robust than the
mid–early (FAO 300) hybrids, regardless of the selected band or VI.

Table 6. Mean, median, and standard deviation (SD) of the Pearson correlation coefficients of ear
damage of cotton bollworm larvae with spectral bands of Sentinel-2 and vegetation indices (Green
color highlights the most suitable bands and indices for surveillance of cotton bollworm damage).

Band/Index
Mid–Early Grain Maize

(FAO 300 Group)
Mid–Late Grain Maize

(FAO 400 Group) Sweet Maize

Mean Median SD Mean Median SD Mean Median SD

Visible bands

B02 −0.21 −0.28 0.28 0.44 0.51 0.33 −0.06 0.00 0.42

B03 −0.23 −0.27 0.27 0.42 0.50 0.39 −0.01 0.02 0.43

B04 −0.21 −0.30 0.32 0.46 0.49 0.27 −0.09 −0.22 0.44

Red-edge bands
B05 −0.23 −0.26 0.30 0.44 0.50 0.31 −0.02 0.06 0.43

B06 0.08 0.06 0.31 0.07 0.07 0.49 0.05 0.07 0.53

B07 0.18 0.23 0.30 −0.10 −0.18 0.46 0.08 0.05 0.53

NIR band B8A 0.18 0.23 0.29 −0.09 −0.20 0.46 0.08 0.07 0.52

SWIR bands
B11 −0.20 −0.27 0.33 0.34 0.39 0.28 −0.06 −0.16 0.49

B12 −0.20 −0.29 0.34 0.38 0.49 0.29 −0.14 −0.41 0.50

Pigment-based VIs
ARI 0.02 0.02 0.28 −0.28 −0.33 0.41 0.03 0.03 0.43

CRI 0.16 0.17 0.31 −0.35 −0.35 0.32 0.04 −0.06 0.48

NPCRI −0.15 −0.21 0.30 0.21 0.33 0.43 −0.13 −0.23 0.41

Water-based VIs
NDMI 0.21 0.28 0.34 −0.22 −0.35 0.43 0.09 0.15 0.55

NDWI −0.25 −0.28 0.32 0.43 0.46 0.30 −0.16 −0.27 0.47

General VIs

EVI 0.17 0.25 0.32 −0.34 −0.44 0.37 0.14 0.13 0.42

NDVI 0.22 0.28 0.33 −0.41 −0.45 0.33 0.16 0.34 0.47

SAVI 0.22 0.28 0.33 −0.41 −0.45 0.33 0.16 0.34 0.47

Senescence PSRI −0.17 −0.25 0.32 0.33 0.42 0.38 −0.15 −0.24 0.43

This study suggests that the bands in the visible spectrum are the most appropriate
for the surveillance of damage in grain maize fields, including both maturity categories.
The following bands and VIs showed relatively strong PCCs in both sweet and grain
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maize fields: B12, NDWI, NDVI, and PSRI. The suitability of the EVI and SAVI for damage
surveillance were satisfactory, although the usability of the NDVI surpassed the usability of
the EVI. Furthermore, the NDVI and SAVI have identical PCCs in the DEPC. Consequently,
the SAVI and EVI do not offer any supplementary information compared to the NDVI.

Figure 11. Histogram of Pearson correlation coefficients between ear damage by cotton bollworm
larvae and surface reflectance measured by Sentinel-2 spectral bands (a) and vegetation indices (b),
including data from the Digital Evaluation Period of Cotton Bollworm (DEPC) of all years. * Maize
groups FAO 300 maize group means, grain maize hybrids from FAO 290 to FAO 389, FAO 400 group
means, grain maize hybrids from FAO 390 to FAO 489 and sweet maize means sweet maize varieties.
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In the case of grain maize fields, the medians of the PCCs show greater strength
compared to the means. The medians demonstrated a greater proximity to the peak of the
histogram. In the case of grain maize, visible bands (namely B02 (blue), B03 (green), and
B04 (red)) had the highest average and medians of the PCCs (Table 6). The histogram peaks
in these bands emerge at stronger correlation values compared to all other bands and VIs
within one maturity group. This observation is valid for both the mid–early and mid–late
hybrids, as the peaks were around −0.3 (mid–early: FAO 300) and +0.5 (mid–late: FAO 400)
(Figure 11a). In the FAO 300 maturity group, the distribution of PCCs of the visible bands
was predominantly in the negative range, whereas in the FAO 400 hybrids, the distribution
shifted towards the positive range.

In the case of the grain maize fields, the B05 had a relatively uniform distribution of
PCCs in the positive range for FAO 400 and in the negative range for FAO 300 maturity
group. This band had stronger PCCs than the other red-edge bands (B06 and B07). The
suitability of B06 and B07 for CBW monitoring was unsatisfactory. Means, medians, and
histogram peaks consistently approached zero (Table 6 and Figure 11a). The distribution of
the PCCs in these bands exhibited a near equal occurrence of negative and positive values.
The near-infrared (NIR) band, namely band B8A, has a low average PCC. The near-infrared
(NIR) band in the FAO 400 category shows an especially high standard deviation. The
SWIR bands (B11 and B12) show the highest peak of PCC values (the highest number of
PCCs equal to the histogram peak). These PCC values were among the strongest observed
across all histogram peaks. In the case of the FAO 400 maturity group, both B11 and B12
have a peak at +0.50, but in case of the FAO 300 hybrids, B12 has peaks at −0.30 and −0.40,
whereas B11 had a peak at −0.50, which was the most prominent peak among all bands
and VIs in the FAO 300 maize fields (Figure 11a).

The pigment-related VIs of the grain maize fields, including the ARI, CRI, and NPCRI,
are unsuitable for damage surveillance. The means and medians of their PCCs were weak,
while the standard deviations were observed to be extensive (Table 6). Additionally, the
histogram peaks were around zero for both maturity groups (Figure 11b). The suitability of
the general vegetation indices (the EVI, NDVI, and SAVI) for the surveillance of CBW larval
damage was favorable in both maturity groups of grain maize. The means and medians
of these VIs were slightly inferior compared to the visible bands. The NDVI and SAVI
exhibited identical PCC values in the DEPC. Consequently, both indices had equivalent
medians, means, and distributions. The NDVI shows stronger PCC means and medians
compared to the EVI in both maturity groups of grain maize (Table 6). Although, using
the EVI, the PCCs have histogram peaks at stronger correlation values, the count of the
stronger PCCs of the NDVI was higher (Figure 11b). The moisture-related VIs (the NDMI
and NDWI) show relatively strong mean and median PCCs compared to other VIs in both
maturity groups. In the FAO 400 hybrids, only the NDWI shows a significant correlation
(Table 6).

In sweet maize fields, PCC means and medians of most spectral bands were around
zero, except for the B12 (SWIR) band, where the median was −0.41, which was the strongest
median among all bands and VIs (Table 6). Pigment-related VIs (the ARI, CRI and NPCRI)
are unsuitable for damage surveillance in sweet maize fields, as the means and medians of
the PCCs were low, and the histogram peaks were around zero. General VIs (the EVI, NDVI,
and SAVI) showed a relatively good suitability for damage surveillance, similarly to grain
maize. The mean PCCs were slightly weaker, and the median PCCs were stronger than in
the FAO 300 hybrids. The NDVI and SAVI exhibited the same PCC values from canopy
closure, and therefore also exhibited identical medians, means, and PCC distributions,
similarly to grain maize (Table 6, Figure 11). The NDVI surpassed the EVI. Moisture-related
vegetation indices (NDMI, NDWI) were different from each other. The NDMI did not
perform well. However, the NDWI had one of the strongest mean and median PCCs among
bands and VIs (Table 6).

The week of the year is an important influencing factor of the strength of the PCCs of
a particular band or vegetation index (as the weather conditions of different years were
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highly different, and phenology was already found to be important). Therefore, a linear
model was fit with the PCCs as the dependent variable and the week of the year as the
independent variable, and the three years were separately analyzed (Figure 12, Table A2).
Only the DEPC was considered in each year. Overall, the R2 of the linear models covered a
wide range (from 0 to 0.73).

Figure 12. Linear model of Pearson correlation coefficients between larval ear damage of cotton
bollworm Sentinel-2 spectral bands (a) or vegetation indices (b) as dependent on the week of each
year and each maize cultivation purpose (sweet and grain maize) and maturity group (FAO 300 and
FAO 400) of the grain maize field.



Remote Sens. 2023, 15, 5602 25 of 39

For the grain maize fields, the linear models of the different bands and VIs were similar
to each other in the two arid years (2017 and 2021): the slope of the linear models was
the same or closer to each other than in the humid year (2020). Moreover, the R2 of the
models reached a higher value in the arid years than in the humid year. The maximum R2

in the two arid years were 0.73 and 0.60, respectively, while in the humid year of 2020, the
maximal R2 was 0.19.

This trend was not observed in sweet maize as only two years were analyzed: a rainy
and cool (2020) and an arid and hot (2021) year. Moreover, the sweet maize fields were
irrigated. In 2020, there was no band or VI where the relationship between the weeks
and PCCs was significant, regardless of the maize hybrid. There was a significant linear
relationship between the PCCs of almost all bands or VIs and the weeks of the DEPC of
2017 in the FAO 300 hybrids, and the DEPC of 2021 in the FAO 400 hybrids (Table A2).

The highest four R2 values (above 0.60) were found in 2017 in the FAO 300 category:
B04, NDWI, NDVI, and SAVI (R2 = 0.73, 0.66, 0.60, and 0.60, respectively), and in 2021 in
the FAO 400 category: NDMI (R2 = 0.60, Table A2). The slope of the linear models of the
different years was similar in the visible bands (B02, B03, B04) and in one of the red-edge
bands (B05) in the FAO 400 category, and in B03, B05, and EVI in the FAO 300 category.
The slope of the model of the B03 band each year was around 0.2 in both grain maize
maturity groups. These results highlight that the visible bands not only reach the highest
PCCs but also seem to give the most reliable estimations throughout the different years for
commercial grain maize.

4. Discussion

In this study, satellite imagery was analyzed for the surveillance of damage by CBW
larvae to maize ears. The study hypothesized that reflectance represents changes in the
maize and visual stimuli that play a significant role in CBW adult oviposition preference.
CBW larvae do not change hosts during the larval stage; therefore, their most probable
locations are the CBW adult’s preferred host, highlighting potential locations for larvae
damage. Therefore, there is a near-optimal combination of satellites, spectral bands, vegeta-
tion indices (VIs), and temporal resolutions for the best possible surveillance of damage
by CBW larvae. This combination should function under a variety of agronomic and
weather conditions.

The analysis of the CBW damage distribution was conducted in an uncontrolled
agricultural setup. The selection of sampling zones was based on a methodology that
aimed to include various maize features. As well as the condition of the plants, the ear
damage distribution of the damaged ears showed high variability in all observed fields
across the years. The within-field variability of the damaged ears was also high. Although
the weather conditions of the sampled years differed, the percentage of ears damaged in all
the fields was similar. This result suggests the counteracting influence of several factors,
such as weather, location, field heterogeneity, and maize hybrid, since the variability in the
damage distribution within each field and farm was considerable.

Pearson correlation coefficients (PCCs) were calculated to assess the relationship
between the percentage of damaged ears and surface reflectance along with the various
VIs derived from spectral bands of the Landsat 8 and Sentinel-2 satellites. This analysis
considered the percentage of CBW-damaged ears observed in the sampling zones within
each field. Satellite images were collected in the best available temporal resolution (based
on the available cloud-free satellite images of the fields).

The PCCs were diverse, ranging from no correlation to a correlation as high as
|r| = 0.93 (both positive and negative). The absence of correlation coefficients beyond 0.95
suggests that besides satellite imagery, other factors should be considered during CBW
surveillance in maize fields.

No statistically significant difference was observed in the performance of the Landsat 8
and Sentinel-2 multispectral satellites when evaluating each spectral band and VI. These
results suggest that the disparity in the spectral characteristics of the two multispectral
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satellites was not the primary distinguishing feature when comparing the suitability of
the satellites for CBW surveillance. Nevertheless, the Sentinel-2 satellite shows stronger
maximum as well as minimum PCCs across nearly all spectral bands and VIs. The applica-
tion of Sentinel-2 is furthermore advantageous due to the availability of more cloud-free
recordings, and its shorter orbiting period supports the more frequent monitoring of im-
portant phenological phases. A comprehensive evaluation of the Landsat 8 and Sentinel-2
satellites has been conducted in many fields of agriculture, revealing similar results. The
two satellites showed comparable accuracy in LAI prediction [106]. Sentinel-2 only slightly
surpassed Landsat 8 in land-use classification [107–109], yield prediction [110,111], mon-
itoring of damages to forest ecosystems, such as burnt areas [112], or pest distribution
analysis, e.g., the European spruce bark beetle (Ips typographus L.) [113].

Unexpectedly, the first attempt to find the most correlated band and VI with CBW
damage was unsuccessful, as there were no statistically significant differences between
the bands (even when examining the absolute values of the PCCs), and no VI could be
identified that would perform better than the others. The PCCs within a group (belonging
to a band or VI) highly varied, and no consistent patterns of PCCs were found. To assess
the inconsistency, a cluster analysis was conducted.

The PCCs were similar in 2017 and 2021 (arid years) but different in 2020 (humid
year). The cluster analysis endorsed yearly differences, as most Cluster 1 points belonged
to 2017. In 2020, the PCCs were weaker than in the other two years, regardless of the
observed spectral band, index, maize cultivation purpose, or maturity group. However,
contrary to the arid years, two CBW generations could damage the maize ears in 2020.
Significant differences were observed between the PCCs of sweet maize and grain maize
hybrids. However, grouping by years contributed, but did not explain the inconsistency of
the PCCs.

The most prominent explanation for the inconsistency of the PCCs is that the different
grain maize maturity groups showed correlations in opposite directions. The separation of
different maturity groups of grain maize hybrids was achieved through clustering. Most
of Cluster 5 was associated with the FAO 300 maize hybrids, while the other clusters
(Cluster 1–4) were predominantly associated with the FAO 400 maize hybrids. The two
maturity groups of grain maize fields show patterns of PCCs with opposite signs, particu-
larly in the visible spectrum (B02, B03, and B04—blue, green, and red, correspondingly),
the short-wave infrared (SWIR) range, and all examined vegetation indices. The positive
PCCs of mid–late (FAO 400) hybrids were primarily observed in the visible spectrum B02,
B03, B04, and B05, as well as in the SWIR bands (B11 and B12), and some indices, namely
the NDWI, PCRI, and PRSI. Conversely, the PCCs of the mid–early (FAO 300) hybrids
in these bands and VIs were predominantly negative. When the PCCs of the mid–late
maize hybrids were found to be negative, namely in B07, the NIR band (B8A), as well as
general vegetation indices (the EVI, NDVI, and SAVI), the normalized difference moisture
index (NDMI), mid-early maize hybrids showed positive PCCs. The suitability of remote
sensing for the surveillance of damage from CBW larvae was better in the FAO 400 grain
maize maturity group than in the FAO 300 group, as the PCCs of the FAO 400 hybrids were
stronger each year, regardless of the chosen spectral band or index.

The main reason for the unexpectedly varying correlations (with correlation coeffi-
cients of different signs) of different grain maize maturity groups may be attributed to the
subtle differences in their spectral profiles and the small temporal shifts in their reflectance
patterns (Figure A2, Figure A3, Figure A4), which are aligned with differences in their
phenological states when the CBW adults appears in the field (Figure 5). If the adult faces
different phenological phases of maize during oviposition, the viability of the eggs and
larvae can vary depending on the limiting factors during that specific phenological phase.

Our results are supported by studies which suggest that maize’s spectral profile can
be used to distinguish different maize varieties and hybrids [54]. Studies have identified
variations in the spectral profile of distinct maize groups, leading to disparities in the
effectiveness of remote sensing for detecting or predicting specific objectives. For example,
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the accuracy of the estimation of leaf chlorophyll content through remote sensing was
improved by deriving separate calibration equations for each maize type [114]. It was
found that the canopy reflectance of maize fields had a different efficacy for estimating
leaf nitrogen content and yield, when the maize hybrids were grouped by the efficiency
of nitrogen utilization [115]. Moreover, remote sensing is an increasingly popular tool for
maize phenotyping and breeding, as the spectral properties of different maize varieties can
detect genetic differences [116–118]. The difference between the two grain maize categories
can be recognized by the level of damage percentages, as it was higher in the FAO 400
category than in the FAO 300 category.

There were substantial variations in the PCCs among different groups of BBCH stages.
Certain phenological phases consistently showed low PCCs, regardless of the selected band
or VI. However, the outcome was contingent upon the maize cultivation purpose, maturity
group, and the prevailing weather conditions of the years.

The mean PCCs between phenological phases were consistently lower during the early
stages (from emergence until canopy closure) compared to other stages in sweet maize,
as well as in mid–early and mid–late grain maize hybrids, as expected. The physiological
maturation and senescence phases show consistently low PCC values within the mid–late
hybrids. However, this late phenology within the mid–early grain and sweet maize hybrids
could not be excluded, as the PCCs in this period were as high as after the canopy closure.

Hence, the period with stronger PCCs was observed, suggesting that phenological
phases specific to maize cultivation purpose and maturity group are observed, referred to
as the Digital Evaluation Period of CBW damage (DEPC). Several studies have identified
specific phenological phases of maize that surpassed others when remote sensing was used
to estimate different aspects of maize fields. Studies revealed that the strongest correlations
of maize canopy reflectance and VIs with yield, dry matter weight, leaf nitrogen content,
and leaf chlorophyll content were observed in the filling stage of maize [115]. For maize
yield prediction, a combination of tasseling, silking, milking, and ripening phenological
phases was the most suitable [119]. In contrast, others revealed the maximal correlation
with yield three months after sowing [120,121].

Based on the literature, the highest correlations were expected in the silking and
tasseling phenological phases. It was unexpected that the correlations were not lower at
a vegetative phenological phase (namely after canopy closure, BBCH18-52) than during
silking and tasseling (BBCH53-64). This highlights the potential of the mid-term forecasting
of CBW damage distribution before the pest has even appeared in the field.

This study suggests that the visible bands (B02, B03, and B04) are the most appropri-
ate for the surveillance of CBW larval ear damage in grain maize fields, including both
maturity groups. While most multispectral-based remote sensing research uses only VIs,
visible bands were found to be more suitable in our research. These results are supported
by studies revealing the sensitivity of CBW adults for blue and green [34,35]. These re-
sults also highlight the importance of incorporating spectral band-measured reflectance
values directly into CBW damage surveillance models, similarly to some yield prediction
research [121,122]. Although each visible band was well-suited, there was no considerable
difference among the colors, contrary to the studies revealing CBW adults’ preference for
particular colors [36–38]. Even though B02, B03, and B04 reached the highest mean PCCs,
the strength of the mean PCCs remained moderate, and the variation within the PCCs
were relatively high. Therefore, the visual stimuli and the color preference of CBW for
oviposition and the subsequent larval damage were found to have considerable effects but
were not the most dominant factors. This indicates that CBW female adults prefer hosts
(later larvae damage) based on a complex stimuli (e.g., olfactory), supporting studies that
emphasize the importance of kairomones and volatiles [123–125].

The bands and VIs that demonstrated consistent relatively good fitness in both sweet
maize and grain maize fields were as follows: the B12 (SWIR) band, NDWI, NDVI, and
PSRI. The correlation of the EVI and SAVI was satisfactory, while the NDVI surpassed the
EVI. Furthermore, the NDVI shows identical PCCs as the SAVI, offering no supplementary
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information beyond the NDVI. Low to strong, mainly negative correlations were found
with the SWIR bands in mid–early (FAO 300) hybrids. If the reflectance of the maize
canopy is higher in the SWIR spectral region, it may indicate that the leaves contain a
lower proportion of water [126]. Our study suggests that there is a relationship between
the maize canopy reflectance in the SWIR spectral region and the CBW larval damage. This
suggests that a higher water content in the leaves can affect the damage level in maize. This
indication is supported by studies suggesting that water-stressed leaves were less preferred
by the CBW [88,127]. The NDMI results also support this conclusion, as mainly positive
correlations were found in the FAO 300 maturity group. Therefore, in the FAO 300 hybrids,
the moisture of plants was found to be an important factor in CBW larval damage since
these hybrids are already in a later phenological stage when the pests appear. The mid–late
(FAO 400) hybrids showed low to strong positive correlations in the SWIR ranges and
negative correlations with the NDMI. This finding indicates that in the FAO 400 category,
the maturity of the maize plants is more important than water content, as the swarming
peaks and subsequent oviposition and larval feeding occur at an earlier phenological phase
of the maize plants (as shown by the results with the general VIs, where mostly negative
correlations were found in the FAO 400 maturity group of grain maize).

4.1. Limitations and Uncertainties

The analysis holds limitations and uncertainties in some respects, mainly concerning
the limitations of the methodology and dataset and consequently the transferability to
other regions and hosts.

The collection of data was limited to the Carpathian Basin. The Carpathian Basin’s
climatic conditions are temperate, and this climate does not permit the continuous presence
of the CBW in this region (although, it should be noted that overwintering is becoming
more frequent here [7]). Temperature is the most significant factor determining the moth
development rate [21,128], and the CBW in this region develops two to four generations, in
contrast to the subtropical regions where the number of moth generations can reach more
than ten [128]. For this reason, the extension of the method to the Mediterranean regions
requires further investigation. Thus, at present, the results can only be interpreted within
temperate climatic regions.

An important limitation with respect to the data concerns the host plants. This study’s
data collection was restricted to maize cultivars, encompassing non-Bt, early, and mid-
maturing hybrids. The approach demonstrated in this research is likely to be maize-specific
or applicable to cultivars with similar growth cycles. In areas where Bt maize is also culti-
vated, this approach could be even more valuable, since it enables us to identify locations
where resistant CBW generations are most likely to cause damage, thus providing another
early monitoring and intervention point after the resistant adults have been controlled.

One further limitation with respect to the dataset is that the phenological observations
were restricted to the most significant phenology groups, so if there is a particular phenology
within these periods that has achieved a consistently high level of correlation, it will not
stand out.

Although the maize maturity group and the main phenology groups explained the
primary characteristics of the PCCs of a field, the PCCs still have a variability within the
different categories and phenological groups. Results could be improved by observing the
exact silking dates of the hybrids and analyzing their coincidence with the CBW adult flight
peak with daily accuracy. Further subcategories may enhance the usability of multispectral
satellite imagery for CBW damage surveillance, providing additional aspects for research.

The use of satellite technology and the selected satellites also hold some concerns.
The cloud-free coverage of satellite images for each farm and each year at every

phenological stage varies and some observations can only be based on thin data density,
while others benefit from a more extensive data availability, and some combinations are
entirely missing. Therefore, by applying harmonized satellite products of the two satellites,
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along with more frequent and sampling zone-specific phenological observations, it is
possible to identify the optimal CBW damage surveillance period more precisely.

Concerning the spectral bands’ suitability for the surveillance of CBW damage, a
limited number of bands were analyzed due to the attributes of the satellite sensors. A
higher spectral resolution and the application of a hyperspectral sensor could improve the
suitability of the remote sensing imagery for CBW surveillance. Therefore, further research
in this area is suggested.

The most important limitation of using multispectral satellite products for CBW
surveillance that becomes clear from the results is that it gives no information on the timing
of the pest’s appearance in the field. Therefore, the use of multispectral satellite data for
CBW surveillance should be combined with traps.

4.2. Outlook

The method presented in this study supports plant protection decisions against the
CBW, enabling long-term damage prediction before its appearance. Other models provide
information on CBW activity long before the CBW appears in the field. These systems
primarily focus on tracking the migration path of adults and the temperature-dependent
development of the pest (as written in the Introduction), but not the extent of the expected
damage. In contrast, the method presented here specifically concentrates on predicting
the location and percentage of damage. The previous models did not support the farm-
ers to make specific decisions regarding their farms, nor did they accurately locate and
estimate the percentage of damage. The approach presented here, in combination with
other models in the future, could provide global, but precise forecasts for smaller regions,
regarding damage.

Current short-term forecasting methods primarily focus on the appearance of pests
and rely on trapping, including light and pheromone traps. The remote sensing method
studied here does not provide information on the timing of pest emergence; it can, however,
provide information on the expected degree of damage and location. Thus, the use of
multispectral satellite imagery can be a supplementary technique to trap-based strategies.
It may help to optimize trap deployment and provide other supplementary measures for
the greater effectiveness and precision of plant protection decisions.

The current crop damage monitoring strategy relies mainly on the visual inspections
of farmers and advisors, which is time-consuming and laborious. The proposed method
allows us to focus on areas where the greatest damage is expected, thereby reducing the
number of monitoring points and optimizing the process.

5. Conclusions

This study investigated the use of Landsat 8 and Sentinel-2 satellite-measured surface
reflectance as a tool for the damage surveillance of CBW larvae to maize ears. The hypoth-
esis was that there is an optimal combination of satellites, spectral bands, or vegetation
indices for achieving the best possible surveillance of maize ear damage by CBW larvae.
The study was conducted in an uncontrolled agricultural setup, with sampling zones
selected based on the NDVI. The Sentinel-2 satellite slightly surpassed Landsat 8, due to
better data availability. The study highlighted the importance of weather conditions: in
humid weather conditions, the suitability of remote sensing for damage surveillance was
weaker than in arid weather conditions, regardless of the observed spectral band, index,
maize cultivation purpose, and maturity group.

The study found a significant difference in the suitability of remote sensing for CBW
surveillance in different maize cultivation purposes and maturation categories. In mid–late
hybrids, correlations between surface reflectance, VIs, and maize ear damage by CBW
larvae were stronger, regardless of the chosen spectral band or index or weather condition.
The different spectral profiles of the grain maize maturation categories could explain
the difference.
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We suggest considering the maturity groups of maize during CBW surveillance with
remote sensing imagery. The early phenological phase of maize growth, prior to the
formation of a closed canopy, was found to be unsuitable for the damage surveillance
of CBW larvae across different maize cultivation purposes and maturity groups. Late
phenological phases in mid–late grain maize hybrids were unsuitable as well. Visible bands
considerably surpassed non-visible bands and vegetation indices in grain maize fields,
highlighting the importance of incorporating surface reflectance directly into CBW damage
surveillance models. The bands and vegetation indices that demonstrated a consistent
relatively high correlation in both sweet maize and grain maize fields were as follows: B12
(SWIR band), NDWI, NDVI, and PSRI.

In this study, we established the existence of the relationship and its circumstances
between the CBW larval damage in maize and surface reflectance satellite products.

We used only publicly available, cost-free multispectral satellite data for the rapid
surveillance of CBW damage in maize over large areas, while using a cost- and labor-
effective approach.

Another prominent advantage of the proposed method is that the prediction of damage
percentage and location can be made immediately after maize canopy closure, long before
the pest appears in the field. The satellite data also provides continuous time sampling and
automatic resampling time.

Besides the advantages, it is essential to mention the disadvantages of the method.
This method is currently specific to temperate climate areas and maize hosts. Multispectral
satellite products do not provide information on the timing of the pest’s appearance;
therefore, plant protection interventions cannot rely only on this method.

It is proposed to combine this method with autonomous traps. Once this method is
further validated, large areas can be monitored with a reduced number of traps that are
precisely located in the areas that are most likely to be damaged. This approach reduces
field monitoring points for large areas considering CBW damage.
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Appendix A

Figure A1. Minimum, maximum, average daily temperature, and daily sum of precipitation of the
maize-growing season grouped by year type (humid and arid), year, and farm.

Table A1. Characteristics of each study field, sampling of cotton bollworm, and available satellite
images for both satellites.

Year Farm Field X Y
Cultivation

Purpose Hybrid Maturity
Group 1

Adult
Monitoring

Available
Satellite Images

Landsat-8 Sentinel-2

2017 Farm 1 F1_1 21.872793 47.714271 Grain maize Amandha FAO_400 Pheromone trap 4 11
2017 Farm 1 F1_2 21.921102 47.721464 Grain maize Kinemas FAO_300 Pheromone trap 4 11
2017 Farm 1 F1_3 21.807788 47.63241 Grain maize KWS 2482 FAO_400 Pheromone trap 4 11
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Table A1. Cont.

Year Farm Field X Y
Cultivation

Purpose Hybrid Maturity
Group 1

Adult
Monitoring

Available
Satellite Images

Landsat-8 Sentinel-2

2020 Farm 1 F1_1 21.872793 47.714271 Grain maize Kathedralis FAO_400 Pheromone trap 3 7
2020 Farm 1 F1_4 21.928877 47.725272 Grain maize Kathedralis FAO_400 Pheromone trap 3 7
2020 Farm 1 F1_5 21.806356 47.629874 Grain maize Durango FAO_400 Pheromone trap 3 7

2020 Farm 2 F2_2 20.799724 46.872995 Grain maize Fonard FAO_400 None 6 10
2020 Farm 2 F2_3 20.886168 46.887758 Grain maize P9486 FAO_300 None 6 10
2020 Farm 2 F2_4 20.86895 46.895381 Grain maize DKC4943 FAO_300 None 6 10
2020 Farm 2 F2_5 20.817095 46.87975 Grain maize Fonard FAO_400 None 6 10

2020 Farm 3 Nm1 20.474071 46.608599 Sweet maize SF1379 na None 4 10
2020 Farm 3 Nm2 20.467449 46.610698 Sweet maize Kiara na None 4 10
2020 Farm 3 F3_3 20.478401 46.600584 Grain maize PR37N01 FAO_300 None 4 10
2020 Farm 3 F3_3 20.4809 46.62392 Grain maize PR37N01 FAO_300 None 4 10

2021 Farm 2 Gy1 20.84142 46.881759 Grain maize DKC4897 FAO_400 None 8 10
2021 Farm 2 Gy2 20.85435 46.859473 Grain maize DKC4897 FAO_400 None 8 10
2021 Farm 2 Gy3 20.849997 46.858392 Grain maize DKC4897 FAO_400 None 8 10
2021 Farm 3 Kd 20.772472 46.727483 Grain maize PR37N01 FAO_300 Pheromone trap 8 10

2021 Farm 3 Nm1 20.474071 46.608599 Sweet maize Kiara na None 8 10
2021 Farm 3 Nm2 20.467449 46.610698 Sweet maize Kiara na None 8 10

2021 Farm 3 Nm5 20.471139 46.598485 Grain maize PR37N01 FAO_300 Sex pheromone
trap 8 10

1 FAO type: FAO 300 maize type means, grain maize hybrids from FAO 290 to FAO 389, and FAO 400 type means,
grain maize hybrids from FAO 390 to FAO 489.

Figure A2. Surface reflectance of sampling zones of maize fields measured by each Sentinel-2 spectral
band in each field in 2017. Different line types denote the different grain maize types.
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Figure A3. Surface reflectance of sampling zones of maize fields measured by each Sentinel-2 spectral
band in each field in 2020. Different line types denote the different grain maize types.

Table A2. Linear model of Pearson correlation coefficients (PCCs) between ear damage caused by
cotton bollworm and surface reflectance measured on each spectral band of Sentinel-2, and vegetation
indices calculated from reflectance values, as a dependent variable of time (week of the year). Linear
models were fitted on coefficients of each combination of year, maize type, and band/vegetation index.
(x = week of the year, x = [DEPC], y = Pearson correlation coefficient, *—significant R2 at p < 0.05).

FAO 300 Grain Maize Fields FAO 400 Grain maize Fields Sweet Maize Fields

Year Band/
Index Equation R2 p Equation R2 p Equation R2 p

2017 B02 y = −0.03 x + 0.99 0.51 0.02 * y = 0.01 x + 0.07 0.01 0.69 n/a n/a n/a
2020 B02 y = −0.01 x − 0.05 0.04 0.25 y = 0 x + 0.27 0.00 1.00 y = 0 x + 0.16 0.00 0.99
2021 B02 y = −0.04 x + 0.99 0.15 0.10 y = 0.02 x − 0.07 0.20 0.02 * y = 0.04 x − 1.4 0.11 0.23
2017 B03 y = −0.02 x + 0.66 0.32 0.09 y = 0.02 x − 0.39 0.02 0.62 n/a n/a n/a
2020 B03 y = −0.01 x − 0.12 0.02 0.41 y = 0.02 x − 0.3 0.03 0.48 y = 0 x + 0.21 0.00 0.92
2021 B03 y = −0.02 x + 0.34 0.04 0.42 y = 0.02 x + 0.15 0.10 0.10 y = 0.06 x − 1.75 0.17 0.13
2017 B04 y = −0.04 x + 1 0.73 0.00 * y = 0.02 x + 0.1 0.03 0.55 n/a n/a n/a
2020 B04 y = −0.01 x + 0 0.06 0.19 y = 0.02 x − 0.31 0.04 0.39 y = 0.03 x − 0.8 0.03 0.56
2021 B04 y = −0.03 x + 0.89 0.08 0.23 y = 0.02 x − 0.01 0.16 0.04 * y = 0.06 x − 2 0.22 0.08

2017 B05 y = −0.03 x + 0.75 0.43 0.04 * y = 0.02 x − 0.16 0.03 0.57 n/a n/a n/a
2020 B05 y = −0.02 x + 0.18 0.11 0.07 y = 0.01 x + 0.08 0.00 0.76 y = 0 x + 0.14 0.00 0.98
2021 B05 y = −0.03 x + 0.74 0.09 0.22 y = 0.01 x + 0.25 0.07 0.18 y = 0.07 x − 2.18 0.24 0.06
2017 B06 y = 0.05 x − 1.27 0.53 0.02 * y = −0.03 x + 0.81 0.02 0.60 n/a n/a n/a
2020 B06 y = −0.01 x + 0.4 0.02 0.47 y = 0.06 x − 1.87 0.16 0.06 y = −0.03 x + 0.63 0.02 0.66
2021 B06 y = 0.05 x − 1.37 0.24 0.03 * y = −0.08 x + 2.52 0.43 0.00 * y = 0.08 x − 2.24 0.37 0.02 *
2017 B07 y = 0.04 x − 1.1 0.41 0.04 * y = −0.05 x + 1.26 0.16 0.15 n/a n/a n/a
2020 B07 y = −0.01 x + 0.56 0.04 0.26 y = −0.01 x + 0.12 0.01 0.67 y = −0.02 x + 0.42 0.01 0.76
2021 B07 y = 0.04 x − 1.05 0.13 0.13 y = −0.1 x + 2.73 0.55 0.00 * y = 0.07 x − 1.95 0.31 0.03 *

2017 B8A y = 0.05 x − 1.23 0.47 0.03 * y = −0.06 x + 1.51 0.24 0.07 n/a n/a n/a
2020 B8A y = −0.01 x + 0.47 0.02 0.48 y = −0.01 x + 0.13 0.01 0.66 y = −0.03 x + 0.62 0.02 0.67
2021 B8A y = 0.04 x − 1.14 0.18 0.07 y = −0.09 x + 2.69 0.55 0.00 * y = 0.08 x − 2.09 0.33 0.02 *

2017 B11 y = −0.03 x + 0.96 0.53 0.02 * y = 0.01 x + 0 0.02 0.63 n/a n/a n/a
2020 B11 y = −0.01 x − 0.03 0.04 0.27 y = −0.01 x + 0.61 0.01 0.59 y = 0.03 x − 0.67 0.03 0.60
2021 B11 y = −0.04 x + 1.05 0.10 0.21 y = 0.03 x − 0.36 0.22 0.02 * y = 0.06 x − 1.86 0.14 0.21
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Table A2. Cont.

FAO 300 Grain Maize Fields FAO 400 Grain maize Fields Sweet Maize Fields

Year Band/
Index Equation R2 p Equation R2 p Equation R2 p

2017 B12 y = −0.04 x + 0.99 0.53 0.02 * y = 0.01 x + 0.1 0.03 0.57 n/a n/a n/a
2020 B12 y = −0.01 x − 0.07 0.04 0.30 y = 0.01 x + 0.1 0.00 0.82 y = 0.04 x − 1.03 0.04 0.51
2021 B12 y = −0.05 x + 1.36 0.16 0.09 y = 0.03 x −0.56 0.25 0.01 * y = 0.01 x − 0.77 0.01 0.68

2017 ARI y = 0.01 x − 0.35 0.04 0.56 y = 0 x −0.2 0.00 0.99 n/a n/a n/a
2020 ARI y = 0.03 x − 1.04 0.19 0.06 y = −0.06 x + 1.57 0.14 0.08 y = 0.01 x − 0.43 0.01 0.78
2021 ARI y = −0.03 x + 0.78 0.11 0.17 y = −0.01 x − 0.1 0.05 0.27 y = −0.04 x + 1.23 0.07 0.34
2017 CRI y = 0.03 x − 0.98 0.56 0.01 * y = 0.01 x − 0.79 0.03 0.57 n/a n/a n/a
2020 CRI y = 0.01 x − 0.2 0.06 0.19 y = 0.01 x − 0.37 0.00 0.82 y = 0.01 x − 0.56 0.01 0.80
2021 CRI y = 0.05 x −1.24 0.18 0.07 y = −0.05 x + 0.98 0.41 0.00 * y = 0 x + 0.18 0.00 0.98
2017 NPCRI y = −0.02 x + 0.26 0.32 0.09 y = 0.01 x + 0.38 0.01 0.68 n/a n/a n/a
2020 NPCRI y = 0 x −0.38 0.00 0.75 y = 0.01 x + 0.07 0.00 0.88 y = 0.04 x − 1.26 0.09 0.35
2021 NPCRI y = −0.02 x + 0.8 0.07 0.26 y = 0.06 x − 1.58 0.23 0.01 * y = 0.03 x − 1.14 0.06 0.39

2017 NDMI y = 0.04 x − 1.2 0.48 0.03 * y = −0.04 x + 0.84 0.20 0.11 n/a n/a n/a
2020 NDMI y = 0.01 x + 0.19 0.02 0.46 y = −0.01 x − 0.16 0.00 0.84 y = −0.01 x + 0.28 0.00 0.83
2021 NDMI y = 0.05 x − 1.45 0.18 0.09 y = −0.11 x + 3.05 0.60 0.00 * y = 0.08 x − 2.02 0.26 0.07
2017 NDWI y = −0.05 x + 1.38 0.66 0.00 * y = 0.01 x + 0.35 0.01 0.76 n/a n/a n/a
2020 NDWI y = −0.01 x − 0.15 0.02 0.42 y = 0.01 x − 0.02 0.02 0.58 y = 0.03 x − 0.73 0.02 0.66
2021 NDWI y = −0.03 x + 0.74 0.07 0.28 y = 0.05 x − 1 0.32 0.00 * y = −0.02 x + 0.17 0.04 0.47

2017 EVI y = 0.03 x − 0.61 0.44 0.04 * y = 0 x − 0.52 0.00 0.90 n/a n/a n/a
2020 EVI y = 0.02 x − 0.22 0.12 0.06 y = −0.02 x + 0.25 0.01 0.63 y = −0.03 x + 0.97 0.05 0.50
2021 EVI y = 0.03 x − 0.87 0.07 0.29 y = −0.05 x + 1.09 0.24 0.01 * y = −0.01 x + 0.52 0.01 0.80
2017 NDVI y = 0.04 x −1.02 0.60 0.01 * y = 0 x − 0.61 0.00 0.94 n/a n/a n/a
2020 NDVI y = 0.01 x + 0.13 0.03 0.37 y = −0.02 x + 0.38 0.04 0.36 y = −0.03 x + 0.74 0.02 0.64
2021 NDVI y = 0.04 x − 1.02 0.10 0.20 y = −0.06 x + 1.21 0.31 0.00 * y = 0 x + 0.48 0.00 0.88
2017 SAVI y = 0.04 x − 1.02 0.60 0.01 * y = 0 x − 0.61 0.00 0.94 n/a n/a n/a
2020 SAVI y = 0.01 x + 0.13 0.03 0.37 y = −0.02 x + 0.38 0.04 0.36 y = −0.03 x + 0.74 0.02 0.64
2021 SAVI y = 0.04 x − 1.02 0.10 0.20 y = −0.06 x + 1.21 0.31 0.00 * y = 0 x + 0.48 0.00 0.88

2017 PRSI y = −0.03 x + 0.75 0.49 0.02 * y = 0 x + 0.64 0.00 0.92 n/a n/a n/a
2020 PRSI y = −0.01 x + 0.01 0.04 0.27 y = 0.01 x − 0.05 0.00 0.76 y = 0.03 x − 0.83 0.03 0.59
2021 PRSI y = −0.03 x + 0.96 0.08 0.24 y = 0.07 x −1.8 0.44 0.00 * y = 0.02 x − 0.94 0.03 0.52

Figure A4. Surface reflectance of sampling zones of maize fields measured by each Sentinel-2 spectral
band in each field in 2021. Different line types denote the different grain maize types.
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