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Abstract: Remote sensing image change captioning (RSICC) aims to automatically generate sentences
describing the difference in content in remote sensing bitemporal images. Recent works extract the
changes between bitemporal features and employ a hierarchical approach to fuse multiple changes of
interest, yielding change captions. However, these methods directly aggregate all features, potentially
incorporating non-change-focused information from each encoder layer into the change caption
decoder, adversely affecting the performance of change captioning. To address this problem, we
proposed an Interactive Change-Aware Transformer Network (ICT-Net). ICT-Net is able to extract and
incorporate the most critical changes of interest in each encoder layer to improve change description
generation. It initially extracts bitemporal visual features from the CNN backbone and employs an
Interactive Change-Aware Encoder (ICE) to capture the crucial difference between these features.
Specifically, the ICE captures the most change-aware discriminative information between the paired
bitemporal features interactively through difference and content attention encoding. A Multi-Layer
Adaptive Fusion (MAF) module is proposed to adaptively aggregate the relevant change-aware
features in the ICE layers while minimizing the impact of irrelevant visual features. Moreover, we
extend the ICE to extract multi-scale changes and introduce a novel Cross Gated-Attention (CGA)
module into the change caption decoder to select essential discriminative multi-scale features to
improve the change captioning performance. We evaluate our method on two RSICC datasets (e.g.,
LEVIR-CC and LEVIRCCD), and the experimental results demonstrate that our method achieves a
state-of-the-art performance.

Keywords: image change captioning; remote sensing; multi-layer change awareness; transformer

1. Introduction

Recently, deep-learning-based sensing image change captioning (RSICC) technologies
have demonstrated their effectiveness in observing and analyzing the change in the earth’s
surface [1,2]. They take advantage of multitemporal images acquired by sensors onboard
satellites or aerial platforms for continual observation and tracking of environmental
changes. RSICC is an evolving field of research that aims to understand the changes in
input bitemporal remote sensing (RS) images and generate descriptive natural language
sentences that accurately describe the differences between them. It analyzes and illustrates
the differences between bitemporal scenes, significantly deepening our understanding
of the dynamic changes in the environment and landscape. RSICC has a broad range
of applications, including landscape damage examination, city planning, environmental
monitoring, and land planning [2–4].

RSICC involves interpreting change regions between two RS images captured at the
same location but at different times (as shown in Figure 1). It requires a deep understand-
ing of the semantic meaning of these changes in the complex environment and a detailed
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analysis of the evolved scene. Like recent image captioning works [5–7], RSICC adopts
an encoder–decoder-based architecture, where a visual encoder extracts discriminative
features and captures the difference between bitemporal images, while the language de-
coder generates descriptive sentences that articulate these differences. Chouaf et al. [1] are
pioneers in the RSICC task; they used a CNN as a visual encoder to capture the temporal
changes in scenes and adopted an RNN as a decoder to generate descriptions of the changes.
Liu et al. [3] adopted a Transformer-based [8] encoder–decoder framework for the RSICC
task, which has achieved a great performance.

Figure 1. A visualization of the existing method and our proposed method. (a) The existing
method [3] uses a hierarchical approach that tends to integrate the unchanged focused informa-
tion from each encoder layer, disrupting the change feature learning in the decoder and generating
inferior change descriptions. Our proposed method attentively aggregates the essential features for
more informative caption generation. (b) Existing methods [2–4,9] overlook the change in objects with
various scales, generating inferior change descriptions. Ours can extract discriminative information
across various scales (e.g., a small scale) for change captioning. Blue indicates that the word “house”
is attended to the particular region in the image, while reddish colors suggest a lower level of focus
on it. The bluer the color, the higher the attention value.

Recent RSICC methods [3,9] proposed capturing the changes in each encoder layer
and gradually concatenating low-level and high-level change-aware semantic features in
all the layers to support the change caption decoder in generating more accurate captions.
Nevertheless, these approaches are prone to incorporating redundant features from each
encoder layer into the caption decoder, thereby adversely affecting the change caption
generation process. For instance, in Figure 1a, these methods tend to fuse non-change-
focused features and propagate them to the decoder, which causes disruption in word and



Remote Sens. 2023, 15, 5611 3 of 21

feature attention in the decoder. Consequently, this interference produces less accurate
change descriptions with the absence of the “tree” and “road” compared to the ground
truth caption. Moreover, most existing methods [2–4,9] overlook the distinctive charac-
teristics between natural images and remote sensing images, which consequently limits
the model’s ability to effectively capture the changes in the objects at a different scale (e.g.,
small-scale objects) and leads to generating inferior sentences to describe the changes,
as shown in Figure 1b. Illustrated in Figure 1, it is evident that a significant challenge
in remote sensing image change captioning research lies in effectively filtering out noisy
feature representations [10,11]. In addition, the diversity of scales in images is a natural
characteristic resulting from variations in camera-to-object distances and causes differences
in scale among the objects within the image. Hence, it is crucial to be aware of the presence
and absence of the objects across different regions with varying scales in bitemporal images
and provide comprehensive descriptions of these changes.

In this paper, we proposed an Interactive Change-Aware Transformer Network (ICT-
Net) to alleviate the above-mentioned problems. ICT-Net excels in extracting and integrat-
ing the most pivotal changes of interest within each encoder layer, thereby enhancing the
generation of more effective change descriptions. In the encoder, ICT-Net utilizes an Inter-
active Change-Aware Encoder (ICE) to capture change information between bitemporal
features extracted from the backbone network (e.g., ResNet [12]). Specifically, the ICE lever-
ages the Cross Multihead Attention (Cross-MHA) mechanism [8] in difference and content
attention encoding modules to learn the most discriminative representations and recognize
the changes of interest between paired features. Moreover, the Multi-Layer Adaptive
Fusion (MAF) module is introduced to effectively integrate relevant low- and high-level
semantic change-aware features in each ICE layer. MAF utilizes an attention design to filter
out irrelevant change information from integrated visual features. In addition, we expand
the ICE to extract multi-scale change-aware features, aiming to overcome the challenges of
recognizing changes in objects at various scales. In the change caption decoder, we propose
a Cross Gated-Attention (CGA) module to generate a change description by considering
the relationship of the words and each scale of the features. CGA employs a gated attention
structure, enhancing the decoder’s capability to utilize crucial features for more precise
change caption generation.

To summarise, in the proposed ICT-Net, we utilize an ICE to capture multi-scale
discriminative change-aware information between bitemporal features, followed by an
MAF module to integrate the most relevant change information in each layer for the change
caption decoder. A CGA module is adopted in the decoder to model the relationships
between semantic and multi-scale change-aware features to enhance the change captioning
performance. A comprehensive set of experiments is conducted on two remote sensing
image change caption datasets. The results of these experiments demonstrate that our
proposed model achieves superior performance compared to the state-of-the-art approaches
across all evaluation metrics. Our contributions are summarized in the following:

1. We propose an Interactive Change-Aware Transformer Network (ICT-Net) to accurately
capture and describe changes in objects in remote sensing bitemporal images.

2. We introduce the Interactive Change-Aware Encoder (ICE) equipped with the Multi-
Layer Adaptive Fusion (MAF) module. It effectively captures change information
from bitemporal features and extracts essential change-aware features from each
encoder layer, contributing to improved change caption generation.

3. We present the Cross Gated-Attention (CGA) module, a novel module designed
to effectively utilize multi-scale change-aware representations during the sentence-
generation process. This module empowers the change caption decoder to explore
the relationships between words and multi-scale features, facilitating the discernment
of critical representations for better change captioning.
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Section 2 provides a summary of previous work in the field of remote sensing im-
age captioning, remote sensing change detection, and neutral change image captioning.
In Section 3, we present our proposed ICT-Net in detail. Next, Section 4 presents the
experimental results and analysis. Finally, in Section 5, we conclude this work.

2. Related Works
2.1. Remote Sensing Image Change Captioning

The objective of remote sensing image change captioning (RSICC) is to analyze and il-
lustrate the differences between bitemporal scenes using natural language. Chouaf et al. [1]
are pioneers in the RSICC task; they used a CNN as a visual encoder to capture the temporal
changes between scenes and adopted an RNN as a decoder to generate descriptions of the
changes. Hoxha et al. [2] proposed early and late feature fusion strategies to fuse the bitem-
poral visual features and utilizes an RNN and a multi-class Support Vector Machine (SVM)
decoder to generate change captions. More recently, Liu et al. [3] adopted a Transformer-
based [8] encoder–decoder framework for the RSICC task, in which they used a dual-branch
Transformer encoder to identify the changes between the scenes and proposed a multistage
fusion module to fuse multi-layer features for change description generation. Liu et al. [9]
further improved the method by utilizing progressive difference perception Transformer
layers to capture the high-level and low-level semantic change information. Liu et al. [4]
proposed a prompt-based method that uses pre-trained large language models (LLMs) for
RSICC tasks, where they used visual features, change classes, and language representation
as input prompts to a frozen LLM for change caption generation. Nevertheless, current
methods tend to incorporate irrelevant change information into the model, resulting in an
inferior performance. Hence, we propose to capture more change-aware discriminative
information with the attention structure to enhance the model’s ability to illustrate the
changes in scenes.

2.2. Remote Sensing Image Captioning

Remote sensing image captioning (RSIC) aims to generate sentences that describe
the contents of the given RS image with natural language. Recently, most of the RSIC
works [10,13–21] have used deep learning techniques and adopted an encoder–decoder
framework for caption generation. The visual encoder utilizes a CNN [12] or a Vision
Transformer [22] pre-trained network to extract the visual features from the input image,
then injects the features into the RNN-based [23] or Transformer-based [8] decoder to
generate the descriptive sentences. Lu et al. [24] explored an encoder–decoder-based
method for RSIC that utilizes CNN models to extract the remote sensing image features and
uses a recurrent neural network (RNN) to generate the sentence. Li et al. [25] introduced
a novel truncation cross entropy (TCE) loss for RSIC, which aims to solve the overfitting
issue and facilitates the model to generate more concise RS image descriptions. Sumbul
et al. [14] proposed a summarization-driven RSIC method, which implements an adaptive
weighting strategy to effectively integrate the summarized ground truth captions into the
captioning model to improve performance. RS images may contain objects of different
sizes. Some RSIC methods aim to improve the visual representation modeling abilities
of the captioning model and aim to describe the objects with various scales in the RS
image. Wang et al. [15] proposed a multi-scale multi-interaction method to connect multi-
scale image features at different levels, allowing for more efficient visual representation
interaction. Ma et al. [26] introduced scene-level feature extraction and target-level feature
extraction modules to capture more fine-grained visual representations for RSIC. The
aforementioned RSIC methods aim to generate descriptive sentences of an object in a single
image. In contrast, RS image change captioning is focused on capturing and describing the
differences in bitemporal remote sensing images.
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2.3. Remote Sensing Change Detection

The objective of Remote Sensing Image Change Detection (RSICD) [27–32] is to detect
the change regions between bitemporal images and generate a pixel-level change map that
illustrates the changed areas. Chen et al. [28] introduced a Siamese Transformer-based [8]
framework to improve the model’s context and identify the change of interest between
given bitemporal images. Bao et al. [33] utilized a Convolutional Neural Network (CNN)-
based dual structure to extract and detect the difference between multi-scale features of
bi-temporal images and employed a Feature Pyramid Network (FPN) [34] fusion module to
fuse information over layers to enhance the detection performance. Peng et al. [27] proposed
a dense attention architecture for change detection to improve texture and detail extraction
of the visual representations. Saha et al. [35] proposed unsupervised learning techniques for
RSICD, combining the proposed deep change vector analysis methods with the extracted
spatial contextual information to determine changed pixels. Tang et al. [36] further explored
the graph convolutional network (GCN) [37] and metric learning algorithm method that
captures rich contextual information from the visual representations. In contrast to RSCD
tasks that aim to recognize pixel-level changes of interest, RS image change captioning
concentrates on detecting and describing the changes of interest between two images at the
semantic level.

2.4. Natural Image Captioning

Natural image captioning (NIC) is a fundamental multimodal task at the intersection
of computer vision [38–43] and natural language processing [8,23,44,45], which aims to
identify objects within images and describe recognized objects with language. Similar
to RSIC, most recent NIC methods utilize an encoder–decoder framework. Xu et al. [5]
proposed to use a CNN encoder to extract the natural image features and utilize an RNN
network as the language decoder to generate natural language words in sequences. Subse-
quently, spatial [6] and Transformer multi-head attention [8] mechanisms have then been
explored with the intention of enhancing the performance of image captioning tasks. Cor-
nia et al. [7] developed a Transformer-based framework incorporating meshed memory to
exploit low-level and high-level visual features for caption generating. Besides NIC, several
methods [46–49] have been introduced to solve natural scene, 3D scene, and synthetic
image change captioning tasks. Qiu et al. [47] proposed understanding and describing
the change in 3D scenes from different viewpoints. Tu et al. [48] introduced a method for
learning semantic relation-aware difference representations, which effectively localizes
semantic changes and captures the semantic relationships across two images. In contrast,
in this work, our objective is to describe the change in real RS scenes, which contain many
different object categories with multiple scales and complex ground details.

3. Methodology

The ICT-Net utilizes a CNN and a Transformer-based encoder–decoder framework.
The overall structure is shown in Figure 2, and is composed of three main elements: (1) A
multi-scale feature extractor to extract pairs of RS visual features from different stages of
the backbone CNN network; (2) The proposed Interactive Change-Aware Encoder (ICE)
with a Multi-Layer Adaptive Fusion (MAF) module to adaptively capture the semantic
discrimination information from each pair of multi-scale features; (3) A multi-scale change
caption decoder that utilizes a Cross Gated-Attention (CGA) module to select crucial
information from all multi-scale change-aware features generated by the MAF module for
change captioning.
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Figure 2. Overview of the proposed ICT-Net. It consists of three components: a multi-scale feature
extractor to extract visual features, an Interactive Change-Aware Encoder (ICE) with a Multi-Layer
Adaptive Fusion (MAF) module to capture the semantic changes between bitemporal features, and a
change caption decoder with a Cross Gated-Attention (CGA) module to generate change descriptions.

3.1. Multi-Scale Feature Extraction

We extract multi-scale features using different convolutional stages in the ResNet [12]
backbone to enable the model to capture objects with different scales. As illustrated in
Figure 2, given a pair of input images It0 and It1, the backbone network extracts multi-
scale features and uses a transformation function (e.g., 1 × 1, 3 × 3 convolutional lay-
ers) to transform them to the same dimension, D. We use Xi

t0 (e.g., X5
t0 ∈ RH×W×D,

X4
t0 ∈ R2H×2W×D, X3

t0 ∈ R4H×4W×D, where H and W denote the height and width of
the feature) and Xi

t1 to represent the multi-scale feature pairs, where i = {3, 4, 5} denotes the
features extracted from the respective stage in the ResNet.

3.2. Interactive Change-Aware Encoder

Obtaining different information that reflects the change regions between bitemporal
RS images is essential for RSICC. In this paper, we propose an Interactive Change-Aware
Encoder (ICE) that aims to interactively extract highly discriminative features between
each pair of input bitemporal features Xi

t0 ∈ RN×D and Xi
t1 ∈ RN×D interactively, where

N = W × H. As shown in Figure 2, each ICE layer comprises difference attention encoding
(DAE) and content attention encoding (CAE) modules. These modules work interactively
to capture the changes between bitemporal features by utilizing different features denoted
as Xi

di f f ∈ RN×D, and further enhance the change awareness through the incorporation

of aggregated features represented as Xi
f us ∈ RN×D. Specifically, DAE first extracts the

difference between paired bitemporal features and subsequently models the discriminative
representations with these features using the Cross Multihead Attention (Cross-MHA)
mechanism. Then, CAE further constructs the output content of DAE through Cross-MHA
with aggregated bitemporal features. This process models the long-range dependency of
discriminative representations with aggregated features, emphasizing the critical dissim-
ilarities between bitemporal features Xi

t0 and Xi
t1. The DAE process can be represented

as follows:

Z̄i
tj = Cross-MHA(Q̄, K̄, V̄) ∈ RN×D, (1)

Q̄ = Xi
tjW

q, K̄ = Xi
di f f Wk, V̄ = Xi

di f f Wv, (2)

Xi
di f f = Xi

t1 − Xi
t0, (3)

and the CAE process can be expressed as follows:

Zi
tj = Cross-MHA(Q̂, K̂, V̂) ∈ RN×D. (4)
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Q̂ = Z̄i
tjŴ

q, K̂ = Xi
f usŴk, V̂ = Xi

f usŴv, (5)

Xi
f us = Xi

t1 + Xi
t0, (6)

where Wq, Wk, Wv, Ŵq, Ŵk and Ŵv are trainable weight matrices, and j = (0, 1). To ease
the representation, we assume that position encoding (PE) is added to with bitemporal
features. A Feed-Forward Network (FFN) and Layer Normalization (LN) are included in
Cross-MHA, similar to the Transformer block.

Furthermore, we introduce a Multi-Layer Adaptive Fusion (MAF) module to adap-
tively fuse the change-aware multi-level representations obtained from each layer within
the preceding ICE. Each ICE layer can encompass distinct meaningful change representa-
tions. By leveraging the MAF module, our model can acquire these distinct features from all
ICE layers, allowing it to concentrate on the relevant change representations while filtering
out irrelevant changes. As illustrated in Figure 3, we first concatenate all the bitemporal
change-aware representations from each ICE layer in the channel dimension. Subsequently,
we incorporate a gated attention mechanism that allows the model to filter the irrelevant
information and determine the essential change-aware representations from concatenated
features. The process of MAF can be formulated as follows:

Zi = (Z̄iWa)� σ(Z̄iWb) + Z̄i
t1Wc + Z̄i

t0Wd ∈ RN×2D. (7)

Z̄i = [Z̄i
t0; Z̄i

t1], (8)

Z̄i
t1 = [Zi

t1,0; Zi
t1,l−1; . . . ; Zi

t1,l ], (9)

Z̄i
t0 = [Zi

t0,0; Zi
t0,l−1; . . . ; Zi

t0,l ], (10)

where [;] denotes concatenation, Wa, Wb, Wc and Wd are the learnable weights, and σ and
� represent the sigmoid activation and element-wise multiplication, respectively. Sigmoid
activation and element-wise multiplication serve as a gate to bypass the redundant infor-
mation from multiple ICE layers. l represents the number of layers in ICE. Subsequently,
we can obtain the filtered change-aware features Zi (i = 3, 4, 5 with respect to the scale of
features) through the MAF module, where Zi are down-sampled to a consistent spatial size
N = H ×W. These features are injected into the decoder for caption prediction.

Figure 3. Structure of the Multi-Layer Adaptive Fusion module.

3.3. Multi-Scale Change Caption Decoder

We leverage the previously generated multi-scale change-aware representations mod-
eled from the MAF modules while constructing a multi-layered decoder architecture for
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change caption generation. To achieve this, we introduce a novel Cross Gated-Attention
(CGA) module, which is in contrast to the cross-attention operator used in the original
Transformer decoder network [8]. The CGA module allows us to effectively utilize all the
multi-scale change-aware representations during the sentence-generation process. Further-
more, it allows the change decoder to attend to and select essential change-aware multi-scale
representations for change caption generation with the help of the gated structure. The
proposed change caption decoder is composed of three sub-modules: Masked-Multihead
Attention (Mask-MHA), Cross Gated-Attention (CGA), and the Feed-Forward Network
(FFN), as illustrated in Figure 4. The residual connection and Layer Normalization (LN)
operation are adopted for each sub-module.

Figure 4. Structure of the Cross Gated-Attention module.

At the training stage, given a sequence of word embeddings E = {E1, E2, . . . , EL} ∈
RL×d as inputs, Mask-MHA masks the subsequent position embeddings at time step t and
learns to predict the the word features e∗t , where L denotes the length of the sentence and d
is the word embedding dimension. The process can be written as follows:

E∗ = [head1; head2; . . . ; headh]Wo ∈ RL×d, (11)

where
headi = Masked-Attention(EWQ

i , EWK
i , EWV

i ), (12)

where WQ
i , WK

i , WV
i are the learnable projection matrices for query, key, and value of the

word embedding at the i-th head and Wo is the projection matrix that aggregates the
information for h number of heads. [;] represents the concatenation operation.

Subsequently, the CGA module is introduced to connect the generated sequence of
word features E∗ with all multi-scale change-aware representations Zi. Hence, instead
of focusing on one single scale of the change-aware features, we compute the long-range
dependencies across all multi-scale features. The process of computing sentence represen-
tations can be written as follows:

Si = [head1; head2; . . . ; headh]Wo ∈ RL×d, (13)
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where
headi = Cross-Attention(E∗WQ

i , ZiWK
i , ZiWV

i ), (14)

Then, gated attention is introduced to focus on relevant changes of interest in the
multi-scale-dependent sentence features Si for change caption generation, and it can be
computed as:

Ŝi = gs � Si, (15)

gi
s = σ(Ws[E∗; Si] + bs), (16)

Finally, these multi-scale contributed sentence features Ŝi ∈ RL×d are then
summed together:

C = LN(Wc[Ŝ3; . . . , ŜI ; E∗] + bc). (17)

where Ws and Wc denote learnable projection matrices, and bs and bc represent a learnable
bias vector. σ and � denote sigmoid activation and element-wise multiplication that are
used to select and balance the weights learned from each multi-scale feature-dependent
word representation Si, respectively. The output of the caption decoder C ∈ RL×d is then
fed into a linear projection layer and a softmax layer for the prediction of caption word
probabilities in the vocabulary:

P = Softmax(CWp + bp) (18)

where L is the length of the sentence, d is the embedding dimension, Wp ∈ Rd×Σ are the
weight parameters to be learned and Σ denotes the vocabulary size.

The procedure of our proposed model is shown in Algorithm 1 as follows:

Algorithm 1: ICTNet

1 Input: I ← (It0, It1)
2 Output: change caption
3 Step1: Feature extraction
4 for i in (t0, t1) do
5 Xi

tj ← Backbone(I)

6 end

7 Step2: Interactive Change-Aware Encoder (ICE)
8 for l in (1 v L) do
9 Z̄i

tj ← DAE(Xi
tj)

10 Zi
tj ← CAE(Xi

tj, Z̄i
tj)

11 Zi ←MAF(Zi
tj)

12 end

13 Step3: Multi-scale change caption decoder
14 for l in (1 v L) do
15 E∗ ←Masked-Attention(E)
16 Ŝi ← CGA(E∗, Zi)
17 C← LN(Linear(Ŝi; E∗))
18 end

19 Step 4: Predict change caption
20 P← Softmax(Linear(C))

21 Use probability P to predict caption words y in vocabulary
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3.4. Training Objective

During the training stage, similar to the existing RSICC [2,3] model, we adopt the
widely used cross-entropy (CE) loss to optimize the change caption model, which can be
written as follows:

LCE = −
L

∑
t=1

log(pθ(y∗t |y∗1:t−1, It0, It1)). (19)

The model is trained to predict the target ground truth caption y∗t with the previous
words y∗1:t−1, and the given images It0 and It1.

4. Experiments
4.1. Dataset and Evaluation Metrics

LEVIR-CC dataset. We conduct experiments on the recently published large-scale
LEVIR-CC dataset [3]. The LEVIR-CC dataset contains 10,077 bitemporal remote sensing
image pairs, where 5038 image pairs have changed regions and another 5039 image pairs are
without changes. The dataset contains 50,385 associate ground truth sentences describing
changes between image pairs, whereas 25,190 sentences describe image pairs with changes
and the remaining 25,195 sentences express image pairs without changes. The size of the
images is 256× 256 pixels. The dataset has been split into 6815, 1333, and 1929 image pairs
for training, validation, and testing, respectively.

LEVIRCCD dataset. We further verify the performance of the proposed method on
the LEVIRCCD dataset [2]. It consists of 500 bitemporal images that were originally used
for building change detection (CD). The images are cropped into 256 × 256 pixel size.
Each image has been annotated with five remote sensing change descriptions, resulting in
2500 change descriptions in total. A split of of 60%, 10%, and 30% of the image and change
caption pairs is used for training, validation, and testing, respectively.

Evaluation Metrics. Evaluation metrics measure the accuracy of the generated de-
scription with respect to the annotated reference description. Similar to existing works [3,9],
we automatically evaluate the change caption performance with four different widely used
evaluation metrics, which include BLEU-N (B-N, N = 1, 2, 3, 4) [50], ROUGE-L (R) [51],
METEOR (M) [52], and CIDEr-D (C) [53].

The BLEU evaluation metric is used to evaluate the precision accuracy between
the candidate and reference sentences, where N represents the n-gram precision be-
tween sentences.

METEOR evaluates the uni-gram precision and recall probabilities, and ROUGE-L
measures the similarity, calculating the longest common subsequence between two sen-
tences. METEOR and ROUGE-L account for sentence fluency by involving a penalty factor.

CIDEr-D calculates the cosine similarity of the Term Frequency Inverse Document
Frequency (TF-IDF). It takes into account both precision and recall, and it reports the real
values that exceed 100% [53].

For all these metrics, the higher the metric scores, the higher the accuracy of the
generated change description.

4.2. Experimental Setup

We utilized pre-trained ResNet101 [12] as the backbone network for bitemporal remote
sensing image feature extraction. The initial learning rate was set to 0.0001 and decays
by a weight of 0.7 as the training steps increase by three epochs. The maximum training
epoch was set to 40, and the training was discontinued when there was no improvement
in the BLEU-4 score for five consecutive epochs. We utilized two Transformer encoder
layers and one decoder layer with eight attention heads to achieve the best change caption
performance. The model was optimized through the Adam optimizer [54]. Like existing
works [3,4], the beam search size was set to 3 for inference. The model was implemented in
the PyTorch framework.
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4.3. Comparison with State-of-the-Art Methods

In Table 1, we compare the remote sensing image change caption performance with state-
of-the-art methods on the LEVIR-CC dataset, which include Capt-Dual-Att [55], DUDA [55],
MCCFormerss [49], MCCFormersd [49], RSICCFormer [3], PSNet [9] and PromptNet [4].
Capt-Dual-Att [55] combines two convolutional layers with spatial attention to attend to
important bitemporal visual features. DUDA [55] introduces a dynamic speaker, allowing
the model to adaptively attend to visual representations. MCCFormerss [49] flattens and
concatenates the bitemporal feature maps, then injects the fused features into a Transformer
network for captioning. MCCFormersd [49] introduce a Siamese Transformer encoder
design to model the relationships between bitemporal visual features and capture the
changes. Most of the methods compared utilize the same ResNet-101 backbone, except for
PSNet and PromptNet, which use a VIT [22] and CLIP [38] backbone, respectively. B-N
helps assess the presence of n-gram words in a sequence. The widely used CIDEr score
evaluates the generation of global semantic words in the caption. We can observe that the
proposed model presented a superior performance in all of the metrics. These performance
improvements shown in the table have proven the effectiveness of our proposed method.
We further validate our change caption performance on the LEVIRCCD dataset in Table 2.
We compared a method that uses the same backbone network (ResNet50) and has the same
settings as our method in Table 2 for a fair comparison. In addition, we selected methods
that achieve state-of-the-art performance on the Levir-CC dataset for comparison. We can
see that our proposed method achieves a better performance compared with other methods,
which further demonstrates the effectiveness of the proposed method. The results can be
attributed to the fact that the proposed method has the ability to recognize multi-scale
object changes and is able to adaptively fuse multi-layer semantic information for better
change caption decoding.

Table 1. Comparison of our proposed method and other state-of-the-art image change caption
methods on the Levir-CC dataset. The higher the score, the better the captioning performance. Bold
numbers indicate the best result.

Method B-1 B-2 B-3 B-4 M R C

Capt-Dual-Att [55] 79.51 70.57 63.23 57.46 36.56 70.69 124.42
DUDA [55] 81.44 72.22 64.24 57.79 37.15 71.04 124.32
MCCFormers [49] 79.90 70.26 62.68 56.68 36.17 69.46 120.39
MCCFormerd [49] 80.42 70.87 62.86 56.38 37.29 70.32 124.44
PSNet [9] 83.86 75.13 67.89 62.11 38.80 73.60 132.62
RSICCFormer [3] 84.72 76.12 68.87 62.77 39.61 74.12 134.12
PromNet [4] 83.66 75.73 69.10 63.54 38.82 73.72 136.44

Ours 86.06 78.12 71.45 66.12 40.51 75.21 138.36

Table 2. Comparisons on the LevirCCD dataset. Our model achieved higher scores, where the metrics
in bold have the best performance. Bold numbers indicate the best result.

Method B-1 B-2 B-3 B-4 M R C

CNN-RNN [1] 71.85 60.40 52.18 45.94 27.43 54.13 71.64
MCCFormerd [49] 66.81 56.89 48.57 41.53 26.16 54.63 78.58
RSICCFormer [3] 69.02 59.78 52.42 46.39 28.18 56.81 80.08
Ours 72.40 62.62 55.03 48.92 30.22 58.52 85.93

4.4. Ablation Studies

In this section, we present the numerical results of our ablation studies that validate the
effectiveness of the following proposed modules: the Interactive Change-Aware Encoder
(ICE), Multi-Layer Adaptive Fusion (MAF), and Cross Gated-Attention (CGA). The ablation
models are based on the ResNet101 backbone and were evaluated on the LEVIR-CC dataset.
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Table 3 demonstrates the effectiveness of including different components in the pro-
posed method. Difference attention encoding (DAE) and content attention encoding (CAE)
are two sub-modules in the ICE module. A tick in the table denotes that the module is
included in the model. We observed that the model demonstrates superior performance
through the integration of DAE or CAE in the change-aware encoder, surpassing the
baseline model utilizing the original Transformer encoder [8]. The proposed method can
achieve better results when utilizing both DAE and CAE in the model. Furthermore, the
performance is further enhanced by adopting the MAF module that adaptively fuses the
change-aware multi-level semantic information obtained from each layer of the ICE. More-
over, the result is further improved with the inclusion of the CGA module that enables the
decoder to select the critical multi-scale representation for better change caption generation.

Table 3. Performance of the model with various settings in the Levir-CC dataset. A tick means
the module was included for training, whereas a cross denotes the module was not included. Bold
numbers indicate the best result.

DAE CAE MAF CGA B-1 B-2 B-3 B-4 M R C

7 7 7 7 76.43 66.36 58.00 49.50 33.34 69.53 124.74
3 7 7 7 78.93 68.61 58.88 49.84 34.15 71.81 129.15
7 3 7 7 79.84 70.40 61.13 53.08 34.43 71.45 128.35
3 3 7 7 80.74 72.57 65.91 56.84 36.16 72.76 132.67
3 3 3 7 84.43 76.88 70.46 65.36 39.81 74.69 135.25
3 3 3 3 86.06 78.12 71.45 66.12 40.51 75.21 138.36

In Table 4, we evaluated the model’s abilities to determine whether changes exist
between bitemporal remote sensing images and whether it was able to describe them with
a caption. Hence, we tested the performance with different settings by (1) testing image
pairs with no changes, (2) testing image pairs with changes, and (3) testing the overall
test set. We can see that the model with an ICE performs better in all three settings as
compared to the Transformer network baseline, demonstrating that the ICE effectively
captures the change-aware features in bi-temporal remote sensing images. The proposed
model with the MAF module achieved a higher evaluation performance compared to only
utilizing ICE. This shows the effectiveness of the MAF module in interpreting and filtering
the semantic information extracted from different encoder layers to capture multiple
changes of interest for better caption generation. Furthermore, the overall model, which
incorporates a CGA module, can significantly improve the model performance in all
settings. It is designed to exploit word and multi-scale feature relationships and facilitate
the selection of essential features to benefit change captioning. Table 4 showcases the
significant enhancement brought by our method in terms of both change discrimination
and sentence generation performance.

Table 4. Ablation studies on the ICE, MBF, and CGA modules on the test sets with only no changes
and only changes and the entire test set. A tick means the module was included for training, whereas
a cross denotes the module was not included. Bold numbers indicate the best result.

Test Range ICE MAF CGA B-1 B-2 B-3 B-4 M R C

Test Set (only no-change)
3 7 7 95.15 94.38 94.14 93.48 73.91 95.67 -
3 3 7 95.80 95.36 95.13 94.97 74.62 96.24 -
3 3 3 97.43 97.03 96.80 96.97 75.96 97.24 -

Test Set (only change)
3 7 7 71.61 57.40 45.44 36.19 23.21 48.17 55.50
3 3 7 74.42 60.57 48.36 38.72 25.02 53.12 60.30
3 3 3 76.50 62.21 49.95 40.37 25.78 52.85 89.82

Test Set (entire set)
3 7 7 80.74 72.57 65.91 56.84 36.16 72.76 132.67
3 3 7 84.43 76.88 70.46 65.36 39.81 74.69 135.25
3 3 3 86.06 78.12 71.45 66.12 40.51 75.21 138.36
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Furthermore, this paper investigates the effectiveness of capturing and describing
multi-scale object changes between bitemporal remote sensing images. Hence, it is essential
to experiment utilizing different stage features (e.g., Stage-3, Stage-4, Stage-5) from the
backbone ResNet to localize multi-scale object changes in images. In Table 5, we show the
performance of the proposed model after adopting different scales of features for capturing
change-aware features. It was observed that the model achieved the best performance
when using the Stage-3 and Stage-4 multi-scale features to localize the differences in the
two images and describe them with captions. This observation also implies that bitemporal
remote sensing images in the dataset tend to contain small- to medium-scale objects, while
our proposed model is able to extract and make use of the captured multi-scale change
features to improve caption generation. Subsequently, in the experiment, we mainly
showcase the outcomes of employing Stage-3 and Stage-4 features as inputs to the model.

Table 5. Performance of the model when utilizing different CNN stages on the Levir-CC dataset.
A tick means the module was included for training, whereas a cross denotes the module was
not included. Bold numbers indicate the best result.

Conv5 Conv4 Conv3 B-1 B-2 B-3 B-4 M R C

3 7 7 73.33 65.24 60.18 56.90 33.47 65.94 112.95
7 3 7 85.02 77.16 70.89 65.61 39.32 74.68 134.91
7 7 3 81.57 75.41 69.24 64.89 37.91 73.09 127.20
3 3 7 84.29 76.08 69.58 64.59 39.96 74.30 132.35
3 3 3 84.36 76.09 69.41 64.29 39.53 73.74 133.53
7 3 3 86.06 78.12 71.45 66.12 40.51 75.21 138.36

4.4.1. Interactive Change-Aware Encoder

Tables 3 and 4 provide evidence of the effectiveness of the ICE modules, illustrating
their ability to enhance the model’s performance. In addition, it is worth paying attention to
the change regions located by the ICE between the two images (images taken “before” and
“after”). In Figure 5, we visualize and compare the change attention obtained using the DAE
module only and the DAE + CAE modules in the ICE. We captured the output attention
maps at the last layer of the ICE with different scale input features (Stage-4 and Stage-
3), where Mlarge and Msmall denote attention maps for large and small changes captured
between RS image features, respectively. We compare the attention maps generated only
using the DAE module with the combination of the DAE and CAE modules to observe
and test the effectiveness of these two modules. In role (a), given the two images with only
small changes (a small house), we can see that the small-scale object change attention map
(Msmall) generated using DAE + CAE is able to attend to the small house more accurately
compared the model only using the DAE module. Similarly, in (b), Msmall using DAE + CAE
is able to focus on the changes in both small houses. We visualize a somewhat large change
in (c). Mlarge with DAE + CAE more accurately attends to the change in the large buildings.
In (d), we capture the changes in both the large buildings and the narrow load, and we
can see that Mlarge with DAE + CAE highly attends to the group of buildings, and Msmall
focuses more on the changes in the narrow load. With these visualizations, we can conclude
that DAE and CAE enhance the discriminative feature learning ability of the ICE.
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Figure 5. Comparison of attention maps generated using DAE and DAE + CAE. Mlarger and Msmall
denote the attention maps for large and small changes captured between bitemporal image features,
respectively. It0 and It1 denote input RS images. Note that regions appearing more blue indicate
higher levels of attention. We use the red dotted box to ground the small change areas to ease
the visualization.

4.4.2. Multi-Layer Adaptive Fusion module

As shown in Tables 3 and 4, utilizing the MAF module to integrate multi-level semantic
feature representation from each layer of the ICE would allow the change caption decoder
to explore the relationship between words and each change of interest, which improves the
change caption performance. In Figure 6, we visualize the decoder attention between words
and integrated change-aware features from the MAF module. The top row are the input
bitemporal remote sensing images. The middle image is the word feature attention map
computed obtained using MBF [3], and the bottom image is the attention map computed
with the proposed MAF. Both MBF and MAF modules are designed to integrate multi-
level change aware semantic feature representation. However, MBF lacks a gating design,
which may lead to introductions of irrelevant features into the decoder and result in an
inferior change description. The MBF module utilizes a gated attention mechanism to
select the essential change-aware representations from multi-layer semantic information.
For instance, in (a), we can observe that the attention map of the word “house” computed
with the MBF module focuses more on the other places instead of the “house” in the image,
whereas the attention map captured using the proposed MAF module accurately attends to
the “house”. Furthermore, in (b), the model with the MAF module tends to focus on the
“road” in the image and is able to generate a more accurate change caption with respect
to the ground truth (GT) caption. This visualization demonstrates the effectiveness of
incorporating the MAF module, which is beneficial in word visual relationship modeling
and allows the model to generate better change captions.
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Figure 6. Visualization of the generated attention map of the caption decoder using the existing
MBF [3] method and the proposed MAF. The word highlighted in red in the caption corresponds
to the blue region in the generated attention map. Note that regions appearing more blue indicate
higher levels of attention.

4.4.3. Cross Gated-Attention Module

Besides observing the relation between words and single-scale change representations
in Figure 6, it is also worth paying attention to the relationships between words and multi-
scale change-aware features and discovering the ability of GCA that allows the change
caption decoder to effectively utilize and select the useful change-aware representations
for change description generation with a gated structure. Figure 7 shows the captured
multi-scale word and feature attention maps, where Lwords and Swords denote the attention
that captures large and small changes for object words (in red) in the generated change
caption, respectively. The top three pairs of results (1), (2), and (3) show the abilities of GCA
in capturing the small object changes in two images, whereas (4), (5), and (6) demonstrate
the capability of GCA to attend to multi-scale objects. For each set of examples, (a) is the
generated change caption that only uses a single scale of features as an input and (b) is the
proposed method using multi-scale features, where GT denotes the ground truth caption.
In (1), we can observe that the attention map Lhouse is not able to attend to the change in
the small “house” in the images, while Shouse is able to capture it. Hence, by selecting the
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information of both attention weights from Shouse using GCA, the proposed method is able
to accurately generate a change caption (b) to describe the small “house” as compared to
(a), which fails to capture the changes in the images. GCA is able to locate small changes
in (2)(b) and (3)(b) and allows the model to generate more accurate captions as compared
to the GT. In (4) and (5), we can see that GCA assists the change decoder to attend to
the larger changes in the “road” and “house” for change caption generation. In (6), the
decoder attends to both the larger changes in the “trees” that have been removed and the
narrow/small changes in the new “road” that has been built. As a result, we can conclude
that the GCA module is critical in the change caption model for identifying and selecting
the essential changes of interest in the image for better change description generation.

Figure 7. Visualization of captured multi-scale word and feature attention maps in the change caption
decoder of the GCA module, where Lwords and Swords denote the attention maps that capture large
and small object changes for each object word (highlighted in red) in the generated change caption,
respectively. We use the red bounding boxes to indicate the small-scale object change regions for
image pairs (1), (2), and (3). (4), (5), and (6) include middle to large-scale changes. The regions
appearing more blue indicate higher levels of attention.
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4.5. Qualitative Analysis

Figure 8 shows the change captioning results on the LEVIR-CC dataset. For each image
pair, we provide one of the five ground truth sentences and the sentences generated by an
existing method [3] in (a) and our proposed method in (b). The accurately predicted change
object words by our method (b) are highlighted in blue. It is observed that the proposed
method generates change descriptions that are more precise and accurate compared to the
existing method. For instance, our method is able to identify and describe the change in the
small-scale “house” in the woods, as shown in image pairs (1) and (2), whereas the baseline
method tends to predict no change or inferior results. Our method can simultaneously
recognize and describe multiple changes in the objects at different scales in the bitemporal
images. For instance, it accurately recognizes “trees”, “villas”, and the “road” in image pairs
in (3)(b) rather than just the “trees” and “road” (highlighted in green) in (3)(a). Similarly, in
image pair (4)(b), our method can describe the change more informatively compared to the
caption generated by the baseline model in (4)(a). Our proposed method can effectively
leverage distinct scale information for more precise recognition of changes in bitemporal
remote sensing images and generate a more informative and accurate change description.

Figure 8. Qualitative results on the LEVIR-CC dataset. The It0 image was captured “before”, and
the It1 was captured “after”. GT represents the ground truth caption. We use red bounding boxes to
indicate the small-scale object change regions for image pairs (1) and (2). (3) and (4) include middle
to large-scale changes. Green and blue words highlighted the correctly predicted change objects for
the existing method (a) and ours (b), respectively.

4.6. Parametric Analysis

There are multi-layers that can be stacked in the proposed ICE and change the caption
decoder. These layers of the network are essential hyperparameters that can significantly
influence the performance of the model for generating change descriptions. In Table 6, we
show the performance of the models when adopting different numbers of layers in both the
encoder (E.L.) and decoder (D.L.). We observe that the model achieves the best performance
when E.L. is equal to 2 and D.L. is equal to 1. Our ICE is composed of DAE and CAE
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sub-modules, which can effectively capture the change-aware features. The encoder avoids
the need for additional encoders to enhance feature extraction complexity, which could
impact performance. Fewer encoder layers will reduce MAF’s ability to integrate multi-
layer semantic information for captioning, resulting in an inferior performance. Similarly,
CGA in the change caption decoder can assist the model in capturing essential multi-scale
changes of interest in the image for better captioning results.

The utilization of the beam search strategy is a general approach to enhance the
performance of image captioning methods, in which different beam sizes (e.g., 1, 3, 5, etc.)
will affect the accuracy of the generated sentence. Table 7 demonstrates the effectiveness of
using various beam sizes for caption generation. We can observe that the best performance
was achieved when choosing a beam size equal to 3. A beam size that is smaller or larger
than 3 can result in a lower performance. This also aligns with existing methods [3,4] that
present the best results with a beam size of 3.

Table 6. Performance of the model in different layers on the LEVIR-CC dataset, where E.L and D.L
denote the encoder layers and decoder layers, respectively. Bold numbers indicate the best result.

E.L. D.L. B-1 B-2 B-3 B-4 M R C

1 1 82.70 73.07 64.49 56.78 37.23 74.45 133.57
1 2 82.63 73.44 65.35 58.32 37.81 74.84 135.38
2 1 86.06 78.12 71.45 66.12 40.51 75.21 138.36
2 2 84.16 76.01 69.49 64.38 39.51 74.13 134.01
2 3 85.16 76.75 69.68 64.09 40.01 74.83 136.85
3 1 83.05 74.19 66.79 60.91 38.59 74.02 133.37

Table 7. Performance of the model when choosing different beam sizes during the inference stage.
Bold numbers indicate the best result.

Beam Size B-1 B-2 B-3 B-4 M R C

1 84.27 75.51 67.87 67.71 39.66 74.38 135.26
2 86.12 78.07 71.15 65.54 40.29 75.09 137.86
3 86.06 78.12 71.45 66.12 40.51 75.21 138.36
4 85.58 77.57 71.01 65.85 40.26 74.99 137.55
5 85.30 77.32 70.83 65.76 40.24 74.84 137.28
6 85.27 77.28 70.81 65.78 40.25 74.84 137.32

5. Conclusions

We introduced an Interactive Change-Aware Transformer Network (ICT-Net) to rec-
ognize changes in objects at various scales (e.g., small-scale objects) in remote sensing
bitemporal images and generate a change caption to describe them accurately. We proposed
the Interactive Change-Aware Encoder (ICE) to capture discrimination representations
between each pair of multi-scale features and utilized a Multi-Layer Adaptive Fusion
(MAF) module to aggregate relevant multi-layer change-aware features to generate better
change captions. We proposed a novel Cross Gated-Attention (CGA) module to effec-
tively utilize and select the multi-scale change-aware representations for better change
captioning. We conducted extensive experiments that demonstrated the effectiveness of
our proposed ICT-Net. ICT-Net significantly improves the performance of remote sensing
image change captioning.
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