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Abstract: The 3D reconstruction of ancient buildings through inclined photogrammetry finds a
wide range of applications in surveying, visualization and heritage conservation. Unlike indoor
objects, reconstructing ancient buildings presents unique challenges, including the slow speed
of 3D reconstruction using traditional methods, the complex textures of ancient structures and
geometric issues caused by repeated textures. Additionally, there is a hash conflict problem when
rendering outdoor scenes using neural radiation fields. To address these challenges, this paper
proposes a 3D reconstruction method based on depth-supervised neural radiation fields. To enhance
the representation of the geometric neural network, the addition of a truncated signed distance
function (TSDF) supplements the existing signed distance function (SDF). Furthermore, the neural
network’s training is supervised using depth information, leading to improved geometric accuracy
in the reconstruction model through depth data obtained from sparse point clouds. This study
also introduces a progressive training strategy to mitigate hash conflicts, allowing the hash table
to express important details more effectively while reducing feature overlap. The experimental
results demonstrate that our method, under the same number of iterations, produces images with
clearer structural details, resulting in an average 15% increase in the Peak Signal-to-Noise Ratio
(PSNR) value and a 10% increase in the Structural Similarity Index Measure (SSIM) value. Moreover,
our reconstruction model produces higher-quality surface models, enabling the fast and highly
geometrically accurate 3D reconstruction of ancient buildings.

Keywords: 3D reconstruction; UAV images; neural radiation field; deep supervision; hash coding

1. Introduction

The utilization of 3D reconstruction techniques not only facilitates the restoration of
the original structure and color of ancient buildings but also enables the digital preservation
of these historical treasures [1,2]. Through 3D reconstruction, meticulous digital replicas
can be generated to safeguard and document these invaluable cultural legacies [3,4]. This
paper employs the neural radiance fields (NeRF) technique [5] in the 3D reconstruction of
ancient buildings, aiming to explore a swift and highly precise method for reconstructing
buildings through neural rendering.

Unmanned Aerial Vehicles (UAVs) are known for their mobility, flexibility, speed
and cost-effectiveness. Utilizing UAVs as aerial photography platforms enables the rapid
acquisition of high-quality, high-resolution images, holding significant promise for the pro-
duction of geographic mapping data [6,7]. With the advancement of tilt photogrammetry,
techniques for dense point cloud generation and the construction of 3D triangular grid
models from 2D images have matured, incorporating sparse reconstruction (Structure from
Motion, SFM) [8] and dense reconstruction (Multiple View Stereo, MVS) [8,9]. This has
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made 3D solid building reconstruction a reality. However, existing tilt photogrammetry-
based 3D reconstruction methods are slow and entail substantial time overheads [10].
Dense reconstruction, which involves matching all or most of the pixels in multiple images,
demands extensive data processing and often redundant computations, resulting in an
overall low reconstruction efficiency. These limitations hinder its real-time applications [11].
Additionally, this method necessitates a complex process involving feature extraction,
feature matching, depth fusion and Poisson reconstruction [12,13], which can introduce
errors at various stages and lead to incomplete or flawed final results. This paper addresses
the following issues that need to be resolved: (1) The conventional approach to recon-
structing the surface model of ancient buildings is hampered by the slow processing speed.
(2) The intricate surface textures found on ancient buildings, coupled with the presence of
repetitive textures, can have a detrimental impact on the geometric accuracy of the model
reconstruction.

In recent years, the NeRF technique, based on neural rendering, has gained extensive
use in the field of 3D reconstruction. NeRF leverages neural implicit representation, em-
ploying neural networks to implicitly learn 3D scene features. It reconstructs triangular
mesh models by combining these learned features with the Marching Cubes algorithm [14].
However, NeRF faces efficiency challenges due to the use of computationally intensive
large Multilayer Perceptrons (MLPs), requiring hours or even days for training. Addition-
ally, NeRF represents geometry by predicting the object density through neural networks,
which lacks a strong physical foundation. This leads to the generation of triangular mesh
models with rough surfaces, low geometric accuracy and suboptimal quality, limiting its
applications [15]. Recent research has introduced new ideas based on NeRF, such as PlenOc-
trees [16] and Instant Neural Graphics Primitives (Instant-ngp) [17], aimed at accelerating
NeRF network model training to minutes. However, these methods often compromise
geometric accuracy, resulting in rough surface meshes that do not faithfully represent real-
world physical structures. Subsequently, the Instant-NSR method [18] emerged, combining
the approaches of Instant-ngp and NeuS [19], enhancing the model’s geometrical structure.
While this approach has improved the results, it may still exhibit depressions and uneven
surface pits. Mip-NeRF [20] effectively resolves NeRF’s challenges with high-frequency
detail aliasing and distortion by refining the encoding of the sampling points, yet it still
requires a considerable amount of time for network training. Neuralangelo [21] enhances
the network architecture, but this advancement comes at the cost of increased computa-
tional demands and prolonged training periods due to additional sampling requirements.
Meanwhile, 3D Gaussian splatting (3D GS) [22] introduces Gaussian functions for scene
representation, offering increased adaptability in scene portrayal. However, its utility is
somewhat constrained, as it struggles to accommodate images captured at varying scales.

In modern times, the 3D reconstruction of ancient buildings, achieved through the uti-
lization of UAVs and various data collection methods, seeks to create more comprehensive
models by integrating vast amounts of information. However, these data-rich approaches
often lead to a significant computational burden in traditional 3D reconstruction, which
places added strain on computers and prolongs the reconstruction process. Consequently,
this paper proposes to improve the accuracy and training speed of reconstructions by
combining the truncated signed distance function (TSDF) with sparse point cloud depth
supervision, as well as implementing a progressive training strategy. This technique is
introduced into the field of the three-dimensional reconstruction of ancient buildings
to address the challenges of extensive computational demands and slow reconstruction
speeds in traditional methods. This paper aims to enhance the geometric accuracy of
NeuS-reconstructed models through two methods of geometric optimization. The primary
contributions of this paper are as follows:

• Combined network training with the TSDF and depth supervision: Our approach
combines the TSDF and depth supervision in network training. Integrating the TSDF
into the signed distance function (SDF) neural network to improve geometric repre-
sentation within the neural network. Simultaneously, this study utilizes sparse point
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cloud depth information to supervise the training of the SDF neural network, further
enhancing the geometric accuracy of three-dimensional mesh models.

• A progressive training method that gradually enhances the resolution of hash coding
during the training process has been designed. This approach focuses on improving
the characteristics of the scene and hash coding, effectively utilizing the feature hash
table’s capacity. By doing so, it mitigates hash conflicts within the mesh feature hash
table under multi-resolution conditions. The ultimate goal is to produce rendered
images with clear, detailed textures, enriching the visual quality.

This paper aims to enhance the accuracy of the NeuS-reconstructed geometric model
through two geometric optimization methods. The first method involves the incorpora-
tion of the TSDF into the SDF neural network, which results in an improved geometric
representation within the neural network. The second method utilizes depth information
to supervise the neural network training, further enhancing the geometric accuracy of
the reconstruction model using data from a sparse point cloud. In outdoor scenes, where
large hash conflicts are common, this paper proposes a progressive training method based
on multi-resolution hash coding technology to alleviate these conflicts and improve the
expressive capabilities of the neural network.

2. Related Work

In a range of fields including mapping, remote sensing and computer vision, the NeRF
technique has enabled the rendering and reconstruction of 3D scenes [23]. Despite its
groundbreaking capabilities, NeRF still grapples with issues related to model generation
efficiency, quality and scalability. One of the primary concerns is its computational inten-
sity, both in terms of the number of sampling points and the time required for training,
particularly due to the utilization of two large MLPs containing eight hidden layers [24].
Moreover, NeRF’s reliance on straightforward volume rendering and direct density pre-
diction through density MLP neural networks, lacking a robust physical foundation, often
results in a rough surface and low geometric accuracy in the generated triangular mesh
model [25]. In light of these challenges, researchers worldwide are dedicating efforts to
improve and innovate the NeRF model.

In traditional geometric reconstruction, the literature [26–28] all focuses on the opti-
mization of dense point clouds to enhance their quality. The literature [28] leverages images
from multiple viewpoints, combines scene geometry constraints and estimates depths for
sparse points to achieve high-quality dense reconstruction. The literature [26] proposes
the sparse voxel DAGs method, efficiently reconstructing point clouds by establishing a
sparse voxel data structure and employing dynamic adaptive mesh refinement and lo-
cal region. The literature [27] presents a progressive 3D point set upsampling method
based on localized blocks, gradually increasing the point density by utilizing the geometric
and normal information among these blocks, thereby enhancing the point cloud details
and resolution. However, due to the substantial memory requirements of these meth-
ods, they are more suited for small-scale reconstruction projects, where they tend to yield
better results.

To address the issues of clarity and realism in NeRF technology, numerous researchers
have conducted in-depth explorations into various aspects of the technology process,
achieving significant improvements. To enable NeRF to handle a wider range of image
situations and reduce its requirements for image sources, the literature [29] addresses the
issue of NeRF producing poorer results with low-quality images by simulating the blurring
process to synthesize blurred views, thereby improving NeRF’s robustness to blurred
input images. The literature [20] introduces Mip-NeRF, which transforms the original
NeRF point sampling method into cone sampling, enriching the details of the sampling
and considering the changes in the scale of the observation distance in ray sampling.
The NeRF++ [30] model divides the scene into foreground and background parts. The
foreground sampling method is consistent with NeRF, but background sampling involves
projecting light onto a unit sphere, thus controlling the depth of light within a defined
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range. Similarly, we have adopted this method in ancient architectural scenes, specializing
in the encoding of foreground targets. The literature [31] integrates NeRF++ and Mip-NeRF
concepts, ensuring positional relevance is maintained as sampling points extend to infinity.
The literature [30,31] extends NeRF to large scene domains, but the increase in sampling
information adds to the network training burden. To tackle the challenges of rough 3D
models and noise low-fidelity geometric approximations, researchers both domestically and
internationally have integrated deeper physical foundations into the geometric expression
of neural networks to improve the accuracy. The literature [32] introduces UNISURF, using
an occupancy network to represent implicit surfaces, assigning each sampling point as 0 or
1 to indicate the presence of a surface. The literature [33] presents Plenoxels, emphasizing
the critical role of micro-voxel renderers in the evolution of NeRF technology. Plenoxels
depart from using neural networks, focusing instead on optimizing the density and color
parameters of voxel grid vertices through derivative-based solutions. This method achieves
a training speed 3000 times faster than traditional NeRF. The literature [19] discusses NeuS,
providing a mathematical explanation for NeRF’s low geometric accuracy and employing
SDF values to create an unbiased density function, thereby rectifying inherent biases in
volumetric rendering formulas. To accelerate network training and reduce memory usage,
the literature [34] presents NSVF, a strategy that manages scene data through a sparse
voxel octree, selectively excluding irrelevant voxels during light sampling to speed up
the process and minimize data overheads. The literature [17] proposes Instant-ngp, using
a multi-resolution hash encoding (MHE) model [35] to encode the spatial information
of 3D points, allowing for smaller MLP networks in training and rendering, marking a
considerable advance in the NeRF training speed, reducing it from hours to just a few
seconds. However, the need for pre-allocating fixed memory for data storage could lead to
conflicts and impact the quality of results when training data volumes increase. To enhance
the training efficacy, some researchers have integrated supervisory mechanisms during
training. Point-NeRF [36] merges traditional MVS methods with NeRF, introducing a point
cloud-based NeRF. The literature [37] uses MVS-generated depth maps to supervise SDF
network training. Nerfing MVS [38] uses depth information from the NeRF network to
train depth networks, then creates predicted depth maps to inversely guide NeRF network
training. These methods, however, are time-consuming in generating depth information,
leading to longer overall process times. Our approach, in contrast, does not use depth
maps but instead employs sparse point clouds to gather depth information, considerably
shortening the total process duration.

Despite the ongoing advancements in neural radiation field research, there remain
certain unresolved issues: (1) The accuracy of neural radiation field reconstruction sur-
faces is not yet at a desirable level. (2) The training speed of the NeRF model remains
relatively slow. To address these challenges, this study introduces a novel approach for
surface representation based on multi-resolution hash coding using symbolic distance
functions. Additionally, it also replaces the SDF with the TSDF to enhance model stability
and employs sparse point cloud supervision to improve the depth expression within the
model. Furthermore, this study advocates for the adoption of incremental training, aim-
ing to significantly improve both the accuracy of the model reconstruction and training
speed overall.

3. Methods

This paper integrates the multi-resolution hash position coding method and NeuS with
the concept of a signed distance function into the NeRF framework for volume rendering.
The optimization of the TSDF neural network, combined with sparse point cloud depth
supervision, is utilized to reconstruct models of ancient buildings in outdoor environments
from UAV images. The technology roadmap is depicted in Figure 1.
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In this paper, the method is outlined as follows: starting from a pixel in an image and
the light is recovered. The light passes through a multi-resolution hash grid and the internal
hash features of the grid can be obtained using interpolation methods. These hash features
are then combined with their positions in an SDF network. The SDF network provides SDF
values and geometric features. These values, along with the viewing direction, are input
into a color network to generate RGB values. The network is optimized by minimizing the
difference between the output RGB values and the actual image pixel values. For pixels
corresponding to sparse point clouds, the point cloud depth information is computed
to supervise the optimization of the 3D model structure by weighting the pixel depths
obtained from the TSDF values.

3.1. Data Processing

The fast retrieval feature of hash feature coding, as demonstrated in reference [17], has
significantly reduced the training time of NeRF networks from hours to seconds. While
multi-resolution hash coding provides computational efficiency by trading a larger memory
footprint, the constraint is the finite memory and hash table size. This study introduces
two methods to minimize conflicts when dealing with limited hash tables: (1) foreground
centralized positional coding and (2) progressive multi-resolution hash coding, which will
be detailed in Section 3.2.

Foreground centralized positional coding tackles the issue of growing scene content
that exceeds the limited and fixed storage capacity of the 3D feature mesh. This overage
results in severe hash conflicts in position encoding, which surpass the neural network’s
capacity to resolve. The surrounding environmental data can cause training neglect and
result in image blurring.

In the wrap-around tilt photography approach, the scene is divided into foreground
and background, as depicted in Figure 2; the foreground is our target object, while the
background is the surrounding scene environment. The application of Grabcut [39] enables
the distinction between the foreground (comprising the target building and the central
region of interest) and the background (encompassing non-target scene elements along the
image periphery). To enhance the neural network’s grasp of vital target information, this
paper primarily feeds the network with foreground information, while diminishing the
influence of background data at the image edges. This approach curtails the feature overlap
between critical information and edge information in the hash table, thereby reinforcing
the network’s attentional mechanism.
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Figure 2. Grabcut distinguishes between before and after backgrounds.

Our depth supervision information is derived from a sparse point cloud, obtained
through sparse reconstruction. Sparse reconstruction, also known as SfM, involves feature
extraction from the input multi-view images, followed by feature matching to obtain
homonymous image points between the images. Based on these homonymous image
points, SfM can estimate the internal and external orientation elements of each image
more accurately via methods such as forward rendezvous and backward rendezvous and
obtain the sparse point cloud in the object-side space and use the depth information of the
corresponding pixels of the point cloud as the a priori information for depth supervision.

3.2. Progressive Multi-Resolution Hash Coding

This paper employs progressive multi-resolution hash coding, as depicted in Figure 3,
where blue represents low-resolution encoding grids, used for extracting low-resolution
features, while pink represents high-resolution encoding grids, used for extracting high-
resolution features. Hash coding can lead to data volume and hash conflict challenges.
Progressive multi-resolution hash coding is adopted in this study, allowing low-resolution
mesh features to capture scene or object outlines and similarities, while high-resolution
mesh features prioritize detailed scene or object information.
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Instant-ngp combines low-resolution and high-resolution feature encoding for all scene
points, which results in hash conflicts and partial blurring of image details. Progressive
multi-resolution hash coding, depicted in Figure 4, aims to prevent non-critical points from
affecting high-resolution mesh features. This approach enhances the speed and accuracy of
3D building reconstruction for neural rendering.
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The proposed coding method follows a “from coarse to fine” principle. Initially,
during network pre-training, high-resolution feature coding information is masked, while
low-resolution hash feature coding is preserved to represent the model’s general outline
and location. Additionally, the low-resolution feature information is utilized to eliminate
empty grid cells, speeding up light sampling and reducing interference from blank areas.
As training progresses, the masking of high-resolution feature-encoding information is
gradually reduced to enhance the model’s surface representation. This encoding approach
maximizes the utilization of the high-resolution hash feature table, mitigating hash conflicts
to some extent. As a result, it leads to enhanced clarity in image rendering and a significant
improvement in the detail of the geometric model.

3.3. Asymptotic TSDF-Based Deep Supervision Strategy

NeuS has exposed inherent errors in NeRF’s volume rendering formulation, specifi-
cally related to the polar inconsistency of the density and weight values, which results in low
geometric accuracy in the neural radiation field. This paper incorporates the concept of the
SDF constraint network from NeuS and introduces the TSDF, a form of three-dimensional
implicit expression. The TSDF represents an enhancement of the SDF concept, introducing
truncation to create values within the range of [−1, 1]. The formula for the TSDF is depicted
in Figure 5.

tsd f i(x) = max(−1, min(1,
tsd f i(x)

t
)) (1)

where t denotes the truncation distance and the TSDF will truncate to 1 or −1 when the
absolute value of the SDF is greater than t. The TSDF reduces the variance between the
data, increases the stability and makes it easier for the loss to converge in network training,
while removing voxels that are farther away from the surface, reducing spurious airborne
floats and decreasing the memory size of the reconstructed mesh.
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The TSDF is not differentiable at its truncation points, which makes it less suitable for
neural network learning. In this paper, the Tanh function is introduced as an approximation
of the TSDF. The computational formula is given in Equation (2), where “S” is a trainable
hyperparameter and “Z” represents the value of the symbolic distance function. This func-
tion bears a resemblance to the TSDF, as both are monotonically increasing odd functions
with a value range of [−1, 1]. During network training, the value of “S” is initially set to
a smaller value, retaining the volume density of points farther from the surface. As the
training progresses and the network’s scene perception improves, “S” gradually increases,
reducing the TSDF truncation distance, thereby focusing on preserving the volume density
of points in closer proximity to the surface, which is critical for effective volume rendering.

TSDF =
eSZ − e−sz

eSZ + e−sz (2)

The TSDF neural network is established based on the SDF neural network, as depicted
in the optimization flow chart in Figure 6, where the TSDF is introduced for truncation
after the network outputs the SDF values, converting them into density values. Light-
sampled spatial points are first filtered through the occupancy grid to retain points with
high occupancy probabilities. These selected points undergo multi-resolution hash coding.
The result of this coding is then fed into the SDF neural network, which produces a
multidimensional feature vector where the first dimension represents the SDF value. The
color neural network takes this feature vector along with additional information, such as
the direction and normal vectors of the points output by the SDF neural network, and it
outputs the RGB values. Each valid sampled point is assigned a density value, synthesized
by the TSDF value and an RGB value. Points along the same ray are grouped together and
their colors are combined according to an unbiased volume rendering formula to obtain the
pixel’s color value. During training, this paper employs network supervision for the RGB
truth values, while the TSDF values are used to update the occupancy of the occupancy
mesh. This explicit adjustment brings the voxels of the occupancy mesh close to the object’s
surface, effectively sieving out points that are far from the reconstructed surface or have no
impact on the surface, thus enhancing the light sampling efficiency.

NeRF inputs are only image data and corresponding bitmap information. The ren-
dering and reconstruction of the 3D scene are achieved solely based on the pixel values as
supervision, which leads to a significantly constrained geometric representation within the
neural network. On the one hand, there is an inherent error in the volume density values
obtained by NeRF due to biased volume rendering formulas. On the other hand, there is a
lack of supervision regarding the 3D information. In response to this situation, this paper
introduces sparse depth information to supervise network training, aiming to enhance the
neural network’s capability to represent geometric structures.
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The sparse point cloud used in this paper is not for all pixels of all images, so the
training of the deep supervised network is not for all rays. During the training process of the
deep supervised network, this paper divides the training rays into two categories, which are
ordinary rays and depth rays. As shown in Figure 7, ordinary rays are randomly extracted
from all training images, while depth rays are extracted from the pixels corresponding to
the sparse point cloud.
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In this paper, the TSDF values obtained from network training are converted into
weight values. This weight value can not only synthesize the color, but also the depth.
Knowing the position and step spacing of all sampling points on the ray, it is easy to obtain
the distance of each point from the origin, which is the depth value. By performing a
weighted sum using the depth value and its corresponding weight value, the depth value
for this specific ray can be accurately determined. As depicted in Figure 8, the neural
network consists of two fully connected MLP networks: the SDF neural network and the
color neural network. The SDF neural network comprises one hidden layer, while the color
neural network comprises three hidden layers.
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The inputs and outputs of the two networks are different. The input of the SDF
neural network comprises three-dimensional point coordinates (x, y, z), which are encoded
utilizing a multi-resolution hash position encoding methodology. The output from the SDF
neural network is a feature vector of 13 dimensions. The foremost dimension of this vector
signifies the SDF value, which can be further convertible into the TSDF value. The inputs
of the color neural network are the 13-dimensional feature vectors, including the direction
vector and the normal vector information of the point, where the normal vector can be
obtained by finding the gradient of the SDF function or approximated by Equation (3). The
output produced by the color neural network is a tri-dimensional vector, representing the
RGB components.

→
n =

 f (x + ε, y, z)− f (x − ε, y, z)
f (x, y + ε, z)− f (x, y − ε, z)
f (x, y, z + ε)− f (x, y, z − ε)

 (3)

To train the neural network, three loss functions are constructed in this paper, which
are the color loss, SDF loss and depth loss. The color loss is calculated as follows:

Lcolor =
1
m∑k R

(
Ĉk, Ck

)
+

1
m∑k MSE

(
Ĉk, Ck

)
(4)

where m denotes the number of rays per batch, R denotes the L1 loss, MSE denotes the
mean square error loss and Ĉk and Ck denote the predicted and true color values.

The SDF loss is the Eikonal loss, which is used to constrain the symbolic distance
function and is calculated as follows:

LEikonal =
1

nm∑k,i

(∥∥∨ f
(

P̂k,i
)∥∥

2 − 1
)2 (5)

where n denotes the number of all sampling points, m denotes the number of rays per batch
and ∨ f

(
P̂k,i
)

denotes the derivative of the SDF function, which can also be interpreted as
the normal vector of the sampling points.

The depth loss is used to supervise the depth value of a depth ray and the depth loss
of a general ray is calculated as follows:

Ldepth =
1
m∑k MSE

(
D̂k, Dk

)
(6)

where MSE denotes the mean square error loss, and D̂k and Dk denote the predicted depth
value and the true depth value.

4. Experiments
4.1. Experimental Data

In order to verify the effectiveness of the algorithm, three sets of DTU building datasets
are used for the experiments in this paper; each set of data contain image data, mask data,
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empty three-file data, etc., and the description of the datasets is shown in Table 1. When
collecting the DTU data, the position of the camera is placed on a sphere with a radius of
50 cm and the camera is roughly 35 cm from the surface of the object.

Table 1. Description of the DTU dataset.

Dataset Numbers of Image Data Content

DTU15 49

Resolution (of a photo) 1600 × 1200
Camera parameters

Mask data
Point cloud data

DTU24 49

Resolution (of a photo) 1600 × 1200
Camera parameters

Mask data
Point cloud data

DTU40 49

Resolution (of a photo) 1600 × 1200
Camera parameters

Mask data
Point cloud data

The other set of experimental data are the UAV-acquired building image data, one set
of Pix4d sample data and one set of self-collected data from the Yellow Crane Building, as
shown in Table 2; the two sets of data are acquired by flying in a circular manner around
the building. The third set of data are from Huayan Temple, consisting of five camera shots,
with the shooting angle being from above the Huayan Temple tower.

Table 2. Drone image data.

Dataset Number of Images Image Size

Pix4d sample Data 36 4592 × 3056
Yellow Crane Data 60 3965 × 2230

Huayan Temple Data 40 6000 × 4000

4.2. Evaluation Indicators

The Peak Signal-to-Noise Ratio (PSNR), which can be used to measure the difference
between two images, is calculated as shown in Equation (7).

PSNR = 10·log10

(
MAX2

G
MSE

)
(7)

where MAX2
G is the maximum pixel value appearing in the truth image. Usually, if the

pixel value is represented by B-bit binary, then MAXG = 2B − 1. MSE is the mean square
error between the true value image G and the rendered image R of the same size. This
paper uses color images, so it is necessary to calculate the PSNR of the three channels of
RGB separately and take the average, as the final PSNR value. The higher the PSNR value,
it means that the image is closer to the original image.

The Structural Similarity Index Measure [40] (SSIM) is a full-reference image quality
evaluation index, which can better reflect the subjective perception of the human eye.
The calculation is relatively complex, respectively, from the brightness L, contrast C and
structure S, which are three aspects of the measure of image similarity. The formulas for
the three functions are as follows:

L(x, y) =
2µxµy + C1

u2
x + µ2

y + C1
(8)
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C(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(9)

S(x, y) =
σxy + C3

σxσy + C1
(10)

where µ denotes the mean, σ denotes the variance and C1, C2 and C3 denote the constants
used to keep the formula stable; the σxσy in the above formula is calculated as follows:

σxσy =
1

N − 1∑N
i=1 (xi − µx)

(
yi − µy

)
(11)

SSIM combines the three functions, and the final formula is as follows:

SSIM(x, y) = [L(x, y)]α·[C(x, y)]β·[S(x, y)]γ (12)

where α > 0, β > 0 and γ > 0 denote the weight values of each metric, which are generally
equal weights.

SSIM ∈ [0, 1], the larger the SSIM value, the smaller the image distortion and closer
to the original image it is. In practical applications, the image can be chunked using sliding
windows so that the total number of chunks is N. Considering the influence of the window
shape on the chunks, Gaussian weighting is used to compute the mean, variance and
covariance of each window and then the structural similarity of the corresponding chunks
is computed as the SSIM and, finally, the mean value is used as the structural similarity
measure of the two images, i.e., the average SSIM.

4.3. Hash Coding Experiment

The experimental platform was an ubuntu system with 32 G of RAM, a GeForce RTX
3080Ti graphics card with 12 G of video memory and a 12th Gen Intel@CoreTM i7-12700KF
× 20 processor. The number of network training iterations for Instant-ngp, NeuS and the
method in this paper were 100,000, 50,000 and 50,000, respectively.

4.3.1. Qualitative Experimental Analysis

This paper employs progressive multi-resolution hash coding and primarily focuses
on comparing and analyzing the results of two methods, Instant-ngp and NeuS. Instant-
ngp utilizes multi-resolution hash coding, while NeuS employs frequency coding in NeRF.
Figure 9 illustrates the comparison of the rendering results for the three algorithms on
DTU15, DTU24 and DTU40, respectively.
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As a whole, NeuS has the most iterations, but has the worst rendering quality and
cannot render the image clearly; both Instant-ngp and this paper’s method can synthe-
size the viewpoints better and the image obtained via this paper’s method is clearer in
comparison between the two. In the DTU15 dataset, the method proposed in this paper is
clearer and more realistic than the Instant-ngp method, particularly evident in the billboard
letters shown in Figure 9a, which is closer to the original image. In the roof surface part
of the DTU24 dataset, the results of this paper’s method are clearer than the Instant-ngp
texture structure, more granular and three-dimensional. In the DTU40 dataset, there is no
significant difference between the results of Instant-ngp and this paper’s method, but it is
clearer than NeuS.

4.3.2. Quantitative Experimental Analysis

This subsection evaluates Instant-ngp, NeuS and the method of this paper using two
metrics, the PSNR and SSIM. After the network is trained to a certain extent, this paper
randomly selects a number of images from the image dataset to be used for testing and
obtains the corresponding rendered images. Then, the PSNR value and SSIM value between
the rendered image and the original image are calculated and the average is taken as the
final evaluation value. Table 3 shows the comparison of the PSNR value of the rendered
images of the three methods, and six rendered images and the original image are randomly
selected from each method for comparison. It can be observed that for the rendered
images of the three datasets, the NeuS method exhibits the lowest PSNR values, which
are 20.9014, 22.0228 and 27.8526, indicating a lower proximity to the original image and a
large amount of blurring. In contrast, the average PSNR values of the method proposed in
this paper are 22.2156, 24.3423 and 28.7186, respectively. These values are notably higher
than those achieved via the Instant-ngp method, exceeding Instant-ngp’s PSNR values
by more than 25%. This suggests that the application of low-conflict progressive multi-
resolution hash coding can enhance the detail expression capability of the neural network,
leading to rendered images that, consequently, are clearer and more closely resemble the
original image.

Table 3. PSNR evaluation table of the rendered image results of the three methods.

Instant-ngp NeuS Ours

DTU15

1 21.5906 17.8316 24.5007
2 22.8636 16.7975 21.3661
3 20.4145 16.8967 23.5825
4 20.2797 18.2014 21.3009
5 19.2271 16.1140 20.8408
6 21.0331 18.9674 21.7025

Average 20.9014 17.4681 22.2156

DTU24

1 23.8592 19.6505 24.0335
2 19.9375 19.8496 21.9429
3 23.5673 21.7333 24.5284
4 25.3783 17.9581 29.2147
5 21.3128 18.5247 22.9470
6 18.0817 18.3397 23.3875

Average 22.0228 19.3427 24.3423

DTU40

1 26.8330 21.1750 29.2166
2 26.9306 20.4683 29.2910
3 27.3707 21.6330 28.7746
4 27.7076 19.8074 28.3549
5 28.7993 19.5547 28.1579
6 29.4745 21.3349 28.5163

Average 27.8526 20.6622 28.7186
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Table 4 shows the comparison of the SSIM values of the rendered images of the
three different methods. From the table, it can be seen that the NeuS method shows a
relatively low image structure similarity, with values around 0.7, which suggests that
the images produced using NeuS are not adequately trained, leading to an incomplete
expression of detailed structures. However, the method discussed in this paper exhibits the
highest structural similarity value for the rendered images. Following closely is Instant-ngp
and both these methods achieve SSIM values generally in the range of 0.9, which is signifi-
cantly higher compared to NeuS. This comparison further demonstrates the effectiveness
of multi-resolution hash coding in the fine-grained representation of structures.

Table 4. Evaluation table of SSIM values of rendered image results for the three methods.

Instant-ngp NeuS Ours

DTU15

1 0.8540 0.7951 0.8883
2 0.8975 0.5711 0.9267
3 0.9107 0.6188 0.9142
4 0.8301 0.7983 0.8395
5 0.9002 0.9002 0.9076
6 0.8497 0.8497 0.8666

Average 0.8450 0.6953 0.8809

DTU24

1 0.9313 0.7350 0.8795
2 0.6199 0.7510 0.9290
3 0.9090 0.7978 0.9299
4 0.9164 0.6847 0.9471
5 0.8806 0.7028 0.9176
6 0.8055 0.8079 0.7687

Average 0.8438 0.7465 0.8953

DTU40

1 0.9193 0.7186 0.9246
2 0.9210 0.6985 0.9228
3 0.9179 0.6346 0.9020
4 0.9119 0.7381 0.9193
5 0.9041 0.7309 0.9324
6 0.9025 0.7215 0.9437

Average 0.9128 0.7070 0.9275

Table 5 shows the training efficiency comparison between the NeuS method repre-
sented by frequency position coding and Instant-ngp represented by multi-resolution hash
coding. It is obvious from the table that multi-resolution hash coding has an absolute
advantage in time and Instant-ngp is almost 50 times faster than NeuS. For the rendered
images obtained via different methods, NeuS needs at least 8 h to obtain the corresponding
rendering results, but the rendered image has a large gap with the original image and the
clarity is not high, while Instant-ngp only needs about 10 min to obtain the rendered image
with relatively good quality.

Table 5. Evaluation table of training time for the three methods.

Ours Method/min Instant-ngp/min NeuS/min

DTU15 10.1 10 497
DTU24 10.3 10 501
DTU40 10.2 10 494

The method in this paper is based on multi-resolution hash coding and the training
time is similar to Instant-ngp for the same number of iterations. The training efficiency is
also significantly improved compared to the NeuS method.

4.4. Depth-Supervised Ablation Experiments on Ancient Buildings

The Instant-ngp, NeuS and Colmap methods are compared in this section of experi-
ments. Among them, the number of NeuS iterations is 100,000 times and the number of
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Instant-ngp and the method in this paper is 50,000 times. The experimental platform is the
ubuntu system with 32 G of RAM, GeForce RTX 3080Ti with 12 G of video memory and
12th Gen Intel@CoreTM i7-12700KF × 20 processor.

4.4.1. Qualitative Experimental Analysis

The qualitative experiment is divided into two parts, a comparison of the rendering
quality of the methods and a comparison of the reconstruction models between the methods.
(1) Rendering quality comparison. The three columns in Figure 10, respectively, show the
rendered images and local magnification effects of NeuS, Instant-ngp and the method
presented in this paper. As a whole, NeuS can only render the general structure and outline
of the model and cannot capture the detail information, which is due to the insufficient
network expression of NeuS and the need for a longer training time; Instant-ngp and the
method in this paper have better rendering results and both of them have the ability to
express detail.
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For the Pix4d sample data, the rendering result of NeuS can only vaguely express the
shape and appearance of the building and fails to adequately render the detailed structure,
such as the tile structure on the roof, three rows of solar panels, etc. Instant-ngp and the
method described in this paper are both capable of quickly rendering the detailed structure
of the building in a short time. However, the method presented in this paper outperforms
Instant-ngp by producing a clearer rendering and more pronounced texture, resulting in a
rendered image with enhanced clarity and a more distinct structural representation.

For the Yellow Crane Tower data, the difference in the rendering quality between the
three different methods is even more obvious. From the perspective of the plaque of the
Yellow Crane Tower, NeuS does not render the shape and content of the plaque because of
insufficient training and the complexity of the structure of the Yellow Crane Tower itself;
Instant-ngp and this paper’s method can directly render the shape of the plaque and the
three words “Yellow Crane Tower” and the two methods have a significant improvement
in rendering quality compared with NeuS. Both of them have a significantly improved
rendering quality compared with NeuS. Compared with Instant-ngp, this paper shows that
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under the same resolution and the same number of training times, the method in this paper
renders the “Yellow Crane Tower” with a higher clarity. Similarly, the image obtained via
this method is more detailed and can significantly represent the arrangement of the tiles.
(2) Reconstructing geometric contrasts. This paper proposes two geometric optimization
methods: one is TSDF optimization and the other is the introduction of a depth supervi-
sion method based on TSDF optimization. This paper compares the Instant-ngp, NeuS
and Colmap methods and analyzes the differences between the reconstruction models of
each method.

Figure 11 shows the comparison of the reconstructed models of the Instant-ngp, NeuS,
TSDF and Colmap methods. The geometric reconstruction quality of Instant-ngp is lower
and cannot reconstruct the surface well; NeuS and the TSDF method in this paper can
reconstruct the closed watertight model, but the surface of the TSDF optimization method
in this paper is flatter and the reconstruction effect is slightly better.
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As shown in Figure 11, the Instant-ngp method results in a relatively sparse and
fragmented reconstructed model for both the Pix4d sample data and the Yellow Crane
Building data, failing to form a satisfactory surface model. While the NeuS method is
capable of reconstructing the surface, it falls short in adequately expressing the geometric
structure of the building over a certain period, leading to structural errors or imperfections
in some areas, such as sunken roofs and uneven solar panels, etc. The TSDF method
presented in this paper offers a more comprehensive reconstruction than both Instant-
ngp and NeuS, particularly for buildings with simpler structures like those in Pix4d. For
complex structures, such as the Yellow Crane Tower, the results are superior to other
methods, but the visualization still does not meet the criteria for high precision.

Figure 11 shows the reconstruction model and local method effects of the TSDF method,
Colmap method and the addition of the depth supervision method in this paper. For the
complex structure of the Yellow Crane Tower data, the surface refinement achieved via the
TSDF method is inadequate. However, the reconstruction quality significantly improves
after adding the depth supervision on the basis of the TSDF optimization method. The eave
edges of the Yellow Crane Tower exhibit a fine and even structure, with sharp protruding
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edges and a flat, smooth eave surface. Compared with the Colmap reconstruction model,
the surface of the model of this paper’s method is smooth, avoiding the problem of surface
noise and the detailed parts are also more prominent, such as the corridors, columns and
other structures of the Yellow Crane Tower in the local zoomed-in image.

For the Pix4d building, the model after adding depth supervision can show the
staggered feeling of the roof tile structure. This effect is attributed to a portion of the
sparse point cloud on the roof, which constrains the geometric representation in the neural
network. However, the solar panels appear uneven due to the intense light reflection on
their surfaces, leading to deviations in the point cloud position and thus the unevenness of
the reconstructed surface. The surface of the model of the Colmap method is too smooth and
many structures are not fully expressed, such as the eaves of the tiles and their appendage
structures, etc.

As shown in Figure 12, for the complex Huayan Temple data, using the SDF method
did not achieve sufficient surface refinement. Adding depth supervision to the TSDF
method significantly improved the reconstruction, resulting in finely detailed roof edges,
sharp and prominent edge parts and a smooth eave surface. Compared to Colmap and
NeuS, our method produced a model with a smoother surface, avoiding noise issues and
more pronounced details.
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the method in this paper are the results of ablation experiments; Colmap and NeuS methods are the
results of comparison experiments.

4.4.2. Quantitative Experimental Analysis

This part of the quantitative analysis focuses on the quality analysis of the rendered
images and the overall modeling efficiency analysis. The quality of the rendered image
represents the expressive ability of the neural network and, to a certain extent, it can also
indicate the geometric effect of the reconstruction. Table 6 shows the comparison of the
PSNR indexes of the rendered images of Instant-ngp, NeuS and the method in this paper.

It can be seen from Table 6 that the NeuS method renders the worst image quality,
with the average PSNR values for the two datasets being 21.2128 and 22.0479, respec-
tively. Although NeuS demonstrates superior geometric expression capabilities, its training
efficiency is suboptimal, resulting in inadequately rendered images over a short period.
Compared to the rendering quality of the Instant-ngp method, the PSNR values of this
paper’s method are higher at 24.0229 and 25.5023.

Table 7 shows the comparison of the structural similarity index of the results of each
method. From the data in the table, it can be seen that the rendered image of this paper’s
method has a higher degree of restoration and a clearer texture structure.



Remote Sens. 2024, 16, 473 18 of 23

Table 6. PSNR evaluation of rendered images via different methods.

Instant-ngp NeuS Our Method

Pix4d

1 25.4210 21.5347 25.8437
2 24.4684 22.8885 25.4387
3 24.8765 21.9155 25.8641
4 24.7463 22.7518 26.5812
5 24.7451 21.5997 24.8237
6 24.1549 21.7302 24.4624

Average 24.7353 22.0701 25.5023

Yellow Crane

1 22.0467 20.5486 23.9559
2 22.3473 19.5063 24.2902
3 21.7972 22.2307 23.7182
4 21.6883 22.6365 23.7127
5 22.3321 20.8539 24.3762
6 22.0755 21.5008 24.0845

Average 22.0479 21.2128 24.0229

Table 7. SSIM evaluation of different methods for rendering images.

Instant-ngp NeuS Our Method

Pix4d

1 0.9469 0.9024 0.9470
2 0.9517 0.9100 0.9518
3 0.9437 0.9052 0.9535
4 0.9465 0.9127 0.9559
5 0.9404 0.9082 0.9493
6 0.9395 0.9070 0.9563

Average 0.9448 0.9076 0.9523

Yellow Crane

1 0.9276 0.8943 0.9406
2 0.9278 0.8982 0.9397
3 0.9255 0.8867 0.9394
4 0.9264 0.8999 0.9389
5 0.9288 0.8922 0.9427
6 0.9274 0.8972 0.9416

Average 0.9273 0.8948 0.9405

The average SSIM values of the two datasets of this paper’s method are 0.9405 and
0.9523, respectively. In contrast, the rendered images of the NeuS method are more blurred
and lack detail in parts, resulting in the lowest quality scores of 0.8948 and 0.9076. The SSIM
values of the rendered images using the Instant-ngp method are 0.9273 and 0.9448, in which
the structural similarity of the Pix4d data is quite close to that of the method proposed
in this paper, because the structure and texture of the building are relatively simple, thus
minimizing the differences. However, from the data of the Yellow Crane Building, we
can see that this paper’s method demonstrates superior rendering capabilities in more
complex scenes.

Table 8 shows the comparison of the training time for NeuS, Instant-ngp, Colmap and
the method in this paper.

Table 8. Training schedule for different methods.

Dataset Instant-ngp/min NeuS/min Colmap/min Our Method/min

Pix4d 9 504 41 16
Yellow Crane 10 517 44 16

The data presented in the table indicate that the NeuS method exhibits the longest
reconstruction time, with training durations exceeding 8 h. Despite 100,000 iterations of
learning, the neural network’s expressive capability remains suboptimal. Followed by Colmap,
the reconstruction time is 40 min to 50 min. The method in this paper, while marginally longer
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in training duration compared to Instant-ngp, significantly enhances both the rendering
quality and the geometric precision of the reconstruction. Consequently, the training time for
the method delineated in this paper is considered within an acceptable threshold. The PSNR
and SSIM in the ablation experiments are shown in Tables 9 and 10, respectively:

Table 9. PSNR evaluation of rendered images via different methods.

NeuS SDF SDF + Depth TSDF Our Method

Huayan
temple

1 20.0790 19.7807 18.6804 22.0038 21.4941
2 21.4474 21.8201 19.8980 20.3897 23.0139
3 20.1258 20.5362 21.3039 20.1366 21.4459
4 19.4199 19.5288 20.8696 21.6823 22.2220
5 19.3783 19.7992 18.2688 19.7121 20.1800
6 18.2056 21.7851 20.9672 22.3610 21.0538

Average 19.7760 20.5417 19.9980 21.0476 21.5683

Table 10. SSIM evaluation of different methods for rendering images.

NeuS SDF SDF + Depth TSDF Our Method

Huayan
Temple

1 0.8131 0.8327 0.8915 0.9105 0.9012
2 0.8512 0.7858 0.8854 0.8654 0.8733
3 0.8859 0.8069 0.7965 0.8421 0.9102
4 0.7964 0.7934 0.8701 0.8369 0.9171
5 0.7842 0.8610 0.8531 0.8554 0.8760
6 0.8701 0.8714 0.8068 0.9024 0.8821

Average 0.8335 0.8252 0.8506 0.8514 0.8933

The comparison of the training as well as reconstruction durations is shown in Table 11.

Table 11. Training schedule for different methods.

Dataset Colmap/min NeuS/min SDF/min SDF + Depth/min TSDF/min Our Method/min

Huayan Temple 35 311 23 24 22 23

Based on Tables 9 and 10, it can be observed that the average PSNR and SSIM metrics
in this paper are superior to those of other experiments. However, the difference is not very
significant, mainly due to issues with the aerial perspective and the presence of certain
occlusions. The effect is not as good as surround shooting. Nevertheless, through ablation
experiments using the method employed in this paper, it can be seen that the accuracy is
still better than other algorithms.

From Table 11, it can be deduced that the NeuS method has the longest reconstruc-
tion time, exceeding 5 h of training time. After 100,000 iterations, the neural network’s
expressive capability is insufficient. Next is Colmap, with a reconstruction time of 35 min.
When compared to the ablation experiments, the rendering quality of the method in this
paper has significantly improved. This paper’s method is on par with the SDF, SDF depth
supervision, TSDF and it outperforms Colmap in terms of rendering speed.

5. Discussion

This study proposes a deep-learning-based method for the 3D reconstruction of an-
cient buildings from UAV-captured images. The method comprises three main steps:
processing sampling points using multi-resolution hash coding, introducing the TSDF for
threshold truncation during training and integrating depth information for supervised
training. The innovations and characteristics of this research can be summarized as fol-
lows: (1) Progressive multi-resolution hash coding: This study focuses on target objects
in large scenes, implementing centralized foreground position coding and adopting a
“coarse-to-fine” progressive multi-resolution hash coding strategy. In the initial phase
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of network training, high-resolution feature-encoding information is masked, retaining
only the low-resolution hash feature encoding. As the training progresses, the masking
of high-resolution feature-encoding information is gradually reduced, thereby optimizing
feature expression. (2) Progressive TSDF-based depth supervision strategy: The Tanh
function is used instead of the traditional piecewise distance function in the TSDF and
the truncation distance of the TSDF is set to decrease progressively with the training time.
Additionally, depth information from sparse point clouds generated by SfM is introduced
as prior knowledge, enhancing the network’s capability to express 3D geometric structures.

This paper utilizes a dataset of building images collected by UAVs conducting a com-
parative analysis with several classical neural radiance field technology-based methods
to validate the practicality of the proposed algorithm. From Figure 9, it is evident that,
compared to classical neural radiance field methods, the rendered images from this paper’s
method exhibit enhanced detail richness and superior texture clarity. In comparison with
NeuS, the improved method in this paper not only ensures the quality of the rendered
images but also significantly enhances the network training time. When contrasted with
Instant-ngp, the rendered image details in this paper’s method are more distinct. Further-
more, as seen in Figures 10 and 11, the 3D implicit reconstruction method in this paper
demonstrates a higher accuracy compared to other methods. Finally, as shown in Table 8,
compared to Instant-ngp and Colmap, this method is capable of reconstructing high-quality
3D models more swiftly compared to Instant-ngp and Colmap. Despite taking slightly
longer than Instant-ngp for reconstruction, it is within an acceptable range.

The main reasons for the improvements in the rendered image quality, model geo-
metric structure and network training efficiency of the proposed method are analyzed
as follows:

(1) Reasons for improvement in rendered image quality: In this study, the images were
preprocessed during the model training phase, employing a strategy of masking the
background area to reduce the interference from background noise. Additionally, the
adoption of progressive multi-resolution hash coding combined with occupying a
three-dimensional grid fully exploits the high-resolution feature space in the hash ta-
ble. Such a strategy allows the high-resolution grid to more accurately and intensively
represent the detailed structure of the scene. This not only effectively resolves hash
conflicts but also substantially improves the quality of the rendered images, leading
to a more precise and detailed visual output.

(2) Reasons for improvement in model geometric structure: The integration of the TSDF
values in this method ensures that the voxels in the occupied grid more closely
adhere to the object’s surface. This mechanism effectively filters out key points that
significantly impact the reconstructed surface while eliminating points with little or
no effect. Furthermore, the incorporation of depth supervision information enhances
the model’s depth representation capability, significantly improving the geometric
structure of the generated model.

(3) Reasons for improvement in network training efficiency: At the initial stage of training,
this study employed progressive multi-resolution hash coding, accelerating the ray
sampling process by eliminating ineffective grids in the occupied grid. As the training
progresses, the strategic application of the TSDF values for the threshold truncation
continuously updates the occupancy of the grid, further speeding up the ray sampling
efficiency. Moreover, integrating depth supervision information into the training
regimen significantly hastens the model’s convergence towards high-quality outcomes,
ensuring the rapid attainment of superior results.

Therefore, the method proposed in this study is suitable for processing 3D ancient
buildings data reconstruction, especially in scenarios requiring rapid and high-precision
reconstruction. Not only can this method quickly reconstruct high-quality 3D models, but
it also excels in maintaining the clarity of details and textures in rendered images.
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6. Conclusions

This paper introduces a low-conflict multi-resolution hash feature location coding
method that alleviates hash conflicts through background masking and progressive training.
The initial step involves masking the background region in the scene, followed by a “from
coarse to fine” approach where low-dimensional position encoding is applied prior to high-
dimensional position encoding. This reduction in hash conflicts within high-dimensional
features and the mitigation of aliasing in high-dimensional features not only enhances
the quality of neural radiance field rendering but also ensures efficient network training,
thereby facilitating subsequent geometric optimization. This paper tackles two main issues:
(1) The development of a TSDF representation for surface reconstruction and model training
supervision through the use of sparse point clouds. This approach serves to stabilize model
training and enhance the model’s depth representation, thereby significantly enhancing the
overall model accuracy. (2) The introduction of an asymptotic training strategy based on
multi-resolution hash grids. This strategy gradually refines the details of the reconstructed
model, boosting model convergence and expediting the model training process.

Furthermore, this paper introduces an advanced geometric optimization technique
for TSDF networks. The native NeRF relies on a biased volume rendering formulation
that synthesizes colors solely through density and color, resulting in noisy reconstructed
surfaces and low geometric accuracy. To address this, the SDF value is introduced as a
weight for color synthesis instead of the original density value. The SDF is asymptotically
truncated to obtain the TSDF using the SDF-MLP network, thereby enhancing the geometric
constraints of the network and improving the geometric accuracy and detail expression
in the reconstructed model. Additionally, a geometric optimization method is employed
for deep-information supervised neural networks. Sparse reconstruction estimates the
bitmap information from the input image and acquires a sparse point cloud for the depth
information. In this approach, training rays are divided into depth rays and ordinary rays,
both of which are input into the neural network simultaneously. The depth rays are super-
vised by depth information during training, enhancing the network’s geometric expression
capabilities. This method fully utilizes the depth information from sparse reconstruction,
facilitating the accurate reconstruction of intricate architectural structures. Through experi-
mental comparisons, this method outperforms the Colmap 3D reconstruction method in
terms of reconstruction efficiency and quality.

This paper introduces an improved neural radiance field technique into the field of
the 3D reconstruction of ancient architecture, capable of performing centralized multi-
resolution hash coding for large-scale ancient architectural scenes captured by UAVs. This
method effectively eliminates irrelevant background information, minimizing redundant
data encoding, thus significantly enhancing the rendering quality of ancient architectural
images. Additionally, this paper proposes a progressive TSDF depth supervision network,
providing robust support for the geometric optimization of ancient buildings. Compared to
traditional NeRF methods, which may suffer from surface noise and insufficient geometric
accuracy in processing ancient buildings, our proposed approach can reconstruct the
geometric structure and surface details of ancient architecture more precisely, greatly
improving the accuracy in the preservation and restoration of cultural relics. Through this
advanced 3D reconstruction technology, a new perspective and methodology are offered
for the digital preservation and study of ancient buildings, aiding in the better conservation
and heritage of these precious cultural assets.

The 3D reconstruction of ancient architecture using NeRF with depth map supervision
is a method that utilizes neural networks and deep-learning techniques. Despite achieving
certain effects, there are still limitations in data quality: the reconstruction quality heavily
relies on the quality of the input data. If the resolution of the depth map data is low,
contains a significant amount of noise or lacks diversity, it may result in the model being
unable to accurately capture the details of the building. Subsequent measures, such as
using UAVs and ground-level supplementary captures, can be employed to achieve a more
refined 3D reconstruction.
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