
Citation: Nie, J.; Xie, J.; Sun, H.

Remote Sensing Image Dehazing via a

Local Context-Enriched Transformer.

Remote Sens. 2024, 16, 1422. https://

doi.org/10.3390/rs16081422

Academic Editors: Sidike Paheding

and Ashraf Saleem

Received: 25 February 2024

Revised: 5 April 2024

Accepted: 13 April 2024

Published: 17 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Remote Sensing Image Dehazing via a Local
Context-Enriched Transformer
Jing Nie 1,* , Jin Xie 2,3, and Hanqing Sun 4

1 School of Microelectronics and Communication Engineering, Chongqing University,
Chongqing 400044, China

2 School of Big Data and Software Engineering, Chongqing University, Chongqing 400044, China;
xiejin@cqu.edu.cn

3 Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
4 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,

Changchun 130033, China; sunhanqing@ciomp.ac.cn
* Correspondence: jingnie@cqu.edu.cn

Abstract: Remote sensing image dehazing is a well-known remote sensing image processing task
focused on restoring clean images from hazy images. The Transformer network, based on the self-
attention mechanism, has demonstrated remarkable advantages in various image restoration tasks,
due to its capacity to capture long-range dependencies within images. However, it is weak at model-
ing local context. Conversely, convolutional neural networks (CNNs) are adept at capturing local
contextual information. Local contextual information could provide more details, while long-range
dependencies capture global structure information. The combination of long-range dependencies and
local context modeling is beneficial for remote sensing image dehazing. Therefore, in this paper, we
propose a CNN-based adaptive local context enrichment module (ALCEM) to extract contextual in-
formation within local regions. Subsequently, we integrate our proposed ALCEM into the multi-head
self-attention and feed-forward network of the Transformer, constructing a novel locally enhanced
attention (LEA) and a local continuous-enhancement feed-forward network (LCFN). The LEA utilizes
the ALCEM to inject local context information that is complementary to the long-range relationship
modeled by multi-head self-attention, which is beneficial to removing haze and restoring details.
The LCFN extracts multi-scale spatial information and selectively fuses them by the the ALCEM,
which supplements more informative information compared with existing regular feed-forward
networks with only position-specific information flow. Powered by the LEA and LCFN, a novel
Transformer-based dehazing network termed LCEFormer is proposed to restore clear images from
hazy remote sensing images, which combines the advantages of CNN and Transformer. Experiments
conducted on three distinct datasets, namely DHID, ERICE, and RSID, demonstrate that our proposed
LCEFormer achieves the state-of-the-art performance in hazy scenes. Specifically, our LCEFormer
outperforms DCIL by 0.78 dB and 0.018 for PSNR and SSIM on the DHID dataset.

Keywords: remote sensing image dehazing; transformer; local context enrichment

1. Introduction

Remote sensing images captured by the satellite or unmanned aerial vehicle are
degraded by the existing haze or cloud [1–4], which destroys the surface information
acquisition and further degrades the downstream tasks including image classification [5–7],
object detection [8–10], change detection [11,12], object tracking [13,14], image segmenta-
tion [15,16], and so on. Remote image dehazing methods are to recover the clean image
from its haze or cloud-polluted variants, which could be applied in applications with
environment monitoring, military surveillance, and so on.

Image dehazing methods roughly are divided into prior-based methods [17–20] and
deep learning-based methods [21–24] based on whether utilizing deep learning structures.
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Prior-based dehazing methods apply various prior constraints to predict the parameters of
the atmosphere scattering model [25], and then restore clear images based on the physical
model. In recent years, deep learning-based image dehazing approaches have shown signif-
icant progress in this area. Previous deep learning-based image dehazing methods [21,22]
conduct the dehazing process according to the atmosphere scattering model and performs
not well in real hazy scenes because the physical model does not fit the actual hazy scenes.
Therefore, end-to-end dehazing methods [23,24] are proposed. The success of these deep
learning-based approaches can largely be attributed to their capabilities to generate dis-
criminative features through a series of convolution operations. Since the convolution is a
local operation, it does not explicitly capture the global structural information. To address
this, a few recent works [26] explore the multi-scale pooling module to integrate the global
structural information for image dehazing, which can be effectively utilized to model the
long-range dependencies. FFANet [27] utilizes channel attention and BidNet [28] models
non-local relationships to introduce global information to improve dehazing performance.
Recently, several vision transformers-based approaches [29,30] have pervaded different
areas of computer vision by utilizing a self-attention mechanism [31] that captures the
long-range dependencies to model the global structural information in an image. The
transformer-based dehazing methods [32,33] have achieved great success. However, local
contextual information is of great importance in the image dehazing process. Researchers
attempt to combine the advantages of CNN and transformer to conduct image dehazing.
CloudFormer [34] cascades convolution blocks and transformer blocks to extract shallow
and deep features, respectively, to remove the cloud. Dehamer [35] utilizes the features
extracted from the Transformer to modulate the CNN features, which is superior to the
fusion manner such as addition or concatenation.

We argue that both the local contextual information as well as the global structural
information are desired for accurate image dehazing. As discussed above, the convolution
operation captures the fine details by focusing on the local contextual information within
a local region, whereas self-attention strives to model the long-range dependencies for
capturing the global information. A straightforward way to obtain the benefits of con-
volution and self-attention, in a single image dehazing architecture, is to aggregate the
features from convolution and self-attention by an element-wise summation. However,
such a straightforward fusion strategy also introduces redundancy and noise during the
aggregation. Therefore, we look into an alternative approach to effectively fuse the com-
plementary local and global structural information for remote sensing image dehazing. In
this paper, we design a U-shape transformer architecture composed of stacked enhanced
transformer blocks called local context-enriched transformer blocks (LCTBs). The proposed
LCTB contains a locally enhanced attention (LEA) and a local continuous-enhancement
feed-forward network (LCFN), which embeds a local detail enrichment module (LEDM)
into the classical attention module and the feed-forward network, respectively. The LEDM
extracts multi-scale local contextual information and selectively fuses them. The LEDM is
utilized to model local-range attention in the LEA. Besides, the LEDM supplements local
contextual information in the feed-forward network.

The contributions of this paper could be summarized as follows:

• We propose a novel transformer-based U-shape remote sensing dehazing network,
namely Local Context-Enriched Transformer (LCEFormer). LCEFormer stacks local
context-enriched transformer blocks (LCTBs), each comprising a locally enhanced
attention (LEA) and a local continuous enhancement feed-forward network (LCFN).
Both LEA and LCFN are equipped with an adaptive local context enrichment module
(ALCEM) that extracts multi-scale local contextually enriched features and fuses
them selectively.

• Different from the common self-attention module, the LEA module employs the AL-
CEM to extract more informative local context, thus enhancing the discriminative
power of the query, key, and value vectors used for computing multi-head attention,
which helps in effectively removing haze from the input image, resulting in cleaner re-
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sults. In contrast to regular feed-forward networks that only perform position-specific
information flow, our LCFN enriches multi-scale local context. This enhancement
proves beneficial in refining regions by leveraging neighborhood information infer-
ence, resulting in cleaner outputs.

• We validate the effectiveness of the proposed LCEFormer by conducting comprehen-
sive experiments on three remote image dehazing benchmarks: DHID [36], ERICE [37],
and RSID [38]. Our LCEFormer outperforms existing image dehazing methods
on both benchmarks. Additionally, to demonstrate the scalability of the proposed
LCEFormer, experiments on the UCMERCED dataset [39] demonstrate that our
LCEFormer achieves the state-of-the-art performance in the remote sensing image
super-resolution task.

2. Related Work

In this section, we first review related dehazing methods. Because our proposed
method is based on the vision transformer architecture, we introduce recent advancements
in vision transformer methods.

2.1. Image Dehazing Methods

With the development of deep learning, dehazing methods based on CNN [22–24,28,40] and
transformer [33,41] overwhelm the traditional dehazing methods based on priors [17,18].
GridDehaze [23] directly learns the clear counterpart from the hazy input by an attention-
based grid network. FFANet [27] adaptively fuses features according to the channel and
pixel attention. MSBDN [24] utilizes a dense feature fusion module based on CNN and a
boosting strategy to excavate spatial information to achieve high dehazing performance.
PFDN [42] introduces the atmospherical scattering model-based dehazing network and
removes the haze in the feature space. CNN has the limitation of capturing long-range
dependencies. To overcome the shortcoming of CNN, the dehazing method Uformer [41] is
proposed and utilizes a Locally enhanced Window transformer block to extract context in-
formation from multi-scale features, which not only reduces computation but also achieves
the state-of-the-art performance in various image restoration tasks. DehazeFormer [33]
makes several improvements on the elements of SwinTransformer [30] for the dehazing
task, which achieves the best performance on both the homogeneous image dehazing
dataset and the non-homogeneous remote sensing image dehazing dataset. Dehamer [35]
employs the DCP prior [17] into the Transformer position embedding and fuses the CNN
features and the Transformer features by a modulation module. Recently, the diffusion module
has been widely adopted in image restoration tasks for its generative power. Wang et al. [43]
proposed a frequency compensation block to facilitate the diffusion model to restore high-
frequency details.

The dehazing methods proposed to recover natural scene images could be utilized
to remove the haze in remote sensing images. However, the remote sensing images have
different visual angles and different scene depths. Zhang et al. [36] proposed a dynamic
collaborative inference learning (DCIL) framework to remove dense haze that existed in
remote sensing images, which efficiently restores the texture details, spectral characteris-
tics, and small-scale objects. Trinity-Net [38] employs Swin Transformer to estimate the
parameters of the physical model and introduces the gradient maps to enhance the detail
information for the Transformer features, which obtains great performance in the remote
sensing image dehazing task. AMGAN-CR [44] embeds the attention into the generative
adversarial networks to remove thin clouds. McGAN [45] fuses the information of RGB
and multi-spectral images to improve the cloud removal performance. Rice dataset [37]
is collected by Lin et al., and is a remote sensing cloud removal dataset. Tao et al. [46]
proposed to use a self-paced learning mechanism to train the cloud removal network across
easier to harder difficulty levels. CloudFormer [34] combines the advantages of CNN
and transformer to remove the cloud, which cascades convolution blocks and transformer
blocks to extract shallow and deep features, respectively.
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2.2. Vision Transformer

Transformer [31] is originally proposed to be applied in the natural language pro-
cessing task due to its advantage of capturing long-range dependencies. Alexey et al. [29]
proposed Vision Transformer to process image patches in sequence, based on which a series
Transformers [30,47,48] are developed for image processing tasks including recognition,
object detection, and image segmentation. Although vision Transformers have achieved
significant success in image dehazing, image deraining, and so on, Transformer-based
image restoration methods need high computational costs when the input images are of
high resolution. Besides, Transformer can model long-range dependencies while lacking
local detail information. To enhance the transformer-based dehazing method with the
patch-level feature, patch-level attention is proposed in [49]. To combine the advantages
of CNN and Transformer, Dehamer [35] utilizes Transformer features to learn the mod-
ulation matrices to modulate CNN features. In contrast, we propose an adaptive local
context enrichment module (ALCEM) that extracts multi-scale local contextually-enriched
features and fuses them selectively. Syed et al. [50] proposed an efficient image restora-
tion Transformer termed Restormer that efficiently computes self-attention in channel
dimension in a multi-Dconv head transposed attention (MDTA) module. In contrast, we
design an adaptive local context enrichment module (ALCEM) to extract multi-scale local
context. The ALCEM strengthens both the attention module, referred to as the locally
enhanced attention (LEA) module, and the feed-forward network, known as the local
continuous-enhancement feed-forward network (LCFN). The proposed method contributes
to improved dehazing performance.

3. Method

In this section, we first introduce the overall pipeline of the proposed LCEFormer for
remote sensing image dehazing. Then, we describe the basic block of the LCEFormer, i.e.,
local context-enriched transformer block (LCTB) with a locally enhanced attention module
and local continuous-enhancement feed-forward network. Finally, we present the loss
function for the entire framework.

3.1. Overall Pipeline

Figure 1 shows the overall architecture of the proposed U-shape transformer-based
dehazing framework, denoted as LCEFormer. Firstly, a hazy remote sensing image
I ∈ RH×W×3 undergoes a 3 × 3 convolution operation to generate intermediate features
with a channel number of C. These intermediate features then go through four-level en-
coders, each consisting of a specified number of stacked LCTBs Ni, where i ∈ 0, 1, 2, 3, to
extract multi-scale features. Between two-level encoders, a 3 × 3 convolution operation
followed by a pixel-unshuffle operation is utilized to down-sample the features to reduce
their size to half of the original feature size. Subsequently, decoders comprising Ni stacked
LCTBs (i ∈ 2, 1, 0). Between two-level decoders, a 3 × 3 convolution operation followed
by a pixel-shuffle operation is utilized to recover high-resolution features. The addition of
features with the same feature size in both the encoder and its corresponding decoder is
conducted. Finally, the features outputted by the last LCTB undergo a 3 × 3 convolution to
restore the haze-free image.

3.2. Local Context-Enriched Transformer Block

Rich local context information can help restore image details, while global structural
information can provide clues for removing haze from the entire image. In this paper,
we propose a local context-enriched transformer block (LCTB) that can simultaneously
extract rich local context information and global structural information, ensuring clear
image details while removing haze.
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Figure 1. The overall architecture of the proposed LCEFormer. The LCEFormer is a U-shape
architecture consisting of stacked of local context-enriched transformer blocks (LCTBs). The key
components of LCTB are a locally enhanced attention (LEA) and a local continuous-enhancement
feed-forward network (LCFN).

To enhance the capability of extracting local detail information within the Transformer
block, we introduce an adaptive local context enrichment module (ALCEM) designed
to extract local contextual information. This module is seamlessly integrated into two
key components of the Transformer block: the multi-head attention module and the feed-
forward network. The modified modules are referred to as locally enhanced attention (LEA)
and Local Continuous-Enhancement Feed-Forward Network (LCFN).

Next, we will first provide a detailed description of our ALCEM, followed by intro-
ductions to LEA and LCFN.

Adaptive Local Context Enrichment Module: To incorporate enriched and broader
local context information into the self-attention module and feed-forward network of
Transformer, we propose the adaptive local context enrichment module (ALCEM). This
module is designed to capture intricate details and local contextual information effectively.
This proves to be advantageous in the restoration of local details by utilizing information
from the neighborhood information. As shown in Figure 2, the input feature and the output
feature of the ALCEM are denoted as x and y, respectively. The computational process of
the ALCEM is formulated as follows:

{x1, x2, x3, x4} = S(x),

y1 = σl(Conv3×3(x1)),

y2 = σl(Conv3×3(x2) + y1),

y3 = σl(Conv3×3(x3) + y3),

y4 = σl(Conv3×3(x4) + y3),

y =
4

∑
i=1

wi ⊙ yi,

(1)

where S(·) denotes a splitting operation that partitions the input feature maps into four
features maps along the channel axis, σl represents the Leaky ReLU activation function,
and Conv3×3 represents a 2D convolution operation with a kernel size of 3 × 3. ⊙ denotes
the element-wise multiplication, and Conv1×1 represents a 2D convolution operation with
a kernel size of 1 × 1.

In addition, wi can be expressed as follows:

yc = Concat(y1, y2, y3, y4),

li = Reshape(Conv1D3(GAP(yc))),

wi =
eli

∑4
i=1eli

,

(2)

where σr denotes the ReLU activation function, and GAP represents global average pooling
operation. Conv1D3 is a one-dimension convolution with a kernel size of 3.
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Figure 2. The structures of the proposed adaptive local context enrichment module (ALCEM).

Locally Enhanced Attention Module: The regular multi-head self-attention module is
designed to capture long-range dependencies. We provide an overview of the computation
process of the self-attention module. The first step in self-attention involves computing the
query, key, and value vectors from the input features by 1 × 1 convolutions. Subsequently,
attention weights are calculated using the query and key vectors. These weights are
then used to compute a weighted sum of the values to obtain the output. It can be
observed that the quality of output features depends on the robustness and discriminative
capabilities of the query, key, and value vectors. However, existing methods typically
utilize 1 × 1 convolution operations or 3 × 3 depth-wise convolution operations, which
often lack enriched and broader local information. To address this issue, we propose
the Locally Enhanced Attention (LEA) module, which integrates our ALCEM into the
self-attention module to enhance the local contextual information of the query, key, and
value vectors. This enhancement proves beneficial for recovering local details by inferring
from neighborhood information. The structure of the proposed LEA module is shown in
Figure 3. Next, we will detail the computational process of our LEA module. The LEA
module first employs our proposed ALCEM, as described in the above section, to enrich
the local context. Subsequently, it generates query (Q), key (K), and value (V) vectors. To
reduce computational complexity, following the approach outlined in [50], we compute
the channel-aware attention weights. Finally, similar to the regular attention module, we
compute the output by employing the attention weights to perform matrix multiplication
of the value vectors.
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Figure 3. The structures of the proposed locally enhanced attention (LEA) module, and Local
Continuous-Enhancement Feed-Forward Network (LCFN).
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Given an input tensor x ∈ RH×W×C, The specific process could be formulated as

xl = ALCEM(x),

Q = Conv1×1(xl),

K = Conv1×1(xl),

V = Conv1×1(xl),

A = Softmax(R(K)⊗ R(Q)),

u = Conv1×1(R(R(V)⊗ A)),

(3)

where ⊗ represents the matrix multiplication, Conv1×1 denotes the convolution layer
with a kernel size of 1 × 1, Softmax denotes the softmax operation, and R(·) denotes
the reshape operation. xl ∈ RH×W×C represents the feature vector with enriched lo-
cal context. Three parallel 1 × 1 convolution layers are then utilized to compute the
query Q ∈ RH×W×C, key K ∈ RH×W×C, and value V ∈ RH×W×C vectors. The query
and key vectors are firstly reshaped and then utilized to compute the attention weights
A = Softmax(R(K)⊗ R(Q)) ∈ RC×C, where the sizes of reshaped query and key are
HW × C and C × HW, respectively. These attention weights are subsequently employed to
perform matrix multiplication to the reshaped value R(V) ∈ RHW×C. u ∈ RH×W×C is the
output features containing enriched local context and long-range information.

Local Continuous-Enhancement Feed-Forward Network: Existing feed-forward
networks [31] only learn complex interactions between different features within each
position of an image, which ignores local context information that is important for image
dehazing. Therefore, a local continuous-enhancement feed-forward network (LCFN) is
designed as shown in Figure 3. Our LCFN consists of two 1 × 1 convolution layers and an
adaptive local context enrichment module (ALCEM), the 1 × 1 convolution layer before
ALCEM is utilized to expand the feature channels (usually by factor γ = 1 in LEA and
γ = 4 in LCFN) and the 1 × 1 convolution layer after ALCEM to reduce channels back to
the original input dimension. The detailed computation can be described as

z = Conv1×1(ALCEM(Conv1×1(x)) + x (4)

3.3. Loss Function

We train the proposed LCEFormer in an end-to-end way with the Charbonnier loss [51]
and the SSIM loss. The loss function is formulated as

L = αLssim + βLchar, (5)

where Lssim and Lchar demote the SSIM loss and the Charbonnier loss, respectively. α and
β are the balance factors, which are both set to 1 for all experiments.

The SSIM loss Lssim can be computed as

Lssim = −SSIM( Ĵ, J) (6)

where Ĵ represents the predicted haze-free images predicted by our LCEFormer, J denotes
the ground-truth clear image, and SSIM represents compute the Structural Similarity Index
(SSIM) value using Equation (9).

The Charbonnier loss Lchar is computed as

Lchar =

√
∥ Ĵ − J∥2

+ ε2, (7)

where the constant ε is set to 10−3.
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4. Experiments
4.1. Datasets and Evaluation Metrics

We perform experiments on three remote image dehazing datasets: DHID [36],
ERICE [37], and RSID [38] datasets. The detailed distributions of all datasets are pre-
sented in Table 1. Figure 4 shows the example images of all datasets.

DHID

ERICE

RSID

Figure 4. Example images from the remote sensing image dehazing datasets DHID, ERICE, and RSID.

Table 1. Detail of the training and test datasets. # represents the number of images.

Datasets # of Train # of Test Resolution

DHID [36] 14,490 500 512 × 512
ERICE [37] 1600 400 256 × 256
RSID [38] 1760 100 256 × 256, 512 × 512

DHID dataset: The DHID dataset is a dense hazy remote sensing dataset with
14,990 images, in which the training set has 14,490 images and the test set has 500 im-
ages. The resolution of the images is 512 × 512.

ERICE dataset: The ERICE dataset is a hazy remote sensing dataset derived from the
RICE dataset [37] by cropping its images. It comprises 1600 images in the training set and
400 images in the test set.

RSID dataset: The RSID dataset is a real-world remote sensing image dehazing
benchmark. To ensure a fair comparison with other methods, we follow the dataset
processing method outlined in the paper introducing the dataset [38]. Specifically, both
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900 images from the RSID dataset and 860 images from the SateHaze1k [52] dataset are
utilized for training. Furthermore, 100 images from the RSID dataset are used for testing.

Evaluation Metrics: In all experiments, we report performance by utilizing the Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). Next, we describe the
computational process of PSNR and SSIM.

The Peak Signal-to-Noise Ratio (PSNR) can measure the diffidence between two
images. Computing the PSNR values between predicted images with ground-truth images
serves as a common metric for evaluating the performance of image dehazing methods.
A higher PSNR value indicates superior image dehazing performance. The PSNR can be
formulated as follows:

PSNR( Ĵ, J) = 10 · log10

(
1

1
HW ∑H

h ∑W
w Ĵ(h, w)− J(h, w)

)
, (8)

where H and W are the dimensions of the images, Ĵ(h, w) and J(h, w) represent the pixel
values at position (h, w) in predicted images Ĵ and the ground-truth clear images J, respec-
tively. It can be noted that the values of Ĵ and J range from 0 to 1.

The Structural Similarity Index (SSIM) can measure the similarity between two images.
Computing the SSIM between predicted images and ground-truth images is a widely
used evaluation metric in image dehazing tasks. A higher SSIM value denotes superior
image dehazing performance. The formulation of the Structural Similarity Index (SSIM) is
as follows:

SSIM( Ĵ, J) = l( Ĵ, J)c( Ĵ, J)s( Ĵ, J), (9)

where l( Ĵ, J) =
(2µ Ĵ µJ+c1)

(µ2
Ĵ
+µ2

J+c1)
represents the luminance similarity, c( Ĵ, J) =

(2σĴ σJ+c2)

(σ2
Ĵ
+σ2

J +c2)
is the

contrast similarity, s( Ĵ, J) =
(σĴ J+c3)

(σĴ ·σJ+c3)
represents the structure similarity, µ Ĵ and µJ denote

the average values of the predicted image Ĵ and the ground-truth image J, respectively.
σĴ and σJ denote the standard deviation of the values in the predicted image Ĵ and the
ground-truth image J, respectively. σĴ J is the covariance between predicted image Ĵ and
the ground-truth image J. The constants c1, c2, and c3 are utilized to avoid division by
zero and to scale the SSIM value to the range from 0 to 1. In general, we set c1, c2 and c3
to 0.012, 0.032, and c2

2 , respectively. Similar to computing PSNR, the values of Ĵ and J are
normalized to range from 0 to 1.

4.2. Training Details

Our proposed method is implemented using MMagic [53] (https://github.com/open-
mmlab/mmagic/, accessed on 24 February 2024), an open-source image and video editing
toolbox based on PyTorch [54].

For both datasets, our proposed methodology entails end-to-end training conducted
on two NVIDIA RTX 3090 GPUs, with a mini-batch size of 16 images per GPU. To enrich the
diversity of the training images, we unitize various data augmentation methods, specifically
employing random rotations of the images within intervals of 45◦. The training process
is facilitated by the AdamW optimizer [55], where weight decay is set to 10−3, and the
exponential decay rates for the first and second moments are both set to 0.9. The initial
learning rate is set to 1 × 10−3, and is subsequently decayed to 1 × 10−7 employing the
cosine annealing strategy [56]. This process can be formulated as

lt = lmin +
1
2
(linit − lmin)

(
1 + cos

(
t
T

π

))
(10)

where t is the current iteration number, T is the total number of iterations, lt represents
the learning rate at iteration t, lmin and linit are the minimum and initial learning rates,
respectively.

https://github.com/open-mmlab/mmagic/
https://github.com/open-mmlab/mmagic/
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For the 4-level encoder stage of our LCEFormer, We set the number of LCTBs as
follows: N0 = 1, N1 = 2, N2 = 2, N3 = 2. Attention heads in LEA are [1, 2, 4, 8], and the
number of channels are [24, 48, 96, 192]. The decoder stage is symmetric to the encoder stage.

Next, we describe the experimental settings specific to the DHID, ERICE, and RSID.
DHID: The model is trained for 50,000 iterations. The DHID dataset comprises images

with a resolution of 512 × 512 pixels; therefore, the input images are randomly cropped
from the original images to a resolution of 256 × 256 pixels during training.

ERICE: The model is trained for 30,000 iterations. Image resizing or random cropping
is not utilized during training.

RSID: The model is trained for 30,000 iterations. The training dataset comprises
2 distinct resolutions: 512 × 512 and 256 × 256 pixels. For images with a resolution of
256 × 256, neither image resizing nor random cropping is employed during the training
process. For images with a resolution of 512 × 512, input images are randomly cropped
from the original images to a resolution of 256 × 256 pixels during training.

4.3. Experimental Results
4.3.1. Results on the DHID Dataset

Our LCEFormer is compared to the recent state-of-the-art methods, namely Y-Net [57],
FCTF-Net [58], AFDN [59], Dehamer [35], DehazeFormer [33], and DCIL [36]. Table 2
presents the results. In the case of Y-Net, FCTF-Net, AFDN, and DCIL, the results are taken
from [36]. Furthermore, for a fair comparison, we evaluate the performance of Dehamer
and DehazeFormer by utilizing the publicly available code provided by their respective
authors. Our proposed LCEFormer significantly outperforms other methods in terms
of PSNR and SSIM, demonstrating the effectiveness and superiority of our LCEFormer.
In detail, Y-Net, FCTF-Net, AFDN, and DCIL are CNN-based methods, among these
methods, DCIL achieves the highest PSNR and SSIM with 28.18 dB in PSNR and 0.892 in
SSIM. Compared with DCIL, our method increases the PSNR score by 0.78 dB and SSIM
score by 0.018, demonstrating that our method achieves better results compared to the
CNN-based methods. DehazeFormer is a popular Transformer-based image dehazing
method, achieving 26.29 dB in PSNR and 0.889 in SSIM. Compared with DehazeFormer,
our LCEFormer obtains better dehazing performance with 28.96 dB in PSNR and 0.910 in
SSIM, demonstrating superior performance than Transformer-based methods. Dehamer,
combining CNN and Transformer, achieves 26.19 dB in PSNR and 0.886 in SSIM. Our
LCEFormer outperforms Dehamer by 2.77 dB in PSNR and 0.024 in SSIM, showcasing that
our LCEFormer combines CNN and Transformer more effectively than Dehamer.

Table 2. The experimental results on the DHID dataset. Bold numbers represent the best performance,
while underlined numbers indicate the second best.

Type Method PSNR SSIM

CNN-based

Y-Net [57] 18.31 0.783
FCTF-Net [58] 18.77 0.794

AFDN [59] 20.03 0.803
DCIL [36] 28.18 0.892

Transformer DehazeFormer [33] 26.29 0.889

CNN + Transformer
Dehamer [35] 26.19 0.886
LCEFormer 28.96 0.910

Comparison with other multi-head attention modules: To verify the effectiveness
of the proposed LEA, we conduct experiments to compare our proposed LEA with other
multi-head attention modules including spatial-reduction attention modules (SRA) [47]
and multi-dconv head transposed attention modules (MDTA) [50]. The results are reported
in Table 3. For fair comparisons, except for the multi-head attention modules, we employ
the same experimental settings. It can be noted that our proposed LCFN is selected as the
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feed-forward network for all experiments in Table 3. It can be observed that compared with
SRA, our proposed L2RA obtains an improvement of 0.57 dB in the PSNR value and 0.003
in the SSIM value. In addition, our L2RA outperforms MDTA by 0.21 dB in terms of PSNR.
The remarkable improvement demonstrates the effectiveness of our proposed LEA. Here,
we analyze the reasons for the superior performance of our LEA as follows: SRA reduces
the computational complexity of the traditional multi-head attention module by reducing
the spatial dimension of the key and value. However, the spatial reduction results in a loss
of detailed information, thereby weakening its ability to extract local contextual information.
MDTA employs self-attention across channel dimensions instead of the spatial dimension.
Additionally, it utilizes depth-wise convolutions to encode information from neighboring
pixel positions in the spatial dimension. Nevertheless, a depth-wise convolution layer
can only extract features within a fixed, small range, and its receptive field is insufficient
for capturing enriched contextual information. In contrast to SRA and MDTA, our L2RA
employs the adaptive local context enrichment module (ALCEM) to extract enriched local
contextual information during computing multi-head attention, which is useful for learning
local image structure for effective image dehazing.

Computational Complexity Analysis: The Floating Point Operations per Second (FLOPS)
of the model utilizing our proposed LEA is 25.08 G, whereas the model employing SRA [47]
incurs 42.31 G FLOPS. Notably, our model enhances PSNR from 28.39 dB to 28.96 dB while
reducing computational costs. Additionally, the FLOPS of the model employing MDTA [50]
stands at 24.43 G. Despite our proposed method having slightly higher computational
complexity than MDTA, the model utilizing LEA outperforms the one employing MDTA
with a significant gain of 0.21 dB in PSNR.

Table 3. Comparison (in PSNR and SSIM) with different multi-head attention methods on DHID test
set. Bold numbers represent the best performance.

Methods PSNR SSIM

SRA [47] 28.39 0.907
MDTA [50] 28.75 0.910

LEA 28.96 0.910

Comparison with other feed-forward networks: To verify the effectiveness of the
proposed LCFN, we conduct experiments to compare our proposed LCFN with other feed-
forward networks including the regular feed-forward network (FN) [31], locally-enhanced
feed-forward network (LeFF) [32], and gated-dconv feed-forward network (GDFN) [50].
The results are reported in Table 4. For fair comparisons, except for the feed-forward
networks, we employ the same experimental settings. It can be noted that our proposed
LEA is selected as the multi-head attention module for all experiments in Table 4. From
Table 4, it can be observed that compared with the existing feed-forward network, our LCFN
obtains higher PSNR and SSIM scores, demonstrating the superiority and effectiveness of
our approach. In contrast to the regular feed-forward network (FN) [31], our LCFN enriches
multi-scale local context with the ALCEM. As presented in Table 4, our LCFN outperforms
FN by 2.1 dB in terms of PSNR and 0.012 in terms of SSIM. LeFF [32], integrating a depth-
wise convolutional layer into the regular feed-forward network to enhance single-scale local
context, obtains 28.01 dB and 0.905 in terms of PSNR and SSIM, respectively. Comparatively,
our LCFN obtains an improvement of 0.95 dB in PSNR and 0.005 in SSIM over LeFF. This
experiment demonstrates the effectiveness of multi-scale local context.
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Table 4. Comparison (in PSNR and SSIM) with different feed-forward networks on DHID test set.
Bold numbers represent the best performance.

Methods PSNR SSIM

FN [31] 26.86 0.898
LeFF [32] 28.01 0.905

GDFN [50] 28.17 0.906
LCFN 28.96 0.910

Additionally, GDFN [50], which integrates a gated mechanism and depth-wise convo-
lutions into the regular feed-forward network to enrich local information, achieves PSNR
and SSIM scores of 28.17 dB and 0.906, respectively. Compared with GDFN, our LCFN
achieves higher dehazing performance with PSNR and SSIM scores of 28.96 and 0.910,
respectively. Both LeFF and GDFN rely on 3 × 3 depth-wise convolution operations to
extract local information, leading that the extracted features are from a small fixed region.
In contrast, our LCFN can extract local features across a wider and more varied range while
selectively aggregating local information from different receptive fields. Meanwhile, the
enriched information proves to be effective in preserving the desired local continuity in
image dehazing tasks. Therefore, our LCFN is theoretically superior to LeFF and GDFN,
and the experimental results in Table 4 further validate this assertion.

4.3.2. Results on the ERICE Dataset

To validate the effectiveness and generality of our proposed LCEFormer method, we
conduct a comprehensive experimental comparison with several state-of-the-art techniques:
GridDehaze [23], Uformer [32], Dehamer [35], and DehazeFormer [33] on the ERICE dataset.
The evaluation metrics are the same as those used in the experiments on the DHID dataset,
namely Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). The
results are presented in Table 5. To guarantee a comprehensive and reliable performance
comparison, we train all of the existing methods in Table 5 using the official code and
experimental settings provided by the authors. Additionally, all methods employ the same
training datasets. It can be observed that our LCEFormer achieves the highest PSNR and
SSIM values, demonstrating the superiority of our approach. Specifically, compared with
the CNN-based method GridDehaze, our LCEFormer outperforms it by 2.2 dB in terms of
PSNR and 0.011 in terms of SSIM. Among Transformer-based methods, Uformer achieves
34.14 dB and 0.954 in PSNR and SSIM, respectively, while Dehazeformer achieves 36.49 dB
and 0.958 in PSNR and SSIM, respectively. In contrast, our LCEFormer achieves better
dehazing performance with 37.23 dB and 0.965 in PSNR and SSIM respectively. Further-
more, compared with Dehamer, which combines CNN and Transformer, our LCEFormer
increases PSNR from 33.43 dB to 37.23 dB and SSIM from 0.953 to 0.965, demonstrating that
our approach effectively combines the advantages of both the CNN and Transformer.

Table 5. The state-of-the-art comparison on the ERICE dataset. Bold numbers represent the best
performance, while underlined numbers indicate the second best.

Type Method PSNR SSIM

CNN GridDehaze [23] 35.03 0.954

Transformer Uformer [41] 34.14 0.954
DehazeFormer [33] 36.49 0.958

CNN + Transformer Dehamer [35] 33.43 0.953
LCEFormer 37.23 0.965

4.3.3. Results on the RSID Dataset

To further validate the effectiveness and generality of our proposed LCEFormer
method, we conduct a comprehensive experimental comparison with several state-of-the-
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art techniques: FCTF-Net [58], FFANet [27], UHD [60], Dehamer [35], and Trinity-Net [38]
in Table 6. The evaluation metrics are the same as those used in the experiments on the
DHID dataset and ERICE dataset, namely Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index (SSIM). The results of all other methods are taken from [38]. It can be
observed that our LCEFormer achieves the highest PSNR and SSIM values by achieving
27.55 dB in terms of PSNR and 0.960 in terms of SSIM. This outcome underscores the
superiority of our approach. In comparison to Trinity-Net, which integrates both CNNs
and SwinTransformer while introducing structural priors to generate rich details, our
LCEFormer exhibits superior performance, surpassing it by 0.026 in terms of SSIM. This
result demonstrates the efficacy of our LCEFormer in effectively introducing rich details.

Table 6. The state-of-the-art comparison on the RSID dataset. Bold numbers represent the best
performance, while underlined numbers indicate the second best.

Type Method PSNR SSIM

CNN
FCTF-Net [58] 19.31 0.856
FFANet [27] 24.05 0.899

UHD [60] 26.66 0.923

CNN + Transformer
Dehamer [35] 23.75 0.899

Trinity-Net [38] 27.24 0.934
LCEFormer 27.55 0.960

4.3.4. Experimental Results on the Remote Sensing Image Super-Resolution

Finally, we also evaluate our approach for the remote sensing image super-resolution
task. We report the results on UCMERCED [39], following the same protocol as in [61],
with the upsampling scale ratio set to 4. Table 7 shows the comparison of our approach
with several state-of-the-art methods: Bicubic, SC [62], SRCNN [63], FSRCNN [64], LGC-
Net [65], DCM [66], DGANet-ISE [67], HSENet [61] on UCMERCED dataset. Our approach
outperforms other state-of-the-art methods, in terms of both PSNR and SSIM.

Table 7. State-of-the-art comparison on the UCMERCED dataset for x4 upsampling. Bold numbers
represent the best performance, while underlined numbers indicate the second best.

Method PSNR SSIM

Bicubic 25.65 0.673
SC [62] 25.51 0.715

SRCNN [63] 26.78 0.722
FSRCNN [64] 26.93 0.727
LGCNet [65] 27.02 0.733

DCM [66] 27.22 0.753
DGANet-ISE [67] 27.31 0.767

HSENet [61] 27.73 0.762
LCEFormer 27.80 0.774

4.3.5. Qualitative Comparison

Figure 5 shows the qualitative results on the DHID dataset including DCIL [36],
DehazeFormer [33], and our proposed LCEFormer. It could be found that there is some
haze left in the results of DCIL and DehazeFormer from the roof of the first two examples
and the tree of the third example. In contrast, our LCEFormer removes haze and restores
more details, as highlighted by the red boxes in Figure 5. This observation underscores
the capability of our proposed models to acquire and leverage more detailed information
effectively. Additionally, from the rest examples, our LCEFormer restores more natural
colors compared with other methods.
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Hazy Images DCIL DehazeFormer LCEFormer GT

Figure 5. Dehazing results on the DHID dataset.

Figure 6 shows the visual comparison on the ERICE dataset. We compare our method
with Dehamer [35] and DehazeFormer [33]. From Figure 6, it could be found that our
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model produces much clearer and more natural results. Dehamer removes most haze but
some details are indistinct. The results dehazed by DehazeFormer have color distortion,
especially for the first and last examples in Figure 6. The regions highlighted by the red
boxes underscore the advantage of our LCEFormer.

Hazy Images Dehamer DehazeFormer LCEFormer GT

Figure 6. Dehazing results on the ERICE dataset.

The qualitative comparisons on the DHID and ERICE datasets in Figures 5 and 6 verify
the superiority of our LCEFormer in the remote sensing image dehazing task.
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5. Conclusions

In this paper, we have designed a local context-enriched transformer (LCEFormer) to
remove the fog in remote sensing images. The proposed LCEFormer stacks local context-
enriched transformer blocks to construct a U-shape dehazing framework. To enhance the
transformer blocks with the local contextual information, we have proposed a CNN-based
adaptive local context enrichment module (ALCEM) to extract multi-scale features and
fuse them in a gated way. The proposed ALCEM is utilized to supplement long-range
information with local context and construct a locally enhanced attention (LEA). Moreover,
a local continuous-enhancement feed-forward network (LCFN) is devised to introduce
more local context information flow. Extensive experiments conducted on the DHID,
ERICE, and RSID datasets demonstrate the effectiveness of the proposed LEA and LCFN.
Quantitative and qualitative analyses show that our LCEFormer significantly surpasses the
state-of-the-art remote sensing image dehazing methods.
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