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Abstract: Pseudo-satellite technology has excellent compatibility with the BDS satellite navigation
system in terms of signal systems. It can serve as a stable and reliable positioning signal source in
signal-blocking environments. User terminals can achieve continuous high-precision positioning both
indoors and outdoors without any modification to the navigation module. As a result, pseudo-satellite
indoor positioning has gradually emerged as a research hotspot in the field. However, due to the
complex and variable indoor radio propagation environment, signal propagation is interfered with by
noise, multipath, non-line-of-sight (NLOS) propagation, etc. The geometric relation-based localization
algorithm cannot be applied in indoor non-line-of-sight environments. Therefore, this paper proposes
a pseudo-satellite fingerprint localization method based on the discriminative deep belief networks
(DDBNs). The method acquires the model parameters of pseudo-satellite multi-carrier noise density
signal strength in non-line-of-sight indoor spaces through a greedy unsupervised learning method
and gradient descent-supervised learning method. It establishes a mapping relationship between the
implied features of the pseudo-satellite multi-carrier noise density signal strength and indoor location,
enabling pseudo-satellite fingerprint matching localization in indoor non-line-of-sight environments.
In this paper, the performance of the positioning algorithm is verified in dynamic and static scenarios
through numerous experiments in a laboratory environment. Compared to the commonly used
localization algorithms based on fingerprint library matching, the results demonstrate that, in indoor
non-line-of-sight test conditions, the system’s 2D static positioning has a maximum error of less than
0.24 m, an RMSE better than 0.12 m, and a 2σ (95.4%) positioning error better than 0.19 m. For 2D
dynamic positioning, the maximum error is less than 0.36 m, the average error is 0.23 m, and the 2σ
positioning error is better than 0.26 m. These results effectively tackle the challenge of pseudo-satellite
indoor positioning in non-line-of-sight environments.

Keywords: BDS pseudo-satellite; DDBN; NLOS; carrier noise density; high-precision positioning

1. Introduction

With the rapid development of a digital, informatized, and intelligent society, peo-
ple’s demand for positioning and navigation is also growing. Location services play a
fundamental role in various fields, such as smart city development, smart manufacturing,
smart transportation, smart warehousing, smart healthcare, emergency rescue operations,
virtual/augmented reality, and social networking. Although the Global Navigation Satellite
System (GNSS) can provide high-precision positioning in outdoor open environments, it
cannot function in complex indoor scenarios due to wall occlusion [1]. In some complex
indoor environments, such as airport terminals, sports stadiums, shopping malls, supermar-
kets, libraries, and underground car parks, high-precision location services are essential for
personnel management and vehicle navigation. Therefore, indoor positioning technology
has become a focal point for research both domestically and internationally [2,3]. Cur-
rently, indoor positioning techniques mainly include 5G positioning [4,5], Wi-Fi fingerprint
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positioning [6–8], ultra-wideband (UWB) positioning [9], low-power Bluetooth (BLE) posi-
tioning [10,11], acoustic wave positioning [12], LED light positioning [13], magnetic field
positioning [14], pseudo-satellite positioning [15–17], and motion-sensor-based PDR [18].
However, various positioning techniques have their own advantages and disadvantages,
and they offer different benefits when addressing indoor positioning requirements in
various scenarios.

The pseudo-satellite is an artificially arranged signal generator on the ground that can
emit signals similar to those of a global satellite navigation system. The deployment of
pseudo-satellites in indoor environments can be used as a reliable positioning source. It
can achieve seamless indoor and outdoor navigation and positioning without changing
the existing hardware of satellite navigation terminals. Therefore, a wide range of schol-
ars have conducted extensive research on pseudo-satellite indoor positioning technology.
Aiming to address the issue of pseudo-satellite fuzzy resolution and localization in indoor
large-scale occluded spaces, Dr. Zhang proposed a factor map localization method based
on the fuzzy estimation of the phase ranging of BDS pseudo-satellite clusters. This method
facilitates the process of BDS pseudo-satellite localization in LSOS, achieving localization
accuracy at the submeter level [19]. Due to the indoor environment being affected by
multipath propagation and other factors, effective positioning becomes challenging. Dr.
Huang proposed a pseudo-satellite carrier phase difference positioning algorithm based
on particle filtering. This algorithm avoids solving the problem of integer ambiguity by
calculating the pseudo-distance similarity. Meanwhile, to address the issue of dispersion in
localization results caused by varying moving speeds, a method is proposed based on the
Doppler shift dynamic estimation of particle speeds. This method enhances the accuracy
of the particle weight distribution, thereby improving both the localization accuracy and
the continuity of the localization system [20]. Dr. Gan proposed a pseudo-satellite Doppler
differential positioning algorithm that utilizes Doppler differential equations and known
point initialization (KPI) to calculate the speed and position of the receiver [21]. However,
there are some challenging problems in the research and system design of pseudo-satellite
indoor positioning technology due to the influence of indoor building occlusion. Factors
such as near and far effects, multipath effects, and linearization errors typically result
in pseudo-satellite signals being out of lock. Traditional high-precision positioning algo-
rithms based on geometrical relations often face challenges, particularly in non-line-of-sight
environments, impacting the accuracy and reliability of positioning [22,23].

In order to address the issue of pseudo-satellites being challenging to locate in indoor
non-line-of-sight environments, this paper introduces a positioning method based on
pseudo-satellite multi-channel carrier noise density (C/N0) signal strength fingerprinting.
The method utilizes a novel deep architecture that combines the abstraction capability of
the deep belief networks with the differentiation ability of the exponential loss function.
By leveraging a small amount of annotated data, the method establishes an indoor spatial
distribution model of the pseudo-satellite C/N0 signal strength, enabling the accurate
prediction of user location in non-line-of-sight environments. The accurate prediction of
user location in non-line-of-sight environments is finally achieved by this algorithm. The
main contributions of this paper are as follows:

(1) Aiming to address the challenges of poor positioning reliability and the inability to
position faced by pseudo-satellites in indoor non-line-of-sight environments, a fin-
gerprint matching positioning method based on pseudo-satellite multiplexed carrier
noise density (C/N0) signal strength is proposed. An eight-channel indoor array
pseudo-satellite base station is developed. Each channel transmits independent C/A
code and B1/L1 band RF signals, enabling stable and continuous positioning in indoor
non-line-of-sight environments.

(2) This paper proposes a fingerprint positioning method based on the discriminative
deep belief networks (DDBNs). The greedy unsupervised learning method is utilized
to finalize the construction of the DDBN deep architecture. Subsequently, the gradient
descent-supervised learning method is employed to optimize the parameter space
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further. Finally, the classification performance of the entire deep architecture is
enhanced by implementing the backpropagation strategy with an exponential loss
function. The optimal model for pseudo-satellite multi-channel C/N0 signal strength
is ultimately achieved by leveraging a small amount of annotated data through
repeated iterative calculations.

(3) In this paper, a large number of experiments are conducted in an indoor non-line-of-
sight environment to achieve the static and dynamic positioning of pedestrians using
the constructed C/N0 signal strength model. The results are compared to commonly
used fingerprint positioning methods. The experimental findings indicate that the
proposed positioning method can achieve a better accuracy and effectively meet the
indoor positioning requirements of unmanned vehicles.

The remainder of this paper is arranged as follows: Section 2 introduces the technical
architecture of the pseudo-satellite positioning technology for indoor arrays and analyzes
the working principle of the technology. The third section introduces the proposed posi-
tioning model of the discriminative deep belief networks and the implementation details
of the algorithm. In the fourth section, a large number of experiments are conducted in a
laboratory room with a non-line-of-sight environment. The performance evaluation of two
different positioning methods, static and dynamic, is performed to verify the effectiveness
of the positioning algorithm. The final section summarizes the entire text and outlines the
next research plan.

2. Related Work

This section first introduces the basic concepts of indoor array pseudo-satellite base
stations and carrier noise density signal strength. It then analyzes the fluctuation of carrier
noise density signal strength at different times and the variations in different locations in a
non-line-of-sight environment using measured data. Finally, the algorithmic technology
architecture and implementation process proposed in this paper are introduced.

2.1. Multi-Channel Indoor Array Pseudo-Satellites

The indoor pseudo-satellite base station described in this paper adopts a homologous
multi-array element design. The time-frequency reference of the multi-channel pseudo-
satellite signal is controlled by the same crystal oscillator. The pseudo-satellite base station
equipment and the base station transmitting antenna are shown in Figure 1. The eight-
channel transmission signal modulates the GPS L1 C/A code and BDS B1C navigation
signal with different spread spectrum codes. These codes are utilized to differentiate
between various channels and navigation information, ensuring the distinctiveness of each
channel signal.
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2.2. Indoor Array Pseudo-Satellite Carrier Noise Density (C/N0) Signal Strength

In outdoor line-of-sight environments, satellite navigation systems typically utilize
pseudo-range and carrier phase observation measurements to calculate absolute positioning
based on geometric relationships. Due to the complex internal structure of the indoor
environment and the diversity of the layout of indoor items, the pseudo-satellite signal
is affected by factors such as multipath effect in the non-line-of-sight environment, and
accurate ranging cannot be achieved. The pseudo-satellite base station has a different
spread code for each channel modulation; so, each pseudo-satellite signal is unique in the
indoor space. Due to the influence of reflection and refraction caused by walls, floors, and
metal objects, pseudo-satellite navigation signals can be effectively received in non-line-of-
sight environments; so, this paper used the signal strength of pseudo-satellite carrier noise
density (C/N0) to measure the signal intensity of pseudo-satellite carrier noise density
(C/N0) in non-line-of-sight environment to generate fingerprint data to carry out indoor
positioning research.

In fingerprint-based technology, the long-term stability and significant spatial differ-
ence of fingerprint data will have a positive impact on signal feature extraction and position
matching; so, the above attributes of indoor array pseudo-satellite C/N0 were verified in
this paper.

(1) Pseudo-satellite C/N0 time stability test. In this paper, the Ublox F9P commercial
receiver was utilized to observe the pseudo-satellite base station signal in a non-line-
of-sight environment for 1 h. The sampling frequency was set at 1 Hz, and the C/N0
data results of each channel were recorded. The average C/N0 of all channels was
used as the evaluation metric for time stability. The C/N0 stability test results of the
pseudo-satellite signal from the indoor array are depicted in Figure 2.
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Figure 2. Pseudo-satellite C/N0 signal strength temporal stability test.

As it can be seen from Figure 2, the average signal strength of the multi-channel
pseudo-satellite C/N0 is used as the evaluation object for time stability. The average
fluctuation range is −1.5~1.5 dB in 1 h sampling time, the absolute value of the minimum
signal strength fluctuation is 0 dB, the absolute value of the maximum signal strength
fluctuation is 1.5 dB, and the standard deviation of the multi-channel pseudo-satellite
C/N0 signal strength at 1 h sampling time is 0.70 dB. It can be seen from the test results
indicate that the signal strength of pseudo-satellite C/N0 exhibits minor fluctuations in
non-line-of-sight environments, with a temporal stability that is significantly superior to
that of Wi-Fi signals. This difference ensures positioning stability and robustness.
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(2) Pseudo-satellite C/N0 spatial difference test. Theoretically, the greater the spatial
difference of the signal, the higher the positioning accuracy of the fingerprint matching
algorithm. Therefore, in non-line-of-sight indoor environments, two sampling points
were established with a spacing of 0.2 m. The signal strength of the eight-channel
pseudo-satellite C/N0 was collected at these points. The data were collected over a
period of 1 h with a sampling frequency of 1 Hz. The C/N0 spatial difference test
results of the indoor array pseudo-satellite signal were obtained by comparing the
C/N0 difference between two pseudo-satellites on the same channel but at different
positions as the spatial difference evaluation metric. The C/N0 spatial difference test
results of the pseudo-satellite signal from the indoor array, as depicted in Figure 3,
were obtained.
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In Figure 3, the signal strength difference of the channel 1 pseudo-satellite C/N0 at
two different positions is in the range of −12~4 dB, and the range of the channel 2 pseudo-
satellite C/N0 is −4~11 dB. From the test results of the two channels, it can be seen that
there is a significant difference in the signal strength of pseudo-satellite C/N0 between the
same channels in a non-line-of-sight environment. This variance will serve as a foundation
for the fingerprint matching and positioning algorithm based on pseudo-satellite C/N0
signal strength.

2.3. Technical Architecture

The implementation steps of the pseudo-satellite C/N0 signal strength fingerprint
matching and positioning algorithm proposed in this paper included two parts: offline
fingerprint database construction and online matching and positioning. The system archi-
tecture is shown in Figure 4.
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(1) Offline stage. In the indoor non-line-of-sight environment test area, observation
data from eight pseudo-satellite C/N0 signal strengths were collected. The median
preprocessing method, based on the root-mean-square error, was utilized to reduce
data noise. The observation data was organized into an ordered vector, and a pseudo-
satellite C/N0 signal strength position fingerprint was constructed using the location
coordinates of the sampling points. Afterward, the constructed dataset was transferred
to a server-side database for training the localization model. Finally, the trained
positioning model was distributed to the user terminal.

(2) Online stage. In the current indoor non-line-of-sight environment, the user terminal
receives the eight-channel pseudo-satellite RF signal in real time and estimates the
real-time position of the user terminal using the positioning model.
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3. Fingerprint Localization Method Based on the Discriminative Deep Belief Network
Pseudo-Satellite C/N0 Signal Strength
3.1. Discriminative Deep Belief Networks

The deep belief network (DBN) was proposed by Hinton et al. [24] in 2006 to address
the shortcomings of the BP algorithm. The BP algorithm has shown good results in data
compression applications, like image processing [25,26] and speech recognition [27], but
its performance in classification tasks needs enhancement. Discriminative deep belief
networks are suitable for indoor localization scenarios with rich multimodal data. They
can integrate these heterogeneous data sources and extract deep feature representations to
enhance localization accuracy. The training and inference of discriminative deep belief net-
works may involve high computational complexity. It is necessary to ensure that sufficient
hardware resources are available to support the operation of the model. Discriminative
deep belief networks are adept at handling nonlinear and complex relationships, making
them well-suited for indoor environments facing challenges like multipath propagation,
signal occlusion, and dynamic interference. In situations demanding high positioning accu-
racy, discriminative deep belief networks can outperform traditional methods by learning
intricate environmental features at a deep level.

In the research on pseudo-satellite fingerprint positioning technology in a non-line-
of-sight environment, if the fingerprint database can be constructed with a small amount
of annotated data and the positioning accuracy can be ensured, the usability of pseudo-
satellite indoor positioning in a non-line-of-sight environment will be guaranteed. In this
paper, we introduced a model named the discriminative deep belief network, which utilizes
a novel deep architecture to combine the abstract capability of the deep belief networks
with the discriminative power of the exponential loss function. First, the collected data were
simplified for pre-processing. The noise density of multiple carriers (C/N0) distribution
features at different locations were analyzed using a small amount of labeled data to extract
data features. The greedy unsupervised learning method was employed to construct the
DDBN deep architecture. Subsequently, the gradient descent-supervised learning method
was utilized to optimize the parameter space further. The classification performance of the
entire deep architecture was then optimized by employing the backpropagation strategy
through the exponential loss function. The optimal model of the pseudo-satellite multi-
channel C/N0 positioning network was achieved through repeated iterative calculations,
accurately reflecting the correlation between C/N0 signal strength and position. Finally,
indoor high-precision positioning was achieved based on this model.

The DDBN structure diagram is shown in Figure 5. The DDBN consists of an input
layer h0, n hidden layers h1, h2, . . .. . ., hn, and a label layer on top. The input layer h0

has D cells, which is equal to the number of features in data x. The label layer has C cells,
which is equal to the number of categories in the label data y. W = {w1, w2, . . .. . ., wN+1}
is the parameter that needs to be learned in the deep architecture. For DDBN networks,
increasing the number of layers of the hidden layer and the number of nodes in each
hidden layer can improve the positioning accuracy, but the complexity of the calculation
also increases. In this paper, the number of hidden layers of the DDBN was set to three; the
number of nodes in each hidden layer was set to 8, 6, and 4; and the number of nodes in
the output layer was 2.

The deep architecture of DDBN is built up by multiple RBMs. RBM is a two-layer
recurrent neural network where random binary inputs are linked to random binary outputs
by symmetric weights.

The DDBN training process is divided into two steps:

(1) DDBN uses RBM as the basic module and uses a greedy and unsupervised method to
build a deep architecture layer by layer. U unlabeled data and L annotated data are
used to find the parameter space W of the N-layer network.

(2) DDBN uses the gradient descent method to train the deep architecture based on
the exponential loss function. The parameter space W is further optimized by L
annotated data.
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3.2. DDBN Unsupervised Learning Method

In the DDBN deep architecture, the energy state (hk−1, hk) is defined as:
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between the element s in the hidden layer hk−1 and the element t in the hidden layer hk,
with k = 1, 2, 3, . . . , N − 1. bs is the s-th bias in the hidden layer hk−1, and ct is the t-th bias
in the hidden layer hk. Dk is the number of contacts at the k-th layer.

The probability of occurrence of hk−1 is:

P
(

hk−1; θ
)
=

1
Z(θ)∑

hk

exp
(
−E
(

hk−1, hk; θ
))

(2)

Z(θ) = ∑
hk−1

∑
hk

exp
(
−E
(

hk−1, hk; θ
))

(3)

where Z(θ) denotes the normalization constant.
The probability of hk and hk−1 occurring is:

p
(

hk | hk−1
)
= ∏

t
p
(

hk
t | hk−1

)
p
(

hk−1 | hk
)
= ∏

s
p
(

hk−1
s | hk

)
(4)

The probability that the t-th unit is 1 is a logistic function containing hk−1 and wk
st:

p
(

hk
t − 1 | hk−1

)
− sigm

(
ci + ∑

s
wk

sth
k−1
s

)
(5)
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The probability that the s-th unit is 1 is a logical function containing hk and wk
st:

p
(

hk−1
s = 1 | hk

)
= sigm

(
bs + ∑

t
wk

sth
k
t

)
(6)

where the logical function is:

sigm(η) = 1/(1 + exp(−η)) (7)

The logarithm of the probability generated by the hidden layer is derived relative to
the model parameter wk, which is obtained by the contrastive divergence method [18]:

∂ log p
(

hk−1
)

∂wk
st

=
〈

hk−1
s hk

t

〉
P0
−
〈

hk−1
s hk

t

〉
PM

(8)

where ⟨•⟩p0
represents the expected data distribution, and ⟨•⟩pM

represents the data distri-
bution after running Gibbs sampling M times from the input data.

Parameter wk can then be adjusted in the following steps:

wk
st = ϑwk

st + η
∂ log p

(
hk−1

)
∂wk

st
(9)

where ϑ is the momentum and η is the learning rate.
After the parameter wk is calculated by the above method, the hidden layer can be

calculated by the following formula after data x are input from h0:

hk
t (x) = sigm

(
ck

t +
Dk−1

∑
s=1

wk
sth

k−1
s (x)

)
t = 1, 2, · · · , Dk; k = 1, 2, · · · , N − 1 (10)

Parameter space wN , like the classical backpropagation method, is initialized by a
random number that obeys a normal distribution.

hN
t (x) = cN

t +
DN−1

∑ wN
st hN−1

s (x), t = 1, 2, · · · , DN (11)

3.3. DDBN Supervised Learning Method

After greedy unsupervised training, hN(x) is an abstract representation of x. Then,
based on L labeled data, the parameter space w is optimized by the supervised learning
method using the gradient descent method:

argwmin f
(

hN(X), Y
)

(12)

where

f
(

hN(X), Y
)
=

I.

∑
i=1

C

∑
j=1

T
(

hN
(

xi
j

)
yi

j

)
(13)

T denotes the exponential loss function as follows:

Texponent (r) = exp(−r) (14)

The exponential loss function has been applied to the boosting algorithm and performs
well in the actual application dataset [28].



Remote Sens. 2024, 16, 1430 10 of 19

4. Test Results and Evaluation

This section validates the positioning performance of the algorithm in real non-line-of-
sight scenarios. The DDBN model was trained with a small amount of labeled data, and the
model’s static and dynamic positioning performance was tested in a real-world environment.

4.1. Test Environment and Test Settings

The test area was located at the artificial intelligence navigation test site of the State
Key Laboratory of Satellite Navigation System and Equipment Technology. The test site
was a three-story building with a steel structure. The indoor array pseudo-satellite antenna
was deployed at the top of the test site, utilizing a double-circle array network. The first
floor of the test site included the central line-of-sight test area and the non-line-of-sight
(NLOS) test area on both sides. The second and third floors of the test area consisted of
circular corridor structures. The test environment was situated in the signal NLOS area on
both sides of the first floor, and the left NLOS signal area was selected as the test area for
this experiment. The total area measured 48 m², with dimensions of 12 m in length and 4 m
in width. The test environment comprised a wooden workbench, concrete columns, tin
cabinets, iron shelves, concrete walls, and a smooth ceramic tile floor. The internal structure
and test scene of the test site are illustrated in Figure 6.
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The performance of the fingerprint database significantly influences the results
of fingerprint matching and positioning. In the offline data acquisition of the signal
strength of each pseudo-satellite carrier noise density (C/N0), the dynamic fingerprint
database construction method was adopted, which is fast and cost-effective. In order to
address the issue of poor fingerprint positioning accuracy resulting from unstable signal
strength during the dynamic fingerprint database construction process, an unmanned
robot data acquisition platform was developed. This platform integrates an indoor
pseudo-satellite receiver with an external high-gain antenna, as illustrated in Figure 7.
The integrated indoor pseudo-satellite receiver receives the indoor pseudo-satellite
navigation signal in real time through the high-gain antenna. It parses the original
observation and measurement data of the pseudo-satellite signal of each channel through
data preprocessing and stores the pseudo-satellite carrier noise density (C/N0) signal
strength data of each channel in the receiver.
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During the construction of the offline fingerprint database, the tester operates the
unmanned robot data acquisition platform to ensure consistent movement in the NLOS
environment. The receiver gathers and logs real-time C/N0 signal strength fingerprint
data, which are then stored locally on the receiver. Once the fingerprint collection process is
finished, the locally stored data are transmitted to the server for positioning model training.

In the process of building the offline fingerprint database, the tester controls the
unmanned robot data acquisition platform to maintain a uniform motion in the NLOS
environment, the receiver collects and records the C/N0 signal strength fingerprint data
in real time, the collected fingerprint data are saved on the receiver, and the locally stored
data are sent to the server for positioning model training after the fingerprint collection
activity is completed.

During online positioning, the tester retrieves the trained positioning model from the
server, receives and analyzes the carrier-to-noise density (C/N0) signal strength data from
each indoor pseudo-satellite channel in real time, and achieves position estimation through
the fingerprint matching positioning algorithm.

4.2. Static Positioning Performance Test

In order to verify the static positioning accuracy of the carrier noise density signal
strength fingerprint positioning system based on pseudo-satellite channels, the tester set
up several test reference points on the ground of the NLOS test environment. These points
were calibrated with high precision using a total station. The test data accuracy was at the
centimeter level, and four typical test points were selected in the test environment. Test
point TP1 was surrounded by iron shelves, concrete pillars, and walls. Test point TP2 was
positioned between two concrete pillars, with a wooden workbench and a concrete wall on
the right side. Test point TP3 was situated in the center of the test area, with no obvious
objects in close proximity. Test point TP4 was surrounded by an iron storage cabinet at the
lower end and a concrete pillar on the right side. The test area and test reference points are
illustrated in Figure 8.
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Figure 8. NLOS test area and test reference points.

The tester positions the receiver on the reference point, and the receiver antenna
captures the indoor BDS pseudo-satellite navigation signal to generate real-time positioning
results. We set the receiver positioning frequency to 1 Hz, and the static positioning time
was 10 min. The experimental results are shown in Figures 9–12.

Figures 9–12 display the real-time static positioning results and the test results for
positioning errors at the four test points. In the real-time static positioning results, the
red circles represent the positions of the test points that are calibrated with high precision,
while the blue dots inside the box indicate the real-time positioning results. The Euclidean
distance formula was used to calculate the positioning error by comparing the real-time
positioning result with the real coordinates of the reference point. The positioning errors of
the four test points were statistically analyzed, as shown in Table 1.

Table 1. Statistical analysis results of two-dimensional static positioning error.

Name TP1 TP2 TP3 TP4

RMSE (m) 0.09 0.09 0.08 0.12
Maximum (m) 0.19 0.19 0.16 0.24

2σ 0.15 0.16 0.12 0.19

From the statistical analysis results in Table 1, it can be seen that the maximum
positioning error of the four test points is 0.24 m, the root-mean-square error (RMSE) is less
than 0.12 m, and the 2σ positioning error is less than 0.19 m. The DDBN positioning model
proposed in this paper can achieve a high positioning accuracy in static positioning tests in
non-line-of-sight environments.
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4.3. Dynamic Positioning Performance Test

To enhance the assessment of the dynamic positioning performance of the BBDN
positioning model, this study devised various test routes within an indoor non-line-of-sight
environment. In order to eliminate the influence of the tester’s body on the positioning
performance during the testing process, an unmanned robotic test platform was used in
this test. The tester remotely controlled the unmanned robotic test platform to move at a
constant speed along the planned test route. The test results are shown in Figure 12.

Figures 13 and 14 show the results of the dynamic positioning test. The red circles
represent test points 1-4 calibrated with high precision, while the blue dots indicate the real-
time positioning results. The red lines represent the predefined test routes, which include a
triangular test route consisting of test points 1-2-3-1 and a linear test route consisting of
test points 1-2-3-4. In the dynamic positioning error analysis, high-precision calibrated test
points along the motion trajectory were selected as reference points to assess the positioning
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accuracy of the real-time dynamic positioning results. The evaluation results are shown in
Table 2.
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Table 2. Statistical analysis results of 2D dynamic positioning accuracy.

Test Track
True Location Real-Time Positioning Results

X Error (m) Y Error (m) 2D Positioning
ErrorX (m) Y (m) X (m) Y (m)

Triangle
4,212,835.42 538,277.09 4,212,835.71 538,277.31 0.29 0.22 0.26
4,212,837.69 538,275.61 4,212,837.87 538,275.74 0.18 0.13 0.16
4,212,832.08 538,276.15 4,212,832.40 538,276.01 0.32 0.14 0.25

Linear
4,212,835.42 538,277.09 4,212,835.63 538,277.35 0.21 0.26 0.24
4,212,837.69 538,275.61 4,212,837.85 538,275.72 0.16 0.11 0.14
4,212,842.31 538,276.21 4,212,842.54 538,275.75 0.23 0.46 0.36

From the statistical analysis results in Table 2, it can be seen that the maximum 2D
localization error of the triangular test route is less than 0.36 m, the average localization
error is less than 0.23 m, and the 2σ positioning error is less than 0.26 m. The discriminative
deep belief network-based localization model proposed in this paper can achieve a high
localization accuracy in dynamic localization tests in a non-line-of-sight environment.
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In order to evaluate the localization performance of various algorithms in the created
pseudo-satellite C/N0 fingerprint library, the algorithms in this study were compared to
the PSO-ANN [29] and M-WKNN [30] algorithms from the existing literature, as well as
the traditional WKNN (K = 6). Figure 15 illustrates the comparison of the cumulative
probability distribution of the localization accuracy of these four algorithms.
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From the test results in Figure 15 and Table 3, it can be seen that the DDBN algorithm
is improved by 0.09 m, 0.17 m, and 0.39 m in the average error and by 0.12 m, 0.26 m, and
0.48 m in the 2σ localization error compared to the PSO-ANN, M-WKNN, and traditional
WKNN algorithms, respectively.

Table 3. Comparison of the positioning accuracy (m) of commonly used fingerprint mat-
ching algorithms.

Algorithm Name Our Model PSO-ANN M-WKNN WKNN

Average error (m) 0.23 0.32 0.40 0.62

2σ error (m) 0.26 0.38 0.52 0.74

5. Conclusions

In this paper, we address the issue of unmanned robot positioning and navigation in
pseudo-satellite indoor non-line-of-sight environments. We leverage the unique features of
indoor array pseudo-satellite multi-channel navigation signals, such as high discriminative
capability, high spatial resolution of carrier noise density, and high temporal stability. We
propose a fingerprint localization method based on discriminative deep belief networks
(DDBNs). The method utilizes a greedy unsupervised learning approach to finalize the con-
struction of a discriminative DDBN deep architecture. Subsequently, it employs gradient
descent-supervised learning to further optimize the parameter space. Finally, an expo-
nential loss function is used with a backpropagation strategy to enhance the classification
performance of the entire deep architecture. Through repeated iterative calculations, the
optimal pseudo-satellite multi-channel carrier noise density (C/N0) positioning network
is achieved. This study then conducts static and dynamic positioning accuracy tests to
evaluate the system in non-line-of-sight conditions at the State Key Experimental Artificial
Intelligence Navigation Test Site for Satellite Navigation System and Equipment Technology.
The experimental results show that the maximum positioning error of the 2D static position-
ing of the system is less than 0.24 m, the RMSE is less than 0.12 m, and the 2σ positioning
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error is less than 0.19 m. The maximum positioning error of 2D dynamic positioning is less
than 0.36 m, the average positioning error is 0.23 m, and the 2σ positioning error is less
than 0.26 m. Compared to the PSO-ANN, M-WKNN, and traditional WKNN algorithms,
the proposed DDBN positioning method has the advantages of better localization results.
In the future, our work will focus on considering the influence of pedestrians’ bodies to
achieve accurate pedestrian positioning based on a small amount of indoor location tag
data in non-line-of-sight environments.
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