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Abstract: Dehazing individual remote sensing (RS) images is an effective approach to enhance the
quality of hazy remote sensing imagery. However, current dehazing methods exhibit substantial
systemic and computational complexity. Such complexity not only hampers the straightforward
analysis and comparison of these methods but also undermines their practical effectiveness on actual
data, attributed to the overtraining and overfitting of model parameters. To mitigate these issues, we
introduce a novel dehazing network for non-uniformly hazy RS images: GLUENet, designed for both
lightweightness and computational efficiency. Our approach commences with the implementation of
the classical U-Net, integrated with both local and global residuals, establishing a robust base for the
extraction of multi-scale information. Subsequently, we construct basic convolutional blocks using
gated linear units and efficient channel attention, incorporating depth-separable convolutional layers
to efficiently aggregate spatial information and transform features. Additionally, we introduce a
fusion block based on efficient channel attention, facilitating the fusion of information from different
stages in both encoding and decoding to enhance the recovery of texture details. GLUENet’s efficacy
was evaluated using both synthetic and real remote sensing dehazing datasets, providing a com-
prehensive assessment of its performance. The experimental results demonstrate that GLUENet’s
performance is on par with state-of-the-art (SOTA) methods and surpasses the SOTA methods on
our proposed real remote sensing dataset. Our method on the real remote sensing dehazing dataset
has an improvement of 0.31 dB for the PSNR metric and 0.13 for the SSIM metric, and the number of
parameters and computations of the model are much lower than the optimal method.

Keywords: remote sensing images; image dehazing; gated linear units; efficient channel attention

1. Introduction

The rapid advancement of earth observation technology has led to the extensive
utilization of remote sensing (RS) images in urban management, agricultural inspection,
environmental protection, earth sciences, and ocean observation. Nevertheless, the imaging
process of optical remote sensing images is frequently affected by atmospheric turbid
media, including haze, fog, clouds, and rain. Due to the influence of these atmospheric
particles, the imaging light undergoes scattering and attenuation, leading to diminished
visibility, reduced contrast, and lower image intensity. Consequently, these factors adversely
affect downstream advanced vision tasks, including feature segmentation [1], small target
detection [2], and scene classification [3] based on remote sensing images.

Unlike thick clouds that obscure almost all ground-based information, thin clouds
and haze are generally translucent, allowing for partial visibility. Whereas the elimination
of thick clouds often involves integrating additional data sources to reconstruct missing
information via methods such as image fusion, directly dehazing a single remote sensing
image stands as a more effective approach for enhancing image quality and broadening
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applicability. Consequently, the task of removing haze from single remote sensing images,
particularly those affected by haze, emerges as a critical and necessary undertaking.

Various dehazing methods have been proposed to address this issue, broadly catego-
rized into two primary categories: a priori-based and learning-based dehazing methods.
The a priori-based methods depend on the atmospheric transport equation, which uses
physical formulas to model the imaging process of hazy images [4–7]. However, image
dehazing fundamentally represents an inverse problem without a definitive parametric
solution, thus requiring the integration of a priori image information and additional con-
straints for effective resolution. Nevertheless, these hand-crafted features tend to be shallow,
rendering these methods unsuitable for complex haze situations. Although a priori-based
methods have demonstrated potential in improving dehazing, their effectiveness largely
depends on the alignment with their underlying assumptions, rendering them more ap-
propriate for particular scenarios that conform to these assumptions. For instance, despite
the simplicity and effectiveness of dark-channel dehazing [4], significant color distortions
persist in the dehazing results of remote sensing images.

Learning-based approaches [8–11] train parametric end-to-end dehazing models using
pairs of hazy images and corresponding clear images, employing the model’s forward
process to establish a mapping from hazy images to clear images. Significant advancements
in remote sensing image dehazing have been made through learning-based methods, such
as convolutional neural networks (CNNs), which leverage large-scale remote sensing image
datasets for training, eliminating the need for manual feature extraction or intricate a priori
model design. Learning-based techniques are particularly proficient in managing complex
scenes, such as urban landscapes, mountainous terrains, and watersheds, where diverse
lighting conditions and varied texture structures are present.

However, with the development of deep learning methods and the improvement of
hardware level, the models of today tend to have a huge number of parameters and a
high computational demand, which is too inefficient to process the massive and large-scale
remote sensing data. In the previous remote sensing dehazing methods, the complexity
and computational burden of the model are seldom considered, which affects its practical
application ability. In order to satisfy the practical needs, the goal of this study is to
propose a simple and effective dehazing network for remote sensing images. We will
construct our data-driven remote sensing dehazing method based on both training data
and network models.

Initially, we examine the domain gap between remotely sensed images and natural
images. In comparison to general natural images, remote sensing images encompass a
broader imaging perspective, more abundant features, and more complex atmospheric
conditions. Concerning the dehazing task, the spatial distribution of haze in remote
sensing images and its distribution across different wavebands are uneven. The uneven
spatial distribution indicates that haze is not uniformly distributed across the entire image
(including regions of clean pixels), and the thickness and particle size of the haze can vary
at different coordinate points, leading to variability in the imaging results. The uneven
distribution of wavelengths refers to the distinct penetration capabilities of electromagnetic
waves of different wavelengths to atmospheric particles such as clouds and haze. Generally,
the longer the wavelength, the greater its penetration capability through atmospheric
particles, resulting in imaging images of different wavelengths being affected differently
by various particles in clouds and haze. Most previous remote sensing image dehazing
datasets are based on synthetic dehazing images generated from real remote sensing
images. To enhance the network’s generalization, we construct real hazy–clear image
pairs for training, utilizing the characteristic ten-day revisits to the ground by remote
sensing satellites.

To address the aforementioned challenges, remote sensing image dehazing fundamen-
tally involves an image recovery process in more complex scenarios. Drawing inspiration
from methods in image restoration, some researchers employ a U-Net [12]-style network
architecture to achieve state-of-the-art (SOTA) results [13,14]. Additionally, The authors
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in [13] emphasize that increasing system complexity is not the sole method to enhance per-
formance: a simple baseline can also achieve SOTA performance. Following this strategy to
construct our network structure architecture, we initially utilize the classical U-Net, along
with local residuals and global residuals as our base architecture, to extract multi-scale infor-
mation. Subsequently, we employ a depth-wise separable convolutional layer [15] for the
aggregation of spatial information and the efficient transformation of features. Moreover,
the task of extracting global information is delegated to an attention-guided fusion module,
which dynamically merges feature maps from various path channels. Correspondingly, two
key modules are proposed: a residual block with a gating mechanism called a GLUE block
and a fusion module with an efficient channel attention (ECA) mechanism [16] called ECA
Fusion. We assess the performance of our network, GLUENet, on both synthetic and real
remote sensing dehazing datasets. As shown in Figure 1, for the first row of the synthetic
hazy image, the traditional dark-channel dehazing method (DCP) [4], CNN-based dehazing
network (AOD-Net) [8], vision transformer-based dehazing network (DehazeFormer) [11],
and our method all exhibit commendable performance. These methods effectively counter-
act the uneven haze present in the hazy image. However, the dehazing results obtained by
the two comparative methods (AOD-Net and DehazeFormer) are unsatisfactory when ad-
dressing the real hazy image in the second row of Figure 1. AOD-Net reveals several traces
of residual haze, while DehazeFormer is unable to naturally restore features obscured by
the real haze. The experimental results demonstrate that GLUENet achieves performance
comparable to the related Transformer method with significantly lower overhead.

Remote Sens. 2024, 16, x FOR PEER REVIEW 3 of 22 
 

 

for training, utilizing the characteristic ten-day revisits to the ground by remote sensing 
satellites. 

To address the aforementioned challenges, remote sensing image dehazing funda-
mentally involves an image recovery process in more complex scenarios. Drawing inspi-
ration from methods in image restoration, some researchers employ a U-Net [12]-style 
network architecture to achieve state-of-the-art (SOTA) results [13,14]. Additionally, The 
authors in [13] emphasize that increasing system complexity is not the sole method to 
enhance performance: a simple baseline can also achieve SOTA performance. Following 
this strategy to construct our network structure architecture, we initially utilize the classi-
cal U-Net, along with local residuals and global residuals as our base architecture, to ex-
tract multi-scale information. Subsequently, we employ a depth-wise separable convolu-
tional layer [15] for the aggregation of spatial information and the efficient transformation 
of features. Moreover, the task of extracting global information is delegated to an atten-
tion-guided fusion module, which dynamically merges feature maps from various path 
channels. Correspondingly, two key modules are proposed: a residual block with a gating 
mechanism called a GLUE block and a fusion module with an efficient channel attention 
(ECA) mechanism [16] called ECA Fusion. We assess the performance of our network, 
GLUENet, on both synthetic and real remote sensing dehazing datasets. As shown in Fig-
ure 1, for the first row of the synthetic hazy image, the traditional dark-channel dehazing 
method (DCP) [4], CNN-based dehazing network (AOD-Net) [8], vision transformer-
based dehazing network (DehazeFormer) [11], and our method all exhibit commendable 
performance. These methods effectively counteract the uneven haze present in the hazy 
image. However, the dehazing results obtained by the two comparative methods (AOD-
Net and DehazeFormer) are unsatisfactory when addressing the real hazy image in the 
second row of Figure 1. AOD-Net reveals several traces of residual haze, while Deha-
zeFormer is unable to naturally restore features obscured by the real haze. The experi-
mental results demonstrate that GLUENet achieves performance comparable to the re-
lated Transformer method with significantly lower overhead. 

 
Figure 1. A demonstration of our method’s outcomes compared to others. First row: synthesis haze. 
Second row: real haze. (a) Hazy images. (b) DCP. (c) AOD-Net. (d) DehazeFormer-B. (e) GLUENet 
(ours). 

The main contributions of this paper are as follows:  

Figure 1. A demonstration of our method’s outcomes compared to others. First row: synthesis
haze. Second row: real haze. (a) Hazy images. (b) DCP. (c) AOD-Net. (d) DehazeFormer-B.
(e) GLUENet (ours).

The main contributions of this paper are as follows:

1. We developed GLUENet, an encoder–decoder remote sensing image dehazing net-
work, with less model complexity and computational effort, achieving superior results.

2. We construct basic convolutional blocks (GLUE blocks) using gated linear units
and efficient channel attention while using depth-separable convolutional layers to
aggregate spatial information and efficiently transform features.

3. We proposed an attention-guided fusion block based on efficient channel attention
(ECA Fusion), integrating information from different stages in both encoding and
decoding to enhance the dehazing effect.

4. We created a real remote sensing image haze-clear dataset using Sentinel-2 satellite
remote sensing images.
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2. Related Work
2.1. Image Dehaze

According to the results [17,18] of previous studies by relevant atmospheric optics
researchers, it is known that the traditional physical model of haze imaging is the following
calculation formula:

I(x) = t(x)J(x) + (1 − t(x))A (1)

where A represents the global atmospheric light, which is typically constant, t(x) represents
the transmission map, whose value varies with pixel, and J(x) represents the pixel value of
a clear image. The transmission map in situations with inhomogeneous haze can also be
represented by the equation that follows:

t(x) = e−β(x)d (2)

where d is the scene depth and β represents the scattering coefficient of the atmosphere.
For remote sensing non-uniform haze, due to the inhomogeneity of the spatial distri-

bution of the haze, the previous simple physical formulas cannot accurately model the real
situation of remote sensing haze. According to the theory of Nayar et al. [17], the variable d
represents the thickness of the medium that scatters light. When the path from the scene to
the observer is permeated with uniform haze, the parameter d can be replaced by the depth
of field. In remote sensing imaging, d becomes a length value, denoted as d(x), that varies
according to the pixel. Additionally, the transmission map, denoted as t(x), is related to
wavelength and haze conditions. Therefore, the t(x) of a remote sensing image emerges as
a complex function, dependent on both spatial location and wavelength. According to the
theory of Song et al. [11], the transmission map can be expressed as follows:

t(x) = e−β(λ,y(x))d(x) (3)

where λ is the center wavelength of the RS image band, and the exponent γ(x) is indicative
of the haze conditions specific to each region.

Based on the above and other physical models, numerous studies on dehazing natural
images and remote sensing images have originated from this foundation. The majority of
the initial methodologies were heavily reliant on a priori knowledge. He et al. [4] proposed
a method based on the Dark Channel Prior (DCP), grounded in the critical observation that
haze-free outdoor images frequently exhibit areas where pixels demonstrate notably low
intensities in at least one color channel, thereby assisting in the estimation of the transmit-
tance map. In contrast, the Color Attenuation Prior (CAP) method [5] establishes a linear
relationship between depth, luminance, and saturation from the HSV color model. An auto-
matic and empirical method for identifying and eliminating non-uniform haze in medium-
to high-resolution satellite optical multispectral pictures is presented by Makarau et al. [7].
In order to facilitate spectrally consistent haze removal for RS multispectral data, the dark
matter subtraction approach was further extended to compute haze thickness maps.

In recent years, with the emergence of deep learning techniques and the surge of big
data, CNNs have found successful applications in the field of remote sensing. Cai et al. [19]
employ DehazeNet, incorporating feature extraction and nonlinear regression layers to
recover images. Subsequently, by redefining the equations of the atmospheric scattering
model, AOD-Net [8] adopts a novel end-to-end dehazing design to directly generate clear
images with a lightweight CNN. FFANet [10] introduces an innovative Feature Attention
(FA) module that combines Channel Attention and Pixel Attention mechanisms, enhancing
the network’s representational capability and significantly outperforming previous dehaz-
ing methods. DehazeFormer [11], built upon the popular Swin Transformer [20], refines
its modules to suit image dehazing and introduces RSHaze, a large-scale remote sensing
synthetic dataset closer to real remote sensing situations. To map haze images to haze-free
images, RSDehazeNet [21] also uses a Global Residual Learning (GRL) structure and a
channel attention technique. In order to overcome this difficulty, FCTF-Net [9] created a
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two-stage dehazing neural network, which is refined after the coarse step. The structure is
straightforward yet efficient: an encoder–decoder architecture is used in the first stage of
picture dehazing to extract multi-scale features, which enables the second stage of dehazing
to refine the output of the first stage. Chen et al. [22] introduced a non-uniform dehaze
network tailored for visible remote sensing images with non-uniform haze. Drawing inspi-
ration from the well-known gather-excite attention module, they propose the non-uniform
excitation (NE) module. This NE module is recursively incorporated into the multi-scale
framework, enhancing learning efficiency while reducing network parameters. A network
(M2SCN) was developed by Li et al. [23] to handle non-uniform scenarios in RS haze. The
multi-model joint estimation (M2JE) module enhances the model’s generalization ability by
approaching the dehazing procedure as a multi-model integration problem. Additionally,
the network collects intermediate characteristics and uses the self-correcting (SC) module to
gradually repair defects in those characteristics. For the purpose of dehazing aerial images,
Kulkarni et al. [24] suggested a novel deformable multi-head attention mechanism with a
spatial attention offset extraction solution. For visible light Remote Sensing Imagery (RSI),
He et al. [25] presented a unique haze removal algorithm known as HALP based on het-
erogeneous atmospheric light prior and side window filtering. An algorithm for dehazing
visible light remote sensing images, called SRD, was presented by He et al. [26]. Initially,
superpixels are used to partition the remote sensing hazy image into content-aware patches,
and a technique is developed to estimate the local atmospheric light and transmission
within each superpixel.

In addition to general data-driven approaches, there is also work on dehazing using
weak supervision. Zhao et al. [27] proposed a two-stage weakly supervised dehazing
framework combining dark channel and CycleGAN [28]. In the first stage, the dark
channel is used to prioritize the restoration of visibility. Then, in the second stage, the
initial dehazing results from the first stage are refined through the adversarial learning
of unpaired hazy and clear images. In addition, the contrast learning approach has been
applied to the field of image dehazing; Chen et al. [29] introduced contrast learning into
the CycleGAN framework and achieved an encouraging performance. Although weakly
supervised learning achieves good performance, there is still a gap between its performance
and that of models trained on paired datasets.

None of the methods mentioned above are completely independent of the reliance
on the atmospheric transport equation. A priori-based methods inherently require the
utilization of the atmospheric transport equation to compute clear images. On the contrary,
learning-based methods primarily utilize training datasets consisting of hazy images
synthesized by applying atmospheric transport equations to clean images. This limitation
stems from the degree to which these physical equations correspond with real-world
scenarios, consequently impeding the generalizability of these methods.

2.2. Gated Linear Units

Gated linear units (GLUs) can be interpreted by generating two linear transformation
layers by elements, one of which is activated with nonlinearity. GLU has found exten-
sive applications in both natural language processing [30,31] and computer vision [32],
demonstrating its effectiveness in the realm of image restoration [13,14]. The mathematical
formulation of gated linear units is expressed as follows:

GLU(x, f , g, σ) = f (x)⊙ σ(g(x)) (4)

where x denotes the input feature map, f (x) and g(x) are linear transformers, σ is the
nonlinear activation function, and ⊙ indicates element-wise multiplication.

Similarly, when we observe the formulas for the activation function and pixel atten-
tion, the GELU [33] activation function and channel attention are used as examples. An
approximate implementation of GELU can be represented as follows:

GELU(x) = xΦ(x) = 0.5x(1 + tanh[
√

2/π(x + 0.044715x3)]) (5)
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where Φ indicates the cumulative distribution function of the standard normal distribution.
The channel attention [34] is calculated by the following formula:

CA(x) = x ∗ σ(W2max(0, W1 pool(x))) (6)

where pool denotes the global average pooling procedure, which aggregates the spatial
data into channels, and x stands for the feature map. The nonlinear activation function, or
Sigmoid, is represented by σ. ReLU is performed in the connection between W1 and W2,
two fully connected layers. Lastly, the symbol ∗ signifies a channel-wise product operation.
Building upon channel attention, Chen et al. [13] took a further step and introduced
simplified channel attention, which is formulated as follows:

SCA(x) = x ∗ W pool(x) (7)

Upon examining Equations (4) and (5), it becomes apparent that when f (x) and g(x)
are identity functions, Φ can also be treated as a nonlinear activation function, thereby
categorizing GELU as a gated linear unit under certain conditions. Further, by scrutinizing
Equations (4) and (7), it is evident that by employing the same simple substitution of
functions in GLU, the simplified channel attention can be considered a special case of GLU.
Drawing a parallel, we hypothesize from another perspective that GLU might be seen
as a generalization of channel attention for activation functions, potentially serving as a
substitute for both nonlinear activation functions and pixel attention.

Numerous SOTA research works in image restoration have demonstrated that the
addition of gated linear units to the baseline network can enhance network performance.
Zamir et al. [14] introduced a gating mechanism to a regular feed-forward network (FN),
involving an element-wise multiplication of two parallel paths of the linear transformation
layer, with one path nonlinearly activated by GELU. The FN is further augmented by
integrating gated deep convolution, leading to significant performance improvements.
A simple variation in gated linear units has been demonstrated with NAFNet [13], in
which the feature map is divided into two sections along the channel dimension and
then multiplied.

This variant replaces the nonlinear activation function in the network, resulting in
performance enhancement for image denoising and deblurring tasks. The tasks of remote
sensing image dehazing and image restoration are underpinned by the same fundamental
network model, with both endeavors focused on learning the mapping from a degraded
image to its real counterpart. The degradation process involved in the cloudy imaging of
remote sensing images is typically more complex. However, the gated linear unit, when
applied through multiplication with the feature map via an alternate branch, adeptly
integrates the spatial distribution of haze and band difference information into the feature
extraction phase. This approach, in turn, leads to a further enhancement in the performance
of real remote sensing image dehazing in comparison to the baseline model.

3. Proposed Method
3.1. Network Architecture

Figure 2 illustrates the overall architecture of our GLUENet network. Our model con-
stitutes a 7-stage variant of U-Net, with each stage integrating a series of our innovatively
proposed GLUE blocks. Additionally, our approach diverges from U-Net’s conventional
strategy, which employs cascading post-convolutional layers to amalgamate jump connec-
tions and the primary path. Instead, we utilize the ECA Fusion module to dynamically
fuse feature maps from diverse paths.

GLUENet first uses convolution to create a low-level feature F0 ∈ RH×W×C embed-
ding from a hazy image I ∈ RH×W×3, where H ×W stands for spatial dimensions and C for
the number of channels. These shallow characteristics are then converted into deep features
using a three-level symmetric encoder–decoder. The encoder–decoder uses numerous
GLUE blocks in each level. The encoder increases the channel capacity and gradually
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shrinks the spatial size, starting with high-resolution inputs. The high-resolution represen-
tation is methodically restored by the decoder using low-resolution latent characteristics
as input. We use a conventional convolutional layer approach for feature downsampling,
setting the stride value to 2 and doubling the number of output channels in comparison
to the number of input channels. We employ the 1 × 1 Conv + PixelShuffle method to
perform upsampling. The ECA Fusion module connects the encoder and decoder features
to speed up the recovery process and preserve more fine structure and texture details in
the recovered image. These design choices lead to observable quality gains, as the experi-
mental section shows. Finally, a 3 × 3 convolutional layer is used to transform the feature
dimension from C to 3 to generate the residual image R ∈ RH×W×3. And, it is added to the

original image to obtain the recovered remote sensing image: Î = I + R.
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The process of training involves reducing the pixel difference between the associated
ground truth GT and the anticipated haze-free image Î. To make training easier, we use the
L1 loss function (i.e., mean absolute error) in our implementation.

LL1 = ∥Î − GT∥1 (8)

3.2. GLUE Block

Based on previous dehazing networks, the base modules can be broadly categorized
into two types: one is a CNN block that incorporates channel attention and spatial attention,
and the other is a transformer block that employs self-attention. Dehazing in RS images is
associated with the perception of haze, implying that the network should encode the global
information of the haze distribution, necessitating a larger effective receptive field. Expand-
ing the receptive field by enlarging the window in conventional CNNs and transformer
blocks leads to a quadratic increase in parameters and computation. However, studies
have demonstrated that simply replacing the activation function with GLU in the baseline
enhances the performance of image recovery, with GLU incurring less computational over-
head while efficiently capturing global information from features. The foundational block
of our dehazing network primarily relies on GLU. We use this as a basis to build our GLUE
block, details of which can be seen in Figure 3. Let x represent the feature map, initially
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normalized using BatchNorm as x̂ = BatchNorm(x). Although some methods suggest
that using LayerNorm can enhance dehazing performance, we observed no performance
improvement in our experiments. Instead, BatchNorm offers faster inference and aligns
better with the characteristics of our lightweight network.

x1 = Sigmoid(PWConv1(x̂))
x2 = DWConv(PWConv2(x̂))

(9)

where PWConv represents the point-wise convolutional layer, i.e., 1 × 1conv, and DWConv
represents the depth-wise convolutional layer. We subsequently employ x1 as the gating
signal for x2 and project it using another 1 × 1 Conv, which can be formulated as follows:

x3 = PWConv3(x1 · x2) (10)

Lastly, x3 is calculated for its efficient channel attention. The computed attention
channel weights and feature x3 undergo a dot multiplication, and the output is subsequently
added to the constant shortcut x, which can be formulated as follows:

y = x + x3 · ECA(x3) (11)
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3.3. Efficient Channel Attention

Since the proposal of attention mechanisms, they have demonstrated a significant
improvement in model performance in both natural language processing and computer
vision domains. In the vision domain alone, applications include channel attention [34],
CBAM [35], dual attention [36], and vision transformer [37], with numerous attention
modules present in previous image dehazing networks. While the attention mechanism has
achieved remarkable success in many tasks, it has some potential drawbacks. For instance,
using the attention mechanism typically requires more computational resources because
the model needs to compute the weights as each input is processed, potentially leading to
higher computational costs for training and inference. To align with the characteristics of
lightweight networks, we opt for efficient channel attention [16] as our method for global
information feature extraction.
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Figure 4 shows the efficient channel attention (ECA) module. ECA creates channel
weights by performing a quick one-dimensional convolution of size k with the aggregated
data acquired through global average pooling. The value of k is adaptively determined by
mapping the channel dimension C. With ECA, local cross-channel interactions are captured
efficiently since every channel and its k close neighbors are considered. It is shown that
this method guarantees both efficacy and efficiency when compared to traditional channel
attention strategies. The coverage of local cross-channel interactions, or the number of
neighbors participating in a channel’s attentional prediction, is shown by the kernel size k in
this instance. We use an adaptive approach to find k, where the coverage of the interaction
(i.e., kernel size k) is proportional to the channel dimension. The formula is as follows:

k = ψ(C) =
∣∣∣∣ log2(C)

γ
+

b
γ

∣∣∣∣
odd

(12)

where |t|odd denotes the closest odd number to t. In this paper, we set γ and b to 2 and
1 in all experiments, respectively. It is evident that by mapping ψ, the high-dimensional
channels exhibit longer-range interactions, while the low-dimensional channels display
shorter-range interactions through the application of a nonlinear mapping. We added ECA
to our base GLU block to improve the dehazing performance of the model, which was
verified in subsequent ablation experiments.
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3.4. Attention-Guided Fusion

We acknowledge that an efficient approach for dehazing and other low-level visual
tasks is the combination of characteristics from the encoder and the decoder. Although
low-level elements (such as edges and contours) are important for retrieving images free
of haze, their influence rapidly decreases as they move through multiple intermediate
levels. By enhancing the information flow from shallow to deep layers, feature fusion
makes gradient backpropagation and feature retention easier. The simplest fusion method
involves element-wise addition, commonly used in previous approaches [13,38]. However,
the aforementioned fusion scheme encounters receptive field mismatch. The information
encoded within shallow features substantially diverges from that in deep features, owing
to their distinctly different receptive fields. Individual pixels in deep features correspond
to pixel regions in shallow features. Basic addition, concatenation, or blending operations
cannot address the mismatch issue before fusion.

In order to tackle this problem, we furthermore present an ECA-based hybrid tech-
nique that uses learned spatial weights to alter the features in order to dynamically combine
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the low-level features in the encoder section with the corresponding high-level features.
Details of the suggested ECA-based hybrid fusion scheme are shown in Figure 5. It is
important that we decide to compute channel weights for feature change using ECA. The
low-level attributes from the encoder section are combined with the corresponding high-
level features that are sent into the ECA for weight calculation using weighted summation.
We create skip connections to include input information, which alleviates the gradient
vanishing issue and speeds up the learning process. Projecting the fused features via a
1 × 1 convolutional layer yields the final features.

Ff usion = Conv1×1(W · Flow + (1 − W) · Fhigh + Flow + Fhigh) (13)
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4. Experimental Results
4.1. Dataset Generation

Remote sensing haze imaging in the real world is intricate and diverse, and most of
the previous dehazing studies have created datasets by artificially introducing haze to
clear remote sensing imagery. Although synthetic datasets may provide benefits in certain
scenarios, they also possess inherent limitations. Synthetic data, being generated based on
assumptions and rules, may have a distribution distinct from real data. Real-world data
can encompass a range of situations, contexts, and variations, along with diverse noise and
uncertainties that are challenging to accurately model with synthetic data. Consequently,
models trained on synthetic datasets often exhibit reduced effectiveness when applied to
real haze remote sensing images, impacting the method’s generalizability.

Inspired by prior research [39,40], we recognized the effectiveness of constructing a
dataset by capturing brief satellite revisits to the Earth’s surface. Sentinel-2A [41], equipped
with a multispectral imager (MSI), operates as a high-resolution multispectral imaging
satellite. The wavelength range of Sentinel-2A satellite images spans from 0.443 to 2.190 µm,
with a revisit time to the surface of ten days. Leveraging the characteristics of Sentinel-2
data, we randomly selected remote sensing images from various locations worldwide and
across different seasons. We meticulously selected pairs of clear and hazy remote sensing
images, captured ten days apart, to construct an authentic remote sensing haze removal
dataset, with the objective of enhancing both the performance and the generalizability of
the model.

This study utilized haze-covered and corresponding clear images from the Sentinel-2A
satellite for training and testing all methods. To comprehensively assess dehaze effective-
ness across extensive areas and diverse land cover types, the training and testing regions
are uniformly distributed globally, as illustrated in Figure 6. These regions encompass
three primary land cover types: urban, vegetated, and bare ground. We manually se-
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lected 36 pairs of Sentinel-2A Level-1C products, with acquisition dates spanning from
2015 to 2019, representing all seasons. We do not carry out anything extra for imaging
changes within 10 days. We believe that the effect of small feature variations that may arise
from the ten days is extremely limited and that a moderate amount of noise increases the
generalizability of our method. Leveraging the GDAL library, we initially extracted the
visible RGB bands, cropped them into 512 × 512 image blocks, and then filtered out blocks
with missing values. The remaining blocks were saved as single TIFF images with a size
of 512 × 512 pixels. Subsequently, the training and test sets were randomly divided in a
9:1 ratio, resulting in 13,205 pairs for the training set and 1468 pairs for the test set.
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Our dataset, RRSH (Real Remote Sensing Haze), is generated from authentic pairs
of remote sensing images, uniformly distributed worldwide, encompassing various land
cover types and seasonal variations. In contrast to previous synthetic datasets, the clouds
and haze in our dataset exhibit greater randomness and heterogeneity, providing a more
realistic depiction of cloud scenarios in remote sensing images.

4.2. Experimental Settings
4.2.1. Datasets

Our experiments are primarily conducted on the RSHaze dataset and our RRSH
dataset. The primary synthesis process of the RSHaze dataset involves using clear Landsat
remotely sensed images to acquire haze-free image blocks from various terrains. Subse-
quently, cloudy remote sensing images are chosen, and their cirrus channels are utilized to
generate transmission maps, resulting in cirrus channel blocks with distributions resem-
bling natural haze. Haze density is regulated by additional parameters to generate nine
synthetic haze images, each with three different haze densities, for every haze-free image.
RSHaze stands out as the largest and most realistic synthetic dataset currently available,
comprising 51,300 paired images for training and 2700 paired images for testing. Addition-
ally, RRSH is our haze-clear dataset based on real remote sensing images. The synthesis
process avoids any physical simulation modeling formulas and faithfully represents the
situation, background, and noise of remote sensing haze image imaging. The resolution of
all sample images in the RSHaze and RRSH datasets is uniform at 512 × 512.
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4.2.2. Implementation Details

In all experiments, we employ the following training parameters in all of our trials.
We employ a four-level encoder–decoder in our GLUENet. The number of GLUE blocks is
[2, 2, 2, 4] from level 1 to level 4, and the number of channels per stage is [32, 64, 128, 256].
Using the Adam [42] optimizer (β1 = 0.9, β2 = 0.999), we train the model on the RSHaze
dataset for a total of 200,000 iterations. Initially, we set the learning rate at 1 × 10−3, and
then gradually reduce it to 1e-6 using a cosine annealing scheme [43]. For every GPU, a
batch size of 16 is assigned, and the training patch size is 256 × 256. We established a lower
limit of 100,000 iterations for the RRSH dataset while maintaining all other configurations.
We use PyTorch (version 1.11.0) to implement the suggested network on a system that has
eight NVIDIA TITAN XP GPUs (Nvidia Corporation, Santa Clara, CA, USA).

4.2.3. Evaluation Metric and Benchmark Methods

Drawing on the evaluation indices commonly used in other research within the field
of image dehazing, we have selected PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural
Similarity Index Measure) [44], MS-SSIM (Multi-Scale Structural Similarity) [45], and FSIM
(Feature Similarity Index) [46] as the evaluation metrics for assessing the remote sensing
dehazing capability in this study. Higher values of these evaluation metrics indicate the
superior remote sensing dehazing performance of the method. Additionally, we have
chosen the number of parameters (#Param), MACs (Multiply-Accumulate Operations), and
latency as metrics to gauge the model’s overhead, with the size of MACs calculated based
on an input image size of 256 × 256. The inference latency is measured as the time it takes
to infer a 3 × 256 × 256 image on an NVIDIA 4090 GPU, and we take the average of it
three times as an evaluation metric. A smaller number of parameters and MACs signifies a
reduced overhead required by the model, which also suggests a faster inference capability.
The PSNR is calculated using the following formula:

PSNR = 10log10

(
max2

MSE

)
(14)

Here, max denotes the signal peak, which corresponds to the maximum pixel value
within the RGB channels of the remote sensing image. MSE represents the mean square
error between the two images being compared.

The SSIM evaluates three fundamental aspects of an image: luminance, contrast, and
structure. SSIM is capable of quantifying the extent of distortion within an image, as well
as the degree of similarity between two images. Consequently, it aligns more closely with
the intuitive visual perception of the human eye. SSIM is defined as follows:

SSIM(x, y) =

(
2uxuy + C1

)(
2σxy + C2

)(
u2

x + u2
y + C1

)(
σ2

x + σ2
y + C2

) (15)

where ux and uy represent the mean values of x and y, respectively; σxy denotes the
covariance of x and y; σx is the variance of x; σy is the variance of y; and C1 and C2 are
constants employed to ensure stability in the calculation. To enhance SSIM’s ability to
depict an image’s local and global structure, MS-SSIM incorporates multi-scale analysis.
The final MS-SSIM value is determined by first decomposing the image, calculating the
SSIM values at each scale independently, and then combining these values.

FSIM is a similarity metric based on the local features of an image. Its calculation
formula is as follows:

FSIM(x, y) =
∑
w
( fx(w) · fy(w))√

∑
w

f 2
x (w) · ∑

w
f 2
y (w)

(16)
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where fx(w) and fy(w) are the feature vectors of the images x and y, respectively, over a
localized window w; w is the position of the window, usually a local region in the image.

Our dehazing network is compared to four cutting-edge techniques: AOD-Net [8],
GCANet [47], FCTF-Net [9], and DehazeFormer [11], as well as one conventional method,
DCP [4]. For the deep learning methods, we use the authors’ official code to retrain and
obtain test results. And, we choose the higher of our reproduced results and the results in
the authors’ original text as our benchmark for a fair comparison.

4.3. Quantitative Evaluations
4.3.1. Quantitative Evaluations on RSHaze Dataset

Table 1 presents the average evaluation metrics of our method and various comparative
methods on the RSHaze test set on the left, while on the right it illustrates the computational
costs and latency required for the inference of a 3 × 256 × 256 image with different
methods. It can be observed from the table that the PSNR of the DCP method on the
RSHaze dataset is merely 17.81 dB. This indicates that traditional a priori-based dehazing
methods encounter significant challenges when applied in remote sensing applications,
resulting in relatively inferior performance. Conversely, AOD-Net exhibits markedly
superior evaluation metrics on remote sensing datasets compared to DCP, showcasing the
substantial potential of data-driven methodologies in remote sensing image dehazing. On
the RSHaze dataset, GCANet, FCTF-Net, DehazeFormer, and GLUENet achieve higher
PSNR values, all exceeding 30 dB, indicating their stronger dehazing capabilities. When
comparing metrics such as SSIM and its related variants, it is evident that the latter four
deep learning methods have achieved significantly superior performances, with slight
differences between their metrics. It is worth noting that our method, GLUENet, has a
slightly higher SSIM value than DehazeFormer. Furthermore, contrasting the computational
costs required for the inference of a single image by different methods reveals a trend:
the improvement in model performance is accompanied by an increase in computational
costs. However, our method achieves performance comparable to SOTA methods with
significantly lower computational costs when applied to synthetic remote sensing datasets.

Table 1. Evaluation metrics and overhead of contrasting methods on the RSHaze dataset. For
comparing methods, we use bold and italics to mark the best method.

Methods
RSHaze Overhead

PSNR SSIM FSIM MS-SSIM #Param (M) MACs (G) Latency (ms)

DCP 17.81 0.729 0.808 0.702 - - -
AOD-Net 26.67 0.858 0.888 0.840 0.002 0.115 14.67
GCANet 34.05 0.952 0.965 0.962 0.702 18.47 127.98
FCFT-Net 36.33 0.963 0.970 0.969 0.159 10 119.60

DehazeFormer-B 39.87 0.971 0.979 0.980 2.514 25.79 714.02
GLUENet (ours) 38.98 0.973 0.977 0.978 1.44 4.62 123.13

4.3.2. Quantitative Evaluations on RRSH Dataset

Table 2 shows the average evaluation metrics and overhead of our method and various
comparative methods on the RRSH test set. Unlike on the synthetic dataset, the metrics vary
more from method to method. This proves that real remote sensing datasets have greater
variability. On the RRSH dataset, our method outperforms DehazeFormer, achieving the
highest in all evaluation metrics. We attribute this, in part, to the limitation of the graphics
card’s memory size, preventing DehazeFormer from using a larger batch size per graphics
card during training, leading to a performance loss. Additionally, we employ #Param.,
MACs, and latency as the primary metrics to evaluate computational efficiency. Previous
dehazing methods were characterized by relatively small parameter sizes, but this often
came at the expense of considerable performance degradation. Compared to SOTA vision
transformer-based methods, the computational overhead and inference latency of our
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method, GLUENet, are significantly lower than those of baseline models with similar
performance, demonstrating the superiority of our proposed method. Overall, GLUENet,
our proposed method, consistently outperforms these baseline models.

Table 2. The evaluation metrics and overhead of contrasting methods on the RRSH dataset. For
comparing methods, we use bold and italics to mark the best method.

Methods
RRSH Overhead

PSNR SSIM FSIM MS-SSIM #Param (M) MACs (G) Latency (ms)

DCP 18.77 0.723 0.862 0.820 - - -
AOD-Net 27.11 0.853 0.886 0.863 0.002 0.115 14.67
GCANet 27.61 0.888 0.913 0.901 0.702 18.47 127.98
FCFT-Net 32.31 0.925 0.927 0.920 0.159 10 119.60

DehazeFormer-B 33.26 0.925 0.935 0.931 2.514 25.79 714.02
GLUENet(ours) 33.57 0.938 0.938 0.934 1.44 4.62 123.13

4.4. Qualitative Comparisons
4.4.1. Qualitative Comparisons on RSHaze Dataset

Figure 7 showcases sample results of dehazing for all the methods tested on the RSHaze
dataset. As observed in the figure, the DCP method enhances image quality to a degree by
effectively removing thinner haze layers. However, it frequently leads to significant color
distortion, culminating in an overall darker appearance of the image. AOD-Net, as depicted
in the figure, addresses the color distortion issue, but it still exhibits a poor dehaze effect in
regions with thick haze, an inadequate recovery of details, and noticeable textures of haze.
The visual dehaze effects of GCANet, FCTF-Net, DehazeFormer, and our method, GLUENet,
are already comparable, with only slight differences in fine texture in some areas. From
this observation, it can be inferred that with the increasing number of model parameters,
deep learning methods have reached a saturation point in terms of the dehazing effect on
the synthetic dataset. This phenomenon arises due to the synthesis process of the dataset,
wherein it is primarily generated using random transmittance maps with various random
parameters. Subsequently, the atmospheric scattering equation for haze is applied to produce
the haze image. This dictates the learning process of the deep learning network, which
aims to learn the inverse solution process of this equation. Consequently, in the solution
process of the finite unknown parameters, as the number of parameters in the deep learning
model increases, the model’s performance reaching saturation becomes predictable. Further
increasing the complexity of the model may improve performance metrics, but this often
results in overfitting, adversely affecting generalization to real-world datasets.

4.4.2. Qualitative Comparisons on RRSH Dataset

Figure 8 illustrates sample results of dehazing for all methods tested on the RRSH
dataset. As evident from the figure, our dataset consists of authentic haze images, displaying
significant variability in the dehazing effectiveness of each method. On the RRSH dataset, DCP
demonstrates difficulty in eliminating the dense haze in the center, leading to an overall darker
appearance of the image. AOD-Net, however, still retains a notable amount of haze texture.
DehazeFormer and GLUENet surpass GCANet and FCTF-Net in terms of cloud haze removal,
effectively eliminating the residual texture of dense haze in the cloud’s center and restoring a
more natural and continuous appearance at the cloud boundary. Upon further comparison
between DehazeFormer and our GLUENet method, it is observed that GLUENet can recover
more detailed features, including buildings, cultivated land, and coastlines. Additionally,
for areas covered by thick clouds, the colors recovered by our method appear more uniform
and natural. Moreover, we notice that due to the ten-day interval between the acquisition
of the hazy image and the clear image, there may be slight changes in the region. However,
we believe that when the effective information in the dataset is sufficiently large, the small
number of error pixels resulting from these changes can function similarly to noise, further
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enhancing the model’s generalization ability. In summary, our method accomplishes optimal
visualization results on an authentic remote sensing dehazing image dataset, achieved with a
model of relatively low complexity.
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4.4.3. Qualitative Comparisons on Real Remote Sensing Images

To further evaluate the model’s generalization capabilities, we compare the dehaz-
ing effects of various deep learning dehazing algorithms on an entire scene of remote
sensing imagery. The product ID of this specific Sentinel-2 image [48] under evaluation
is S2A_MSIL1C_20231110T025931_N0509_R032_T50SNJ_20231110T044538 and the area
where it was taken is located in the vicinity of Tianjin Port. Figure 9 illustrates the dehaze
outcomes of GCANet, FCTF-Net, and DehazeFormer in the remote sensing image from
a scene of Sentinel-2 remote sensing imagery with haze. On the right side of the figure,
we present locally zoomed-in sections of the images post-dehazing using these methods,
each covering a surface area of 10,240 m × 10,240 m. From the figure, it is evident that the
overall whitening effect in the image after GCANet’s dehaze fails to capture the true color
of the features. FCTF-Net exhibits difficulties in completely recovering surface features
in areas shrouded by thick haze, leading to a significant loss of surface detail. Moreover,
our method demonstrates the ability to recover clearer features, such as texture details of
artificial facilities and buildings, in comparison to DehazeFormer. Additionally, the color
rendition in the dehazed image by our method appears more natural and uniform overall.
By leveraging mechanisms like GLU for extracting global information from the image,
our method maintains robust performance on extensive remote sensing images, further
affirming its generalization capabilities for remote sensing applications.
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4.5. Ablation Analysis

To assess the efficacy of the GLUE block and the ECA Fusion module, we conduct
an ablation study in this section. We compare the GLUENet variations listed below for
this purpose.

The ‘plainnet’ in the table refers to a tandem model configuration, wherein the glu
block is replaced by a sequence consisting of a 1 × 1 convolution, a depth-wise convolution,
an activation function, and another 1 × 1 convolution. This model is utilized to benchmark
the performance of the GLU module against a general baseline module.

To ensure a fair comparison, all model variants were trained following the same
protocol as that used for GLUENet. The quantitative results of the dataset are shown in
Table 3. This shows that the ECA Fusion module of our proposed GLUE module is able
to effectively aggregate spatial information and different stages to improve the dehazing
performance of the baseline network.
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Table 3. Quantitative comparison of variations of GLUENet on the RSHaze and RRSH dataset. For
comparing methods, we use bold and italics to mark the best method.

Setting
RSHaze RRSH Overhead

PSNR SSIM PSNR SSIM #Param (M) MACs (G)

plainnet 37.62 0.969 32.98 0.933 1.42 4.60
+glu 37.67 0.970 33.16 0.935 1.42 4.38

+glu+eca 38.95 0.973 33.55 0.938 1.42 4.41
+glu+efusion 38.76 0.972 33.48 0.937 1.44 4.51

+glu+eca+efusion 38.98 0.973 33.57 0.938 1.44 4.62

4.5.1. Effectiveness of GLUE Block

Our GLUE module encompasses two pivotal components: the GLU mechanism and
the ECA mechanism. In our ablation study, we initially examined the ECA mechanism
alone, comparing models with and without the added ECA mechanism in Table 3. We
observe a significant improvement in the performance of the network models with the
added ECA mechanism. As the number of network layers deepens, the number of channels
also increases, and the ability to interact with multi-channel information through the ECA
mechanism facilitates the extraction of global information by the base module. When
comparing the most basic GLU model with the general PlainNet model, we observe that
the use of the GLU mechanism enhances network performance and concurrently reduces
the amount of network computation, thereby accelerating the inference process. Hence,
our GLUE module proves highly effective in global feature extraction and transformation.

4.5.2. Effectiveness of ECA Fusion

Upon comparing Table 3 with and without the inclusion of the ECA Fusion module,
we observed an improvement in model performance with the addition of the ECA Fusion
module. From the point of view of comparing the modules individually, ‘+glu+efusion’
compared to ‘+glu’, we can see that the efusion model is able to increase the performance of
the model. However, when the ECA mechanism is added to the glu module, we find that
the performance of the model is not significantly improved by adding efusion. The reason
could be that both the GLUE module and the efusion module have an ECA mechanism. In
our model, the number of layers in the base module is [2, 2, 2, 4], i.e., there are 20 GLUE
blocks, while the number of efusion blocks is 3. Too many ECA mechanisms in the base
module saturate the performance of the model. Our ECA Fusion module effectively
integrates information from different stages, leveraging the retention of more haze texture
information in the shallow features of the encoder. Weights are determined by feeding the
encoder section’s low-level features and their matching high-level features into the ECA.
The weights are then combined via the weighted summation technique. These operations
enable the capturing of spatial distribution and morphological features of haze at a higher
level, thereby enhancing the dehazing effect of non-uniform haze in remote sensing images.

5. Discussion

The task of dehazing remote sensing images presents a complex and formidable chal-
lenge in the field of image restoration. Due to advancements in deep learning techniques,
an array of data-driven dehazing methods has emerged and been widely applied in the
field of remote sensing. These methods encompass approaches based on CNN, Trans-
former architectures, and even the most recent diffusion models. Nonetheless, a discernible
trend in SOTA methods is the adoption of increasingly intricate network structures and
an expanding quantity of model parameters, benefiting from the fact that hardware capa-
bilities are also advancing. While certain methods yield optimal results on specific test
sets, they frequently feature significant inter-block and intra-block complexity within their
network structures, with outcomes dependent on module stacking, thereby complicating
the establishment of a standard baseline for comparison and reference among different
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methodologies. Furthermore, some modeling approaches necessitate a substantial number
of parameters, posing difficulties for other researchers in reproducing these algorithms
under limited hardware resources.

As a result, our approach is built on the core principles of simplicity and efficiency,
and its effectiveness is well validated on both synthetic and real-world datasets. Exper-
imental results show that the streamlined network architecture is able to obtain results
comparable to those of the SOTA method, albeit with significantly lower computational
overhead. Specifically, our architecture not only maintains a high level of performance
when processing data but is also able to run at a much higher speed, which makes it more
attractive for real-world applications.

In addition, our architecture reduces complexity, allowing other researchers to fully
understand and compare the functionality of each of the constituent modules, thus facili-
tating their integration into various network designs. This simplified structure makes our
approach easier to explain and understand, which in turn opens up broader possibilities
for further research and applications. By clearly defining the functions and roles of each
module, our approach provides a solid foundation for researchers to customize and extend
across different tasks and domains. Overall, our method not only excels in performance
but also has a simpler and clearer design, which provides a valuable tool for the machine
learning community and helps accelerate the development and application of technologies
in the field of remote sensing image dehazing.

However, our study is not devoid of limitations. Notably, there exists ample room for
enhancement in the dehazing effect, especially in regions characterized by dense haze in
real remote sensing contexts. Simultaneously, there is potential for further optimizations
of our network structure, which could lead to a reduction in the number of parameters
and computational requirements, without compromising the model’s performance. In
our future work, we aim to enhance the dehazing effect by incorporating SAR (Synthetic
Aperture Radar) images as auxiliary data, potentially resolving the recovery challenges
in areas blanketed by thick haze. Additionally, with the increasing number of remote
sensing satellites, it becomes feasible to construct larger and more diverse multi-scale
remote sensing dehazing datasets. Looking forward, we plan to develop larger and more
realistic datasets to thoroughly verify the generalizability of various dehazing methods.

6. Conclusions

We propose a simple, efficient, and new deep learning method called GLUENet for
satellite remote sensing single-image dehazing. In comparison to natural hazy images,
RS images consistently exhibit greater variability and inhomogeneity. Most prior deep
learning methods rely on synthetic hazy datasets and enhance dehazing performance
by layering various network modules. However, these methods often underperform in
real-world remote sensing image dehazing scenarios, despite improvements in evaluation
metrics on these datasets. On one hand, large model parameters can lead to overfitting,
thereby affecting the model’s generalizability. On the other hand, they render the model
training and deployment process heavily reliant on the capabilities of the computational
device. To address this issue, we focus on two aspects: model construction and dataset
formulation. Firstly, we leverage the mechanism of real remote sensing satellites revisiting
the Earth’s surface every ten days to construct an authentic haze–no-haze dataset for
model training. Regarding modeling, we have developed the GLUE module and the
ECA Fusion module. The GLU within the GLUE module effectively captures the spatial
distribution features of haze, while the ECA module adaptively obtains channel attention
features. Simultaneously, the ECA Fusion module is capable of fusing information from
various stages of the model. Experiments demonstrate that our proposed method performs
comparably or even surpasses SOTA methods on RSHaze and RRSH, which are larger
synthetic and real hazy datasets, while significantly reducing overhead.
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