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Abstract: Unmanned aerial vehicle (UAV) image stitching refers to the process of combining multiple
UAV images into a single large-format, wide-field image, and the stitched image often contains
large irregular boundaries and multiple stitching seams. Usually, irregular boundaries are addressed
using grid-constrained methods, while seams are optimized through the design of energy functions
and penalty terms applied to the pixels at the seams. The above-mentioned two solutions can only
address one of the two issues individually and are often limited to pairwise stitching of images. To
the best of our knowledge, there is no unified approach that can handle both seams and irregular
boundaries in the context of multi-image stitching for UAV images. Considering that addressing
irregular boundaries involves completing missing information for regularization and that mitigating
seams involves generating images near the stitching seams, both of these challenges can be viewed as
instances of a mask-based image completion problem. This paper proposes a UAV image stitching
method based on a diffusion model. This method uniformly designs masks for irregular boundaries
and stitching seams, and the unconditional score function of the diffusion model is then utilized
to reverse the process. Additional manifold gradient constraints are applied to restore masked
images, eliminating both irregular boundaries and stitching seams and resulting in higher perceptual
quality. The restoration maintains high consistency in texture and semantics. This method not only
simultaneously addresses irregular boundaries and stitching seams but also is unaffected by factors
such as the number of stitched images, the shape of irregular boundaries, and the distribution of
stitching seams, demonstrating its robustness.

Keywords: UAV image; diffusion model; image stitching; irregular boundaries; stitching seams

1. Introduction

To obtain images with a broader field of view, image stitching is a necessary pre-
processing step in unmanned aerial vehicle (UAV) remote sensing applications [1]. The
common issues involved in stitched images include irregular boundaries and stitching
seams due to the inability to achieve perfect alignment of multiple images. For UAV image
stitching, accumulations of stitching seams and irregular boundaries often occur because
more than two images are required to be stitched through multiple stitching processes, and
these two phenonmena can be clearly seen in Figure 1.

Existing image stitching methods often optimize global or local geometric distortions
to enhance alignment between different images, while irregular boundaries and stitching
seams still exist [2–5]. For the UAV image stitching task, Guo et al. [6] combined shape-
preserving with global alignment, achieving higher alignment accuracy when compared
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with many advanced methods. Cui et al. [7] proposed a strategy to fully utilize features
extracted by transformers for point matching, which can reduce positional errors when
stitching images containing inconspicuous features, such as forests, bare land, and rivers,
thus achieving promising performance. Lin et al. [8] introduced an image stitching method
based on Vector Shape Preserving (VSP) deformation, which can achieve high-precision
alignment. Although the above-mentioned methods have achieved much better image
stitching performance, they still cannot ensure smooth transitions between the overlapping
image regions, and they also suffer irregular boundaries. Recently, methods have been
proposed to address irregular boundaries such as rectangular cropping of stitched images,
resulting in significant loss of field of view. Some pioneer researchers employed the
two-stage grid deformation method based on grid search and grid optimization [9–11].
Although this type of method can preserve linear structures, they often introduce serious
distortions in nonlinear structures.

To tackle the irregular boundary problem, an intuitive method is the use of image
completion, which requires the design of masks to guide the completion of missing regions.
This idea has not been adopted for this task up to now. For stitching seams, there are two
main types of methods. One type of method involves designing various energy functions
and introducing penalty terms to achieve a natural transition of the overlap region’s
boundaries [12–17]. The other type of method defines a seam loss, aiming to find the
optimal image alignment transformation by minimizing this loss [18–21]. These methods
have strict requirements on the geometric features of the images, and a lack of sufficient
geometric features may seriously degrade their performance and even lead to failure in
some cases.

To the best of our knowledge, there is no unified method that can simultaneously
address irregular boundaries and stitching seams. If one wants to eliminate both stitching
seams and irregular boundaries, an intuitive and straightforward method is to handle
the two problems in parallel or in series. This cannot guarantee the optimal performance
because these two problems are solved independently without joint optimization. After
considering that irregular boundaries can be solved by image completion and that seams
can be eliminated by generating images near the stitching seams, these two problems can
be unified into one problem, i.e., the mask-based image completion problem. Accordingly,
this paper proposes a unified method that treats both irregular boundaries and stitching
seams as image completion problems. The proposed method is expected to prevent the
introduction of cumulative errors, achieve smooth transitions in overlapping regions, and
generate completely rectangular images.

The goal of image completion is to fill in missing areas of an image. These repaired
regions need to coordinate consistently with other parts of the image and maintain se-
mantic consistency; thus, the image completion task often requires a powerful generative
model. Inspired by non-equilibrium thermodynamics in deep unsupervised learning [22],
a generative model called the diffusion model [23,24] is introduced, and Dhariwal et al. [25]
have demonstrated its superior image generation capabilities compared with many state-
of-the-art GAN (Generative Adversarial Network)-based methods. Most existing image
completion methods focus on training for specific mask distributions, limiting their gener-
alization ability to different tasks such as image stitching for UAV images. Some pioneering
studies [26–28] have shown the impressive performance of the diffusion model in mask-
based image restoration tasks.

This study provides the first attempt to adopt the diffusion model into the image
stitching task to address both irregular boundaries and stitching seams. There exist two
main steps in the proposed method. Firstly, we generate a unified mask for irregular bound-
aries and stitching seams when stitching multiple images. Secondly, during the inverse
process of the trained diffusion model, we introduce the constraint of manifold gradients.
This method utilizes the unconditional score function and applies additional constraints to
achieve high-quality image restoration with good generalization capabilities [28]. Addition-
ally, when considering that the diffusion model can only handle fixed-size input–output
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situations and that the size of stitched images is often uncertain, we further introduce the
local implicit image function (LIIF) method proposed by Chen et al. [29] to address these
issues. By doing so, the proposed method can represent images continuously to obtain
results for arbitrary resolutions, and we can then adjust the size of the stitched images to
match the diffusion model in an arbitrary way. Compared with other state-of-the-art meth-
ods,the proposed method treats stitching seams and irregular boundaries as one unified
problem. This allows us to handle irregular boundaries and seams of arbitrary distribution,
and the final restoration quality is less affected by low-level semantic features such as geo-
metric structures in the image restoration region, indicating the more versatile and robust
performance of the proposed method when compared with many state-of-the-art methods.

Experimental results show that the proposed method can effectively eliminate stitch-
ing seams and irregular boundaries, improving the visual effects of the stitched images and
demonstrating promising generalization. Our contributions are summarized as follows:
Firstly, a specially designed mask for irregular boundaries and stitching seams is proposed
for the diffusion model to improve the quality of stitched UAV images. Secondly, by design-
ing suitable masks, we treat the two problems of stitching seams and irregular boundaries
as one unified problem, avoiding the use of two different methods to separately address
these two problems, thereby reducing potential uncertainties and cumulative errors.

Figure 1. Irregular boundaries and stitching seams are present in the stitched images of the unmanned
aerial vehicle. In the (a,b) results, the areas enclosed by the red and yellow boxes, respectively,
represent portions of stitching seams and irregular boundaries.

2. Related Work
2.1. Image Rectangling and Seam Cutting

The pioneering method for obtaining rectangular stitched images involves optimizing
linear grid deformation [9], while its energy function can only preserve linear structures.
Considering the potential existence of nonlinear structures in image stitching, Li et al. [10]
later refined the energy term from preserving straight lines to preserving geodesic lines.
It is well known that geodesic lines are difficult to directly detect from stitched images;
thus, its application in image stitching is limited. Zhang et al. [11] integrated rectification
and image stitching into a unified optimization process, aiming to reduce distortion in
the stitched rectangular images. They relaxed the constraints on rectangular shapes and
adopted segmented rectangular boundaries. Nie et al. [30] proposed a grid-based deep
learning method for rectification, establishing probably the first deep learning approach
and achieving state-of-the-art performance. However, for UAV image stitching scenarios,
the above-mentioned methods still cannot fully rectify the stitched images and fail to solve
the unnatural transitions caused by imperfect alignment as depicted in Figure 2b.

Typically, seam cutting is regarded as a post-processing step in image stitching. Tradi-
tional methods can be categorized into two types: One involves introducing penalty terms
by defining a generalized energy function to handle seams. These penalty terms include
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Euclidean color difference [12], gradient difference [15,16], motion and exposure-aware
differences [17], saliency differences, and so on. By minimizing these energy functions,
seam fusion is performed at the seams using graph-cut optimization. The second type
defines seam losses and aims to find the best image alignment warping by minimizing these
losses [18–21]. Nie et al. [31] synthesized stitched images at seams through unsupervised
learning of seam-driven composite masks, achieving state-of-the-art performance with
perfect transitions at seams. It seems that the stitched images still exhibit many irregular
boundaries as depicted in Figure 2c.

Figure 2. Comparison of different solutions: (a) Raw stitched image; (b) Nie et al.’s retangling [30]:
most areas are rectangularized, but this method cannot completely eliminate irregular boundaries;
(c) Nie et al.’s UDIS++ [31]: this method can achieve perfect transitions at seams but exhibits large
irregular boundaries; (d) our method: the proposed method provides perfect transitions at seams
and completely eliminates irregular boundaries.

2.2. Denoising Diffusion Probabilistic Models

Inspired by non-equilibrium thermodynamics, a generative model known as the diffu-
sion model is proposed [22]. Building upon this, a denoising diffusion probability model
has been demonstrated to be effective for high-quality image generation [23]. In this paper,
we introduce diffusion models [23] as a generative method. Similar to other generative
models, the denoising diffusion probability model (DDPM) learns the distribution of im-
ages given a training dataset. The inference process includes sampling a random noise
vector xT and progressively denoising it until a high-quality output image x0 is achieved.
During the training process, the DDPM method has a diffusion process, transforming the
image x0 into white Gaussian noise having a mean of zero and a standard deviation of one,
i.e., xT ∼ N (0, 1), over T time steps. Each step in the forward direction is given by,

q(x1|x0) =
T

∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√

1− βtxt−1, βt I), (1)
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where the sample xt is obtained by adding i.i.d. Gaussian noise with variance βt at time
step t and scaling the previous sample xt−1 using

√
1− βt based on the variance table.

The DDPM is trained to reverse the process presented in Equation (1). The inverse
process is modeled by a neural network, which predicts the parameters µθ(xt, t) and
variance ∑θ(xt, t) of a Gaussian distribution, given by

pθ(x0:T) = p(xT)
T

∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) = N (xt−1; µθ(xt, t), ∑θ(xt, t)). (2)

The learning objective of the model is derived through the variational lower bound
on the log-likelihood between the reverse process and the diffusion process. This involves
the use of variational inference to establish an objective function that the model aims to
maximize during the learning process, which can be described as

E = [−log pθ ] ≤ Eq[−log
pθ(x0:T)

q(x1:T |x0)
]

= Eq[−log (xT)−∑
t≥1

log
pθ(xt−1|xt)

q(xt|xt−1)
] = L.

(3)

Equation (3) has been reformulated by Ho et al. [23], which can be written as

Eq[DKL(q(xT |x0)||p(xT))︸ ︷︷ ︸
LT

+ ∑
t>1

DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

−log pθ(x0|x1)︸ ︷︷ ︸
L0

].
(4)

As pointed out by Ho et al. [23], the optimal approach for the parameterized model is
to predict the cumulative noise added to the current image xt, and for the predicted mean
µθ(xt, t), it can be given by

µθ(xt, t) =
1√
at

(
xt −

βt√
1− āt

ϵθ(xt, t)
)

. (5)

With Lt−1 in Equation (4), a simplified training objective function was derived by
Ho et al. [23], which can be given by

Lsimple(θ) = Et,x0,ϵ[∥ϵ− ϵθ(xt, t)∥2, (6)

where ϵ ∼ N (0, I) is the white Gaussian noise added to the image through random sam-
pling. ϵθ represents the parameters of the model undergoing training, which is responsible
for predicting the noise level of the image sample xt at time step t. Therefore, we can effi-
ciently train the model using data and generate image data that conform to the distribution
of interest through the process of reverse sampling.

3. Methods

For a set of UAV images I1 . . . In, the target of stitching is to obtain a broader field of
view. As mentioned above, irregular boundaries and stitching seams can adversely affect
the visual perception of the result. This section presents the proposed method that can stitch
a set of images, addressing irregular boundaries and stitching seams simultaneously. The
overall diagram of the proposed method is illustrated in Figure 3. The proposed method
has the following three main parts:

(1) Compute masks for irregular boundaries and stitching seams that occur during image
stitching, determining the areas that need to be repaired;

(2) Adjust the input and output image sizes in an adaptive way to match the input and
output dimensions of the diffusion model;
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(3) Employ the diffusion model to perform inverse diffusion on the stitched image with
masks, repairing the masked regions.

Figure 3. The overall diagram of the proposed method. The framework consists of two stages:
stitching and restoration. In the stitching stage, the boundary and seam masks for each stitched image
are also computed. In the restoration stage, the inverse process of the pre-trained diffusion model is
used to restore the raw stitched image with the help of the masks computed in the stitching stage.

3.1. UAV Image Stitching and Mask Computation

To handle the irregular boundaries and stitching seams in the stitched images, this
paper designs an efficient method for computing masks. Using this method allows us to
obtain masks for stitching seams and irregular boundaries simultaneously for the UAV
image stitching task.

The process of computing the mask corresponding to stitching seams involves trans-
forming each target image through its corresponding cumulative matrix. By calculating
the lines between the transformed rectangular vertices, the position of the stitching seam
mask can be determined. The process of calculating the mask for irregular boundaries
involves determining the minimum rectangle of the overlaid image on the source image
based on the positions of the transformed rectangular vertices. The irregular boundary is
then the complement of the overlaid image within this minimum rectangle. Through these
steps, a unified mask computation scheme for irregular boundaries and seams is obtained
to facilitate the repairment task. The following two parts introduce the two important
steps of the proposed method in detail: UAV image alignment and calculation of masks for
stitched images.

3.1.1. UAV Image Alignment

In order to obtain stable feature points, this paper utilizes the Scale-Invariant Feature
Transform (SIFT) method [32] to extract features from pairs of images with overlapping
regions, resulting in feature description vectors D and keypoint position vectors P. After
that, the paper calculates the feature points for the matching image pairs Ij and Ij−1. To
achieve sufficient accuracy with less time consumption, the Hierarchical Navigable Small
World (HNSW) method [33] is employed to build and search the graph of feature vectors.
Based on the relationship between feature vectors and keypoints, RANSAC is utilized to
calculate a convergent homography matrix Hj for the transformation from image Ij to Ij−1.
The overall process is shown in Figure 4.
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Figure 4. Stitching process. The first UAV image is used to initialize input 1, and the remaining UAV
images I2 to In are used in order as input 2. After stitching the two images, i.e., input 1 and input 2,
there are two ouputs: One is output 1 indicating the stitched image, and the other output is the masks.
Ouput 1 is repeatedly used as input 1 until all UAV images are used in the image stitching stage.
Accordingly, the final output consists of the stitched image and the masks for irregular boundaries
and seams.

3.1.2. Computation of Masks for Stitched Images

To transform Ij onto Ij−1 and simultaneously calculate the corresponding positions for
irregular boundaries and seams to generate masks, the cumulative matrix H∗j needs to be
computed from Ij to Ij−1 , which is

H∗j = Hj Hj−1 . . . H2. (7)

Simultaneously, to obtain the smallest possible irregular boundary while maintaining
the integrity of the range of the stitched image, we define a translation matrix Htrans, which
can be given by

Htrans =

1 0 −minx
0 1 −miny
0 0 1

 (8)

where minx and miny are the minimum values between the vertices after transforming
the target image and the source image vertex coordinates. The translation matrix is then
superimposed on the cumulative matrix to obtain the final transformation from Ij and Ij−1.

The position of the seams is calculated by determining the location of the vertices
after transforming the image through the cumulative matrix, and a mask is generated
accordingly. To ensure consistency between the designed masks and the stitched images,
each time the stitching occurs, the target image is placed on top of the source image.
Accordingly, when each target image undergoes transformation, a mask of the same size as
the target image is generated. This mask undergoes the same transformation as the target
image to determine the range that needs to be placed on top of the image. The specific
steps are summarized in Algorithm 1.
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Algorithm 1 Stitching and Mask Calculation

Input: UAV images I1, I2, . . . In, and its corresponding blank mask mask1, mask2, . . . maskn
Output: Stitched image and masks of seam and irregular boundary

1: Extracting feature points using SIFT for each image Pj, Dj ← SIFT(Ij)
2: Using HNSW and RANSAC for feature point matching and mismatch elimination to

obtain the homography matrix Hj warping Ij to Ij−1
3: for j = 2 to N do
4: Compute the cumulative matrix H∗j ← Hj Hj−1 . . . H2

5: Compute the the positions of vertices using the cumulative matrix V∗j ← VjH∗j
6: Compute the minimum coordinate values minx, miny← x, y ∈ V∗j ∪V∗j−1 ∪ · · · ∪V1;
7: Compute the translation matrix Htrans based on minx, miny;
8: Compute the warp of Ij and its mask I∗j , mask∗j ← HtransH∗j (Ij, mask j)

9: Compute the warp of Ij−1 and its mask I∗j−1, mask∗j−1 ← Htrans(Ij−1, mask j−1)

10: Compute the stitched result Ij ← (I∗j−1 ⊙mask∗j ) + I∗j
11: Compute the mask of seam maskseam ← Line(V∗j )
12: Compute the overall mask mask j ← mask∗j−1 + mask∗j + maskseam

13: end for

3.2. Irregular Boundaries and Stitching Seam Repairment with a Diffusion Model

For a forward diffusion process xt ∈ Rn, t ∈ [0, n], we set x0 ∼ p0(x) = pdata where
pdata represents the data distribution of the image of interest and xn ∼ pn(x) with pn(x)
approximates a completely Gaussian distribution without data information. The process
can be defined by the following stochastic differential equation (SDE) [34]:

dx = f̄ (x, t)dt + ḡ(t)dw, (9)

where f̄ is the linear drift function, ḡ(t) is a scalar diffusion coefficient, and w denotes the
standard Wiener process. The forward SDE is coupled with the following reverse SDE:

dx = [ f̄ (x, t)− ḡ(t)2∇xlog pt(x)]dt + ḡ(t)dw̄, (10)

where dt denotes the infinitesimal negative time step and w̄ defines the standard Wiener
process running backward in time. The reverse SDE defines the generation process through
the score function ∇xlog pt(x). When the parameters of the score function’s parametric
model sθ(xt ,t) are estimated, it can be substituted into the score function in Equation (10),
enabling the solution of the reverse SDE. This can be expressed as follows:

xi−1 = f (xi, sθ) + g(xi)z, z ∼ N (0, I). (11)

As reported by Ho et al. [23], the optimal approach is to predict the cumulative noise
added to the current image, as described in Equation (5). However, unlike unconditional
generation, our goal is to recover unknown pixels x ∈ Rn from known observational
values y ∈ Rm:

y = Hx + ϵ, H ∈ Rm×n, (12)

where H is the mask matrix having m rows and n columns and ϵ is the noise in the
observed values.

The inverse problem that we aim to solve is to recover the image x at the masked
positions of the stitched image with masks y. According to Bayesian theorem, we should
replace the score function in Equation (10) with∇xlog pt(x|y). However, this would lead to
the need for retraining the score function because the conditions change, making it unable
to generalize for masks with different distributions in stitched images. Recent studies on
conditional diffusion models [28,34,35] have utilized unconditional score functions, but
they often only rely on a projection-based measurement constraint to impose the conditions.
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The Manifold Gradient Constraint (MCG) [28] has demonstrated much better performance
in image recovery, which can be expressed as

x′i−1 = f (xi, sθ)− α
∂

∂xi
∥W(y− Hxi)∥2

2 + g(xi)z, z ∼ N (0, I), (13)

where α and W depend on the noise covariance. The specific form of the Manifold Gradient
Constraint is expressed as follows:

∂

∂xi
∥W(y− Hxi)∥2

2 = −2JT
Qi

HTWTW(y− Hx̂0), (14)

where Qi denotes the local projection mapping of xi onto the manifold and J f denotes
the Jacobian matrix of the vector f . We pre-train the diffusion model using the UAV
image dataset. For any stitched images, applying the Manifold Gradient Constraint (MCG)
during its inverse diffusion allows obtaining high-quality restoration images. The process
is illustrated in Figure 5.

Figure 5. The inverse process of the diffusion model for restoration: ① The initial sampling of inverse
diffusion; ② performing inverse iteration using the manifold gradient constraint; ③ taking the orthog-
onal complement with the mask; ④ sampling from p(yi|y) and adding to the orthogonal complement.

3.3. Image Dimension Adaptation

Due to varying spatial correspondences between images, different image stitching
may result in generating images with different sizes. The diffusion model is trained using
images having a specific size, making a single diffusion model ineffective for handling
images having multiple different sizes. Training models separately for all possible sizes
of stitched results is extremely difficult if not impossible. This requires the adaptation of
images to match the demanded size of the model before using the diffusion model.

Directly resizing images using interpolation methods is one solution, while such
methods may result in some information loss. In contrast, deep learning-based methods
can achieve better reconstruction quality. However, most of such methods are trained
only for fixed magnification mapping, making it unable to handle cases where images
need arbitrary resolution scaling. To address this issue, Chen et al. [29] proposed the Local
Implicit Image Function (LIIF). This method trains an EDSR encoder and a shared function
fθ using a neural network. The EDSR encoder maps the image to a two-dimensional feature
Mi ∈ RH×W×C, as shown in Figure 6.

The shared function can be queried to obtain the pixel value for any continuous
coordinate in the image, which enables arbitrary resolution adjustment of the image,
producing high-quality results while minimizing potential information loss associated with
interpolation methods. The shared function can be given by

I(xq) = fθ(z∗, xq − v∗), (15)
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where z∗ and v∗, respectively, represent the neighboring encoding and coordinates in the
feature Mi. Each latent code z in Mi represents a local segment of the continuous image. It
is responsible for predicting the signal for a set of coordinates closest to itself.

Figure 6. LIIF representation with local ensemble.

The pixel-based representation of LIIF is plotted in Figure 7. In this figure, xhr repre-
sents the central coordinates of the pixel to be queried, and spred is the obtained RGB value
from the query. Due to the different aspect ratios between stitched images and the diffusion
model, directly resizing stitched images may cause stretching and deformation. To avoid
this problem, before adjusting the image size, padding is applied to adjust the ratio of the
length and width of the stitched images to match the trained diffusion model, which is

Hstitched
Wstitched

=
Hdi f f usion

Hdi f f usion
, λ =

Hdi f f usion

Hstitched
. (16)

Figure 7. Pixel-based representation of LIIF.

The padded image is then used to calculate the central coordinates of each pixel with
a scaling factor λ. LIIF is employed for querying to achieve adjustment to match the
size of the diffusion model. For the results after restoration through the diffusion model,
the size is similarly restored using LIIF, and the padded areas are cropped to obtain the
restored image.

4. Experiment
4.1. Data Preparation

We conducted on-site aerial photography using a UAV, capturing a total of 1008 images
at a resolution of 6000 × 4000 pixels. From these, 48 images were set aside as a validation
set denoted as dataset 3. Each set of 6 images within this validation set was designated as a
stitching object, resulting in a total of 8 groups. Due to the significant difference in data
dimensions compared to the diffusion model, we downsampled the images to a resolution
of 480 × 320 pixels. The remaining 960 images were cropped into squares, downsampled
to 256 × 256 pixels, and subjected to random flips or exchanges, resulting in 1920 images
to form the training dataset denoted as dataset 1 for the diffusion model. The original
high-resolution dataset denoted as dataset 2 was utilized as the training dataset for the
Learning-based Inpainting with Fourier Features (LIIF) model.
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4.2. Model Training Details
4.2.1. Diffusion Model Training

The network model used in this paper is a U-Net model with temporal injection, as
shown in Figure 8. The backbone network is a residual network with attention layers. To
enable the model to learn sufficient details for image restoration, we set the channels of the
residual block to 256. Within the same-scale module of the U-Net, the number of residual
blocks was set to 2, and the number of heads in the attention module was set to 64. This
paper compares the restoration results of two models trained on ImageNet 256 × 256 and
our dataset 1 of UAV images, respectively. The goal is to investigate the generalization and
fitting of the models in the restoration task. We conducted training on an NVIDIA RTX 3090
GPU (Santa Clara, CA, USA) with a batch size of 1. As shown in Figure 9, the model trained
on the ImageNet dataset for 500k epochs occasionally produced counterintuitive images
when the mask proportion was high. In contrast, the model trained solely on our dataset
1 for 180k epochs demonstrated excellent inference capabilities, consistently generating
high-quality images.

Figure 8. U-Net model with time injection. Each layer of the U-Net consists of a ResNet with
different sizes.

Figure 9. Comparison of the model trained on ImageNet and that trained on dataset 1 in terms of
perceptual quality: (a) model trained on ImageNet with two patching errors (red boxes); (b) model
trained on dataset 1.

4.2.2. LIIF Training

This part compares the performance of a pre-trained model [29] with a model fine-
tuned with our dataset. Although using this pre-trained model for image size adjustment
directly has shown significant improvement when compared with direct interpolation
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methods, some features such as the direction of roof tiles are still over smoothed. We
fine-tuned the pre-trained model with our dataset (dataset 2) and compared the final results
with the pre-trained model. One can observe that, at the adjustment of ×23 in image size
for downsampling and upsampling, using the pre-trained model directly leads to the loss
of many texture details. After fine-tuning the pre-trained model with our dataset, the model
exhibits richer texture details, as shown in Figure 10. If only at a smaller scale adjustment,
such as 2.3×, the difference in image details is difficult to observe when compared with the
ground truth, as shown in Figure 11.

Figure 10. Comparison of the details of LIIF after data augmentation under large-scale adjustment.
(a) Ground truth data; (b) details of the image at 23.4× downsampling and upsampling using
the pre-trained model; (c) details of the image at 23.4× downsampling and upsampling using the
fine-tuned model.

Figure 11. Comparison of the details under small-scale adjustments after model enhancement.
(a) Ground truth data, (b) details of downsampling and upsampling by ×2.3 with the enhanced model.

4.3. UAV Image Stitching Results and Analysis
4.3.1. Overall Results Comparison

We evaluated the performance of many stitching and restoration methods using the
UAV images taken from dataset 3. The proposed method was compared with AANAP [36],
UDIS++ [31], and Deep Rectangling [30]. The comparison results are shown in Figure 12.
From this figure, it is obvious that the proposed method performs better than the competing
methods in terms of both image completeness and transition smoothness.

4.3.2. Seam Repairment Details

We compared the repairment details at the image seams in our results, as shown in
Figure 13. It can be observed that, although high-quality repairment results were achieved,
some small textures at the seams were altered.

Furthermore, we compared the results of repairing seams with different widths of
masks for the same degree of misalignment as shown in Figure 14. We can observe
that when using the red mask, which cannot completely cover the misaligned area, the
repairment result is relatively poor. On the other hand, when using the yellow mask,
which can entirely cover the entire misaligned area, the repairment effect is promising but
comes with the trade-off of accepting some changes in fine textures within the masked
region when compared with the ground truth. Through experiments conducted on the
training dataset as the preliminary experiments, we found that setting the mask width
to be between 1/60 and 1/80 of the total pixels can achieve a balanced performance. For
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practical applications, adjustments can be made based on the actual displacement at the
seams, which is out of the scope of this paper.

Figure 12. Comparison of the final results from different methods.

Figure 13. Comparison of seam repairment details with and without the proposed seam repairment
method. (a) The first example, (b) the second example. The images with and without the proposed
method for each example are placed on the left and right parts, repsectively.
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Figure 14. Comparison of the repair effects of different width masks on the same seam. (patch a)
Solving the seam with the red mask, the transition is natural, but misalignment still exists. (patch b)
Solving the seam with the yellow mask, misalignment and seam repair are good, but it may introduce
unrealistic changes.

For the repairment of irregular boundaries, we captured additional images from a
perspective roughly similar to the stitched result. We identified corresponding content for
some irregular boundaries in these images and used them as ground truth for comparison
with our repair results. The repair outcomes exhibit a consistent alignment with the ground
truth in terms of both texture extension and semantics, as depicted in Figure 15.

Figure 15. Comparison between repaired values and ground truth for irregular boundaries.

4.4. Quantitative Evaluation

Due to the difficulty in obtaining globally accurate reference values for the repaired
images, we manually selected image patches as the ground truth for comparison with
the results before and after restoration. This allows us to assess the overall quality of
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the images. In this study, we used the SSIM and PSNR metrics to compare the similarity
between the images before and after restoration and the reference values. We manually
selected image regions from the stitched images as reference values and calculated the
average similarity scores before and after restoration using the above-mentioned metrics.
The results are presented in Table 1. The similarity scores after restoration showed a
significant improvement, attributed to the high level of agreement between the repaired
generated images and the reference values in terms of texture and semantics.

Table 1. Measurement of similarity between images with and without the proposed restoration
method and the reference image.

Method SSIM↑ PSNR↑

Origin 0.361 12.724
Restore 0.434 17.011

Due to the limited comparison conducted in certain regions of the images and the
absence of the global ground-truth reference, we further compared the quality of the
images in an intuitive way. Our results repaired the texture at seams, making transitions
smooth, and eliminated large irregular boundaries. However, due to the upsampling
and downsampling during the restoration process, resolution could be decreased, which
adversely affects the evaluation of our restored results. We further employed a non-
intrusive perceptual image quality assessment tool, e.g., PaQ-2-PiQ [37], to solve the
problem of the absence of the global ground-truth reference. It should be mentioned that
PaQ-2-PiQ utilizes a large subjective quality database for training and can infer globally
to locally and locally to globally, and it focuses more on the overall subjective perception
of images rather than just sharpness. It also provides more consistent evaluation results
with human perception, especially for “more blurred but more visually pleasing” images.
When using PaQ-2-PiQ to evaluate different methods, the proposed method was compared
with UDIS++, AANAP, and Deep Rectangling. The PaQ-2-PiQ scores are summarized in
Table 2. The quantitative results double confirm that the proposed method outperforms
many existing SOTA methods in terms of perceptual quality, which is consistent with the
visual results presented in Figure 12. For methods that require multiple stitching operations,
such as AANAP and UDIS++, numerous cumulative errors might be inevitably introduced
during repeating the stitching process several times, resulting in their scores being even
lower than the original stitched results.

Table 2. Comparison of PaQ-2-PiQ before and after restoration.

Method PaQ-2-PiQ↑

Stitched image 0.741
AANAP 0.684
UDIS++ 0.734

Deep Rectangling 0.743
Ours 0.766

4.5. Ablation Studies

To demonstrate the effectiveness of using the combined mask including the boundary
and seam masks, we compared the three restoration results: using only the irregular
boundary mask, only the seam mask, and the two masks combined.

Boundary Mask. If masks are only computed for dealing with irregular boundaries,
the proposed method can only be expected to reduce the irregular boundaries, while the
seams cannot be solved. In this case, there might be unnatural transitions at the junctions
between irregular boundaries and image edges, as indicated by the arrows in Figure 16a–c.

Seam mask. If masks are computed only for seams, the proposed method can only
be expected to reduce the seams, while it is unable to achieve promising results with a
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rectangular field of view, and nonlinear distortion still occurs at the edges of irregular
boundaries as shown in Figure 16d–f.

When using the combination of the boundary and seam masks, it is expected that
the proposed method can reduce both the irregualr boundaries and seams. This is the
case that can be seen from Figure 16g–i. From Figure 16, we can conclude that if we
separately compute masks for irregular boundaries and seams, unnatural transitions and
nonlinear distortions often occur at some edges of the image. Moreover, if we repair the
remaining parts continuously, the masks calculated earlier cannot accurately correspond to
the repaired results.

Figure 16. The ablation study using different masks. (a–c) show the importance of using boundary
masks; (d–f) show the importance of using seam masks; (g–i) show the importance of using both
boundary and seam masks.

5. Conclusions

We addressed the irregular boundaries and stitching seams for the UAV image stitch-
ing task by devising a method to generate masks during image stitching, and a processing
framework based on the diffusion model was developed, in which the unconditional score
function of the diffusion model is ultilized during the inverse process. We also applied
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additional manifold gradient constraints to repair masked images, aiming to eliminate
irregular boundaries and stitching seams, resulting in improved perceptual quality.

Unlike those often-used methods based on grids or energy minimization functions, our
proposed method is data-driven, considering the overall distribution of pixels. It does not
strictly require specific geometric structures or texture features near irregular boundaries
and stitching seams. Therefore, even in challenging scenarios with complex shapes of
irregular boundaries, multiple seams, and insufficient geometric and texture features, our
proposed method can still achieve high-quality results. Moreover, due to the powerful
learning and inference capabilities of the diffusion model for data distribution, training
on a small dataset of UAV images can obtain a high-quality model for the restoration of
stitched images, facilitating its potential applications.

Note that our proposed method may introduce some perceptually acceptable but
“unrealistic” or artificial noise locally into the mask. In scenarios where strict authenticity
requirements for data are essential, such as in ultra-high-resolution map drawing, introduc-
ing small unrealistic/artificial noise may be intolerable. Yet, for scenarios with a higher
tolerance for realism, such as VR/AR applications, our proposed method may provide an
alternative way to improve the quality of the stitched images. Evaluating and quantifying
the introduced unrealistic noise as well as determining its acceptability still lack quanti-
tative analysis tools. Future research can focus on how to quantitatively evaluate these
introduced unrealistic noise components and solve this problem in an efficient way.
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