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Abstract: In the field of radar target detection, the conventional approach is to employ the range
profile energy accumulation method for detecting extended targets. However, this method becomes
ineffective when dealing with non-stationary and non-uniform radar clutter scenarios, as well as
long-distance targets with weak radar cross sections (RCSs). In such cases, the signal-to-noise ratio
(SNR) of the target echo is severely degraded, rendering the energy accumulation detection algorithm
unreliable. To address this issue, this paper presents a new extended target detection method based
on the maximum eigenvalue of the Hermitian matrix. This method utilizes a detection model that
incorporates observed data and employs the likelihood ratio test (LRT) theory to derive the maximum
eigenvalue detector at low SNR. Specifically, the detector constructs a matrix using a sliding window
block with the available data and then computes the maximum eigenvalue of the covariance matrix.
Subsequently, the maximum eigenvalue matrix is transformed into a one-dimensional eigenvalue
image, enabling extended target detection through analogy with the energy accumulation detection
method. Furthermore, this paper analyzes the proposed extended target detection method from both
theoretical and experimental perspectives, validating it through field-measured data. The results
obtained from the measured data demonstrate that the method effectively enhances the SNR in low
SNR conditions, thereby improving target detection performance. Additionally, the method exhibits
robustness across different scattering center targets.

Keywords: extended target; range image; Hermitian matrix; eigenvalue of maximum; detection

1. Introduction

In high-resolution radar, bandwidth is a key factor affecting radar range resolution [1–4].
Since the radar range resolution is inversely proportional to the bandwidth, when the radar
bandwidth increases to a certain extent, the size of the target is much larger than the range
resolution of the radar. The target echo is displayed as a collection of multiple scattering centers in
the radar echo, so the target is called an extended target in high-resolution radar [5,6]. Compared
with the point target in narrowband radar, the signal of the extended target contains more
abundant and fine target structure information. Therefore, how to improve the resolution of radar
has always been an important subject and direction in radar technology development [7–10].

High-resolution radar needs to generate large bandwidth, which poses challenges to
radar equipment. Stepped-frequency synthetic wideband radar has attracted much atten-
tion due to its advantages of anti-clutter, small instantaneous bandwidth, low hardware
requirements, and easy waveform design. Compared with traditional low-resolution radar
and conventional wideband radar, stepped-frequency synthetic wideband radar is of great
significance in the development of modern wideband radar signals and has become a hot
research direction [11–15].

In stepped-frequency synthetic wideband radar, the common technique for detecting
targets is to reconstruct a high-resolution range profile (HRRP) in different coarse range
resolution units by inverse discrete Fourier transform (IDFT) [16–18]. The HRRP sample
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reflects the distribution of the radar cross-sectional area of the scatterer on the target along
the direction of the radar line of sight at a certain radar angle of view. However, in the
process of synthesizing high resolution, there are two main problems, namely, oversampling
redundancy and distance mismatch redundancy. Distance mismatch redundancy will lead
to distance migration, thus reducing the ranging accuracy. The oversampling redundancy
increases the false alarm rate, which adversely impacts the subsequent target detection
and recognition processes. To solve these problems, researchers have conducted in-depth
analysis and discussion in the literature and proposed some extraction algorithms for
one-dimensional range profiles of targets, such as the abandonment method and the
same distance selection method, to extract effective information about targets in radar
echoes. These range profile extraction methods are mainly applied to the stationary target
in the background of ground clutter or the relatively stationary scene with high-speed
measurement accuracy. Through these methods, the range profile of the target can be
effectively extracted, thus providing a basis for subsequent target detection and recognition
tasks. However, in practical applications, these methods still need to be further studied
and improved to adapt to complex situations in different scenarios and improve the
performance and reliability of radar systems.

Due to the particularity of the signal of stepped-frequency wideband radar, the ex-
tended target detection of stepped-frequency radar is closely related to the range profile
extraction of the target [16–21]. At present, the range spread target detection method
of stepped frequency radar is mainly divided into two categories: one is the detection
algorithm after range profile extraction, and the other is the detection algorithm before
range profile extraction. In engineering experiments, since the detection method after
range profile extraction is easy to implement in engineering, most studies tend to extract
the range profile of the target first, and then perform range-extended target detection
on the one-dimensional range profile. The advantage of this method is that the effective
information of the target can be extracted by distance image extraction, which reduces the
amount of redundant data to be processed and improves detection efficiency [22–24].

Stepped-frequency radar usually adopts a down-looking mode in target detection.
For ground stationary targets under strong ground clutter conditions, the detection area is
mainly located in the main clutter area of the radar. When the radar detects the ground
target, in addition to the need to counter the noise, it also needs to deal with the interference
from the strong ground clutter. In the process of target detection, long-distance targets with
weak RCSs significantly reduce the signal-to-noise ratio of the target echo, which makes
the traditional extended target detection algorithm based on radar one-dimensional range
profile energy invalid [25,26]. Therefore, in order to solve this problem, it is necessary to
study a new radar target detection algorithm to improve the signal-to-clutter ratio.

Due to the non-uniformity and non-stationarity of strong ground clutter, the decima-
tion of stepped-frequency radar to form a one-dimensional range profile radar extended
target fails. Because the maximum eigenvalue of the covariance matrix is a good charac-
terization of radar signal energy and correlation, Wenjing Zhao [27] proposed a cascade
algorithm that combined sub-band decomposition with an eigenvalue-based detection
scheme, but this method is only effective for moving targets on the sea surface. Yuan
Jiang [28] proposed a modified scaled largest eigenvalue detector for static homogenous
ground clutter that uses a set of secondary data; however, this method requires the clutter to
have the same distribution as the clutter primarily assumed to be available. To solve these
problems, in the case that the speed of the radar moving platform is well compensated, this
paper proposes a maximum eigenvalue detector based on a sliding window matrix covari-
ance matrix to solve the problem of non-stationary, non-uniform, and low signal-to-noise
ratio target detection. The corresponding Hermitian covariance matrix is constructed by
using the sliding window block, and its maximum eigenvalue is used as the test statistic. A
new detection mechanism is designed to improve the signal-to-noise ratio and improve the
detection probability of the target in the background of strong ground clutter.
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The main structure of this paper is as follows: Section 2 introduces the detection
method based on the maximum eigenvalue of the covariance matrix in detail. Firstly, the
principle and algorithm flow of the method are introduced, and the calculation process of
the covariance matrix and how to extract the maximum eigenvalue as the basis of target
detection are described in detail. In Section 3, the proposed method is compared with
the extended target detection method that forms a one-dimensional range profile after
extraction. By comparing the experimental results, the difference between the two methods
in target detection effect is evaluated, and their advantages and disadvantages are analyzed.
Section 4 is the conclusion of this paper, which summarizes the main research contents and
results of this study and emphasizes the practical application prospect and potential value
of the detection method based on the maximum eigenvalue of the covariance matrix in the
field of radar target detection.

2. Methods Based on Maximum Eigenvalue of Covariance Matrix
2.1. Scene Construction

The complex detection scene of the stepped-frequency radar is shown in Figure 1.
Under the background of strong ground clutter, the detection radial distance is R, and there
are A, B, C, and other extended targets in the beam irradiation range.
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Figure 1. Stepped-frequency radar complex detection scene.

2.2. Signal Model

The transmitted signal of the stepped-frequency modulation radar is a set of pulse
signals with in-pulse frequency modulation and linear jump between pulses. When per-
forming synthetic high-resolution processing, the original echo is first mixed, and then the
echo pulse is compressed. Finally, the obtained pulse compression signal is subjected to
IFFT (Inverse Fast Fourier Transform) to obtain the high-resolution range profile of the
target. The time domain equation of the transmitted signal of the stepped-frequency radar
is shown as follows:

s(t) =
N−1

∑
i=0

ui(t) exp(j2π fit) (1)

and in the following equation:

ui(t) =
N−1

∑
i=0

rect(
t − iTr − Tp

Tp
) · exp[jπµ(t − iTr)

2] (2)

where (2) is the complex envelope of the ith pulse signal, t is the time variable, Tr is the
pulse repetition interval, µ = Bc/Tp is the linear frequency modulation slope in the pulse,
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Tp is the sub-pulse width, Bc is the sub-pulse bandwidth, fi = f0 + i∆ f is the carrier
frequency of the ith pulse, f0 is the pulse starting frequency, ∆ f is the frequency step, N
is the number of pulses, and rect(·) is the rectangular function. The relationship between
the frequency of the transmitted signal of the stepped-frequency modulation radar and the
time is shown as follows:

rect(t) =
{

1 −1/2 < t < 1/2
0 others

(3)

Assuming that the radar approaches the target at the radial velocity of uniform velocity
v0 and the transmitted signal form is shown in (1), the echo expression of the point target
with the initial radial distance R0 within the radar coverage can be expressed as:

r(t) = s[t − τ(t)]

=
N−1
∑

i=0
Ai · rect

[
t−iTr−Tp/2−τ(t)

Tp

]
· exp

{
jπµ[t − iTr − τ(t)]2

}
· exp{ j2π( f0 + i∆ f )[t − τ(t)]}

(4)

Here, Ai is the complex envelope amplitude of the ith echo pulse, τ(t) = 2(R − v0t)/c
is the time delay of the point target echo, and c is the speed of light. When the stepped-
frequency radar performs correlation processing, the influence of acceleration on the target
echo can be generally ignored; that is, it is assumed that the radar and the target maintain a
uniform speed within a CPI (Coherent Processing Interval).

The received echo signal needs to be mixed. This operation requires the local oscillator
signal to be synchronized with the transmitted signal of the radar. The expression of the
local oscillator signal is shown as follows:

xre f (t) =
N−1

∑
i=0

rect
(

t − iTr − Tr/2
Tr

)
· exp[j2π( f0 + i∆ f )t] (5)

The baseband echo expression obtained after mixing processing is:

y(t) =
N−1
∑

i=0
Ai · rect

[
t−iTr−τ(t)

Tp

]
· exp

{
jπµ[t − iTr − τ(t)− fd(i)/µ]2

}
· exp[−j2πi∆ f τ(t)]

· exp
[
−j2π f0τ(t)

]
· exp

[
−j2π fd(i)τ(t)

] (6)

Here, fd(i) = 2v0( f0 + i∆ f )/c denotes the Doppler frequency shift of the velocity to
the ith baseband echo.

The processing of high-resolution range profile synthesis of the baseband echo signal
can be divided into two steps:

The first step is to perform pulse compression processing on the linear frequency
modulation term in the baseband echo signal represented by Ai · rect

[
t − iTr − τ(t)/Tp

]
·

exp
{

jπµ[t − iTr − τ(t)− fd(i)/µ]2
}

, so as to obtain the intermediate resolution range
profile of the baseband echo signal.

Assuming that the velocity in the echo signal is accurately compensated and the
relative radial velocity v0 = 0 of the radar and the target is compensated, the expression
of the intermediate resolution range profile is obtained after the pulse compression pro-
cessing of the echo baseband signal. Performing pulse compression on Equation (6) yields
Equation (7).

yi(K) = Airect[(KTs − iTr − τi)/TG]
· sin c[πBc(KTs − iTr − τi)] · exp(−j2πφi)
· exp(−j2πi∆ f τi).

(7)
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Equation (7) is expressed as follows: i = 0, 1, . . . , N − 1, K = 0, 1, . . . , M − 1, M
represents the number of sampling points for a single sub-pulse, φi represents the initial
phase, τi signifies the delay of the echo, M = fs · TG, fs denotes the sampling rate, and TG
represents the sub-pulse sampling width.

In the second step, the mid-resolution range profile obtained in the first step is pro-
cessed by IDFT (Inverse Discrete Fourier Transform), which is the high-resolution pro-
cessing of pulse synthesis, so as to obtain the high-resolution range profile of the radar
echo.

Then, the high-resolution range profile of the target can be obtained by performing
IDFT processing on the sampling points of the middle-resolution range profile and taking
the modulus. Performing IDFT on Equation (7) yields Equation (8).

z(K, i) =| yi(K) |
sin[πN∆ f ( i

N∆ f −τi)]

N sin[π∆ f ( i
N∆ f −τi)]

· exp[−j2π(φi − N−l
2 ∆ f τi)] · exp[−j2π(N−l

2 ∆ f ) i
N∆ f ].

(8)

According to Equation (8), the time resolution of the high-resolution range profile is
1/N∆ f .

2.3. Description of Detection Problem and Detection Method

The high-resolution range image obtained by preprocessing the radar echo signal is I f ,
and the data matrix block of the high-resolution range image is obtained in turn by using
the sliding window with a size of p × p (p = 2 in this paper). Assuming that the size of I f
is N × M, the data matrix is represented by the matrix block by the following expression:

Yf =


y(1,1) y(1,2) · · · y(1,M−1)
y(2,1) y(2,2) · · · y(2,M−1)

...
...

. . .
...

y(N−1,1) y(N−1,2) · · · y(N−1,M−1)

 (9)

The expression of the sliding window y(n,m) is:

y(n,m) =


z0 z1 · · · zp−1
zp zp+1 · · · z2p−1
...

...
. . .

...
zp2−p zp2−p+1 · · · zp2−1

. (10)

The columns of the sliding window block y(n,m) are connected to the column vector
p2 × 1 of y(n,m).

y(n,m) =
[
z0 z1 · · · zp2−2 zp2−1

]T
. (11)

For the sake of generality, according to the empirical model of a binary hypothesis,
in the problem of radar target detection, the problem of radar target detection under
the background of complex ground clutter can be expressed by the following formula in
probability statistics: {

H0 : y = c,
H1 : y = s + c.

(12)

Among them, y represents the observation vector of the echo, s represents the target
vector in the echo, and c represents the ground clutter vector obeying the compound
Gaussian distribution in the echo.

According to the literature [1], the composite Gaussian distribution echo still obeys
the complex Gaussian distribution after high-resolution processing. Therefore, after the
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stepped-frequency radar echo signal is transformed by IDFT, the binary hypothesis empiri-
cal model can be expressed as the following:{

H0 : y(n,m) = C(n,m),
H1 : y(n,m) = C(n,m) + S(n,m).

(13)

Among them, y(n,m) represents the observation vector of the echo, S(n,m) represents
the target vector in the echo, and C(n,m) represents the ground clutter vector obeying the
compound Gaussian distribution in the echo.

Under the assumption of H0, there is no target in the sliding window matrix block, and
only the clutter component is contained. Under the assumption of H1, in the observation
vector of the sliding window matrix block, in addition to the clutter component, there
is also the target component. Assuming that the target vector and the clutter vector are
independent of each other, the following covariance matrix can be constructed:

Ry(n,m)
= E

[
y(n,m)y(n,m)

H
]
. (14)

RS(n,m)
= E

[
S(n,m)S(n,m)

H
]
. (15)

RC(n,m)
= E

[
C(n,m)C(n,m)

H
]
. (16)

Among them, Ry(n,m)
represents the covariance matrix of the observation matrix vector,

RS(n,m)
represents the covariance matrix of the target signal vector, and Rc(n,m)

represents the
covariance matrix of the ground clutter, which is obtained by the Formulas (11), (14)–(16).
The covariance matrix of the sliding window block observation vector can be represented
by the following expression:{

H0 : Ry(n,m)
= Rc(n,m)

,
H1 : Ry(n,m)

= RS(n,m)
+ Rc(n,m)

.
(17)

In the problem of radar target detection, the statistical covariance matrix of clutter
is difficult to obtain accurately. Based on this, in the theoretical analysis, the covariance
matrix of the sample is used to replace the statistical covariance matrix of the clutter, and
its expression is as follows:

RC(n,m)
(p2) =

1
p2

p2

∑
i=1

C(n,m)(i)C(n,m)(i)
H. (18)

Here, p2 denotes the number of sampling points of the high-resolution domain sliding
window matrix block.

In addition, it is assumed that the clutter observation vectors are independent of each
other and obey the complex Gaussian distribution with zero mean, which satisfies the
following relationship:

E
[
C(n,m)(i)C(n,m)(i)

H
]
= 0M (19)

According to the relevant theoretical analysis of the random matrix, the clutter co-
variance matrix RC(n,m)

(p2) can be approximated as a Hermitian positive definite Wishart

matrix. At the same time, its covariance matrix obeys the Wishart distribution CWM(p2, Σ),
where p2 denotes the degree of freedom and Σ denotes the covariance matrix.

According to the previous binary hypothesis test theory and the related theory of ran-
dom matrix, under the H0 hypothesis, the joint probability density function of the ordered
eigenvalues of the clutter covariance matrix RC(n,m)

(p2) can be expressed by Theorem 1.
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Theorem 1. Let Ry(n,m)
(p2) be a Hermitian positive definite Wishart matrix with Wishart distri-

bution. Then, the ordered eigenvalue Ry(n,m)
(p2) of λ1 ≥ λ2 ≥ . . . ≥ λM ≥ 0 obeys the following

joint probability density function:

p(Λ; H0) =
πM(M−1)(det(Ry(n,m)

)−p2
)

CΓ(M)CΓ(p2)

·
M
Π

i=1
λi

p2−M M
Π
i<l

(λi − λl)
2

0F0(−Λ, ( µ

p2 Rc(n,m)
)
−1

)

(20)

Among them, Λ = diag(λ1, λ2, . . . , λM) represents the diagonal matrix composed of
all eigenvalues of the clutter covariance matrix RC(n,m)

(p2), and 0F0(A, B) represents the
complex hypergeometric function between two Hermitian positive definite matrices, A and
B. The complex multivariate gamma function is defined as follows:

CΓM(a) = πM(M−1)/2
M
Π

i=1
Γ(a − i − 1). (21)

Under another hypothesis, H1, the complex multivariate gamma function is defined
as follows:

Ry(p2) =
1
p2

p2

∑
i=1

S(n,m)(i)S(n,m)(i)
H +

1
p2

p2

∑
i=1

C(n,m)(i)C(n,m)(i)
H. (22)

Among them, Sti and Cti are independent of each other. When the number of sam-
pling points is sufficiently large, RS(n,m)

(p2) is approximately equivalent to A2I. Under
Assumption H1, the approximate joint distribution of the ordered eigenvalues of the clutter
covariance matrix RS(n,m)

(p2) can be expressed as follows:

p(Λ; H1) =
πM(M−1)(det(Ry(n,m)

)−p2
)

CΓ(M)CΓ(p2)

·
M
Π

i=1
λi

p2−M M
Π
i<l

(λi − λl)
2

0F0(−Λ, ( 1
p2 RS(n,m)(i) +

1
p2 RC(n,m)(i))

−1
)

(23)

According to the problem of radar target detection in a complex ground clutter back-
ground, combined with the Neyman–Pearson criterion, likelihood ratio detection is recog-
nized as the optimal detection mechanism. Therefore, in the following, the likelihood ratio
detection of the characteristic value domain of the clutter covariance matrix is analyzed. In
order to not lose generality, let p(Λ; H0) and p(Λ; H1) represent the joint probability density
function of the eigenvalue H0 of the clutter covariance matrix under the H1 assumption and
the Λ assumption, respectively. Then, the likelihood ratio of the feature range is expressed
as follows:

L(Λ) =
p(Λ; H1)

p(Λ; H0)
(24)

Substituting Equations (20) and (23) into (24), the likelihood ratio test of the feature
range can be re-represented as follows:

L(Λ) =

πM(M−1)(det(Ry(n,m)
)−p2

)

CΓ(M)CΓ(p2)

πM(M−1)(det(Ry(n,m)
)−p2

)

CΓ(M)CΓ(p2)

·
M
Π

i=1
λi

p2−M M
Π
i<l

(λi−λl)
2

0F0(−Λ,( 1
p2 RS(n,m)(i)

+ 1
p2 RC(n,m)(i)

)
−1

)

M
Π

i=1
λi

p2−M M
Π
i<l

(λi−λl)
2

0F0(−Λ,( µ

p2 Rc(n,m)
)
−1

)

(25)



Remote Sens. 2024, 16, 1488 8 of 23

In order to facilitate the subsequent analysis and processing, some constant items are
ignored, and only the data-related items are retained. The likelihood ratio test statistic of
the characteristic range can be simplified as follows:

L(Λ) =
0F0(−Λ, p2(RS(n,m)

+Rc(n,m)
)−1)

0F0(−Λ, p2Rc(n,m)
−1)

(26)

The complex hypergeometric function 0F0(·, ·) satisfies the following properties:

0F0(A,B) = exp(tr(AB)). (27)

Taking logarithms at both ends of (26) at the same time, the log-likelihood function of
the characteristic range is expressed as follows:

0F0(A,B) = exp(tr(AB)). log(L(Λ))

= tr(−p2(RS(n,m)
+ Rc(n,m)

)−1
Λ)− tr(−p2(Rc(n,m)

)−1
Λ)

= p2·(tr((Rc(n,m)
−1 − (RS(n,m)

+ Rc(n,m)
)−1)Λ)).

(28)

By using the theory of matrix inversion lemma, the log-likelihood function of the
characteristic range of (28) can be re-represented as follows:

log(L(Λ)) = p2 ·
M
∑

i=1
λi((Rc(n,m)

)−1RS(n,m)
(I + (Rc(n,m)

)−1RS(n,m)
)
−1

(Rc(n,m)
)−1

Λ)).

= p2 ·
M
∑

i=1
λi(R)

(29)

Since RS(n,m)
is a rank-1 matrix, according to the theory of random matrix, the rank of

the product of any two matrices satisfies the following relation:

rank(A1A2) ≤ min{rank(A1), rank(A2)}. (30)

In the above formula, rank(·) represents the rank of the matrix. Therefore, it can be
concluded that the matrix represents a matrix of rank 1. Equivalently, the matrix RS(n,m)

has
only one nonzero eigenvalue, namely the maximum eigenvalue. Based on the discussion
and analysis, the logarithmic likelihood ratio function can be expressed as the following:

log(L(Λ)) = p2λmax((Rc(n,m)
)−1RS(n,m)

(I + (µRc(n,m)
)−1RS(n,m)

)
−1

(µRc(n,m)
)−1

Λ)). (31)

According to the analysis of Equation (31), the maximum eigenvalue of the covariance
matrix plays a very important role in the likelihood function. However, in practical
application, Equation (31) is very complicated and tedious, which causes considerable
difficulties in analyzing and solving subsequent problems. Therefore, in order to solve the
above problems, the properties of their eigenvalues are analyzed.

According to the theory of random matrix, for any two positive definite matrices, their
eigenvalues satisfy the following properties.

Property 1. Let A,B ∈ CM×M be any two Hermitian positive definite matrices; then, their ordered
eigenvalues satisfy the following inequality:

λM(A)λi(B) ≤ λi(AB) ≤ λ1(A)λi(B)
λi(A)λM(B) ≤ λi(AB) ≤ λi(A)λ1(B)

(32)

For a matrix of rank 1, according to Formula (32), the maximum eigenvalue satisfies
the following relation:

λmax(AB) ≤ λmax(A)λmax(B) (33)
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To further process Equation (33), let{
A = Λ,

B = (RC(n,m)
)−1RS(n,m)

(I + (RC(n,m)
)−1RS(n,m)

)
−1

(RC(n,m)
)−1 (34)

According to the maximum eigenvalue inequality (33), it can be obtained that there
must be a positive number RC(n,m)

, RS(n,m)
about α(RC(n,m)

, RS(n,m)
), such that its log-likelihood

function satisfies the following relationship:

log(L(Λ)) = α(RC(n,m)
, RS(n,m)

) · λmax(Λ) (35)

Next, we can obtain the relationship between the log-likelihood function and the
maximum eigenvalue of the covariance matrix. For further processing of the above formula,
we can use the maximum eigenvalue of the covariance matrix to design a new detector,
and its test statistics can be expressed as the following formula:

λmax

(
Ry(n,m)

) H1
≷
H0

η

α(RS(n,m)
, RC(n,m)

)
(36)

where η denotes the threshold factor.
According to Equation (36), a detection method based on the maximum eigenvalue of

radar-received data is derived. However, the detection threshold in the detection method
depends on the received data, which are difficult to obtain in the actual detection scene of
radar targets. The detection threshold can only be set by empirical data, and it is difficult to
ensure data accuracy. Therefore, based on the maximum eigenvalue of the sliding window
matrix block of the high-resolution range profile data applied as the test statistic to the
maximum eigenvalue extraction detection problem, the above method is further improved.

According to the above analysis, it is assumed that the clutter observation vectors are
independent of each other and obey the complex Gaussian distribution with zero mean:
the mean value is 0 and the variance is σ2. Therefore, it can be proved that:

λmax

(
Ry(n,m)

) H1
≷
H0

η

α(RS(n,m)
, RC(n,m)

)
Ry(n,m)

=RS(n,m)
+Rc(n,m)

= RS(n,m)
+ σ2Im (37)

In the above formula, Im represents the unit matrix of order m. Under the assumption
of H0, the target vector covariance matrix is RS(n,m)

= 0, Ry(n,m)
= σ2Im, and the eigenvalue

decomposition is Ry(n,m)
. Therefore, the maximum eigenvalue can be obtained as follows:

λ1 = λ2 = · · · = λmax = σ2 (38)

Under the assumption of H1, assuming that λs
max is the largest eigenvalue of RS(n,m)

,
then the largest eigenvalue of RS(n,m)

matrix is the following:

λy
max = λs

max + σ2 > σ2 (39)

Combining Equations (36) and (39), it can be seen that when the target exists, the maxi-
mum eigenvalue of the covariance matrix of the sliding window data matrix is greater than
the maximum eigenvalue when the target does not exist. Therefore, the maximum eigen-
value can be used as a test statistic to detect whether the target exists in the high-resolution
range profile of the stepped-frequency radar. According to the theoretical analysis, the
radar target has strong scattering, and the radar clutter has fluctuation characteristics. These
characteristics usually make the correlation and scattering energy of the target stronger
than the clutter. According to the properties of the eigenvalues of the covariance ma-
trix, the eigenvalues of the covariance matrix of the sliding window data matrix can well
characterize the correlation and energy of the target and clutter.
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In summary, the maximum eigenvalue of the covariance matrix of the sliding window
data matrix can well characterize the existence or non-existence of radar targets.

When the actual stepped-frequency radar detects ground targets, due to the limited
number of actual measurement samples, the sample covariance matrix is usually used to
approximate the statistical covariance matrix.

According to the previous analysis, the covariance matrix of the high-resolution range
profile sample is constructed for Equation (11). The formula of the covariance matrix is as
follows:

Ry =
1

p2 − 1
yT

(n,m)y(n,m) (40)

The matrix is a Hermitian positive definite matrix, and the matrix expression is as
follows:

Ry =


r(0,0) r(0,1) · · · r(0,p2−1)
rT
(0,1) r(1,1) · · · r(1,p2−1)
...

...
. . .

...
rT
(0,p2−1) rT

(1,p2−1) · · · r(p2−1,p2−1)

 (41)

Next, the eigenvalue decomposition of the covariance matrix Ry of the sample is
performed, and the following formula is obtained:

Ry = QΛQ−1 (42)

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λp2

 (43)

In Equation (42), Q denotes the orthogonal matrix composed of the eigenvectors
of the Ry matrix, Λ denotes the diagonal matrix, λ1, λ2 · · · λp2(λ1 ≥ λ2 · · · ≥ λp2 ≥ 0)
denotes all eigenvalues of the Ry matrix, and λmax

y = λ1 denotes the maximum eigenvalue
corresponding to the sliding window block matrix.

According to the previous analysis, the maximum eigenvalue of the covariance matrix
of the high-resolution range profile sliding window can separate the clutter and the target
well. Therefore, the maximum eigenvalue matrix λ f is constructed by using the maximum
eigenvalue of the covariance matrix of the high-resolution range profile sliding window.

λ f =


λmax
(1,1) λmax

(1,2) · · · λmax
(1,M−2)

λmax
(2,1) λmax

(2,2) · · · λmax
(2,M−2)

...
...

. . .
...

λmax
(N−1,1) λmax

(N−1,2) · · · λmax
(N−1,M−2)

 (44)

In the stepped-frequency modulated synthetic bandwidth high-resolution radar, when
the echo signal is synthesized for high-resolution processing, due to the existence of
oversampling, the obtained one-dimensional high-resolution range profile has a lot of
range redundancy information. Based on this, it is necessary to adopt the target extraction
algorithm to eliminate the redundant information in the high-resolution range profile,
so as to achieve the effect of obtaining the radar target’s complete high-resolution range
profile (HRRP). In this paper, three classical range profile extraction algorithms are used to
process the high-resolution range profile and the maximum eigenvalue image of the sliding
window covariance matrix, respectively, which are the same distance selection method
after amplitude interpolation, the maximum 1 norm range profile search method, and the
Doppler offset correction method based on the strongest amplitude sub-range profile. In
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order to facilitate the description of the three extraction algorithms applied in this paper,
they are named method 1, method 2, and method 3, respectively.

λF =
[
λmax

1 λmax
2 · · · λmax

j · · ·
]

(45)

Finally, the extended target integral detection method is used to detect the one-
dimensional range profile of the maximum eigenvalue of the extracted covariance matrix,
so as to obtain the distance, size, and other related information of the target.

The extended target integral detector is used to conduct the non-coherent accumulation
of all signals in the distance window of the target prior to obtaining the required target
information. The form of the detector is as follows:

ηIntegraeor =
J

∑
j=1

∣∣λj
∣∣2 H0

≶
H1

TIntegraeor (46)

When there is only noise, the detection statistic ηIntegraeor obeys the χ2
2J distribution.

According to the relationship between the false alarm rate Pf a and the decision threshold,
the decision threshold of the integral detector is obtained as follows:

TIntegraeor = Q−1
χ2

2J
(Pf a) (47)

2.4. Algorithm Steps and Algorithm Flow Chart
2.4.1. Algorithm Steps

In summary, it is assumed that the stepped-frequency radar obtains the original image
I0 (the size of the image is N × M). As shown in Figure 2, the maximum eigenvalue algo-
rithm based on the Hermitian covariance matrix proposed in this paper can be summarized
in the following steps:
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Figure 2. Frequency and time relationship figure of the stepped-frequency radar transmitting signal.

Step 1: The original image I0 received by the radar receiver is subjected to pulse
compression processing to obtain the image Ipc after pulse compression;

Step 2: The pulse-compressed image Ipc is processed by inverse discrete Fourier
transform along the slow time dimension to obtain the high-resolution–medium-resolution
radar image I f of the stepped-frequency radar;

Step 3: Select a sliding window with a size of m × m, select the sliding window for
I f , and obtain the sliding window matrix block of the high-resolution–medium-resolution
radar image I f , in turn;

Step 4: Connect each selected sliding window matrix block to construct the column vec-
tor as shown in Formula (11), and construct the Hermitian covariance matrix corresponding
to its column vector according to Formula (40);
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Step 5: Find the maximum eigenvalue corresponding to each Hermitian covariance
matrix, and construct the maximum eigenvalue λmax

y of each covariance matrix into a
two-dimensional matrix with a size of (N − 1)× (M − 1);

Step 6: The maximum eigenvalue matrix of the Hermitian covariance matrix is ex-
tracted by using the same distance maximization method after amplitude interpolation, the
maximum 1 norm range profile search method, and the Doppler offset correction method
based on the strongest amplitude sub-range profile, so as to obtain the one-dimensional
range profile of the maximum eigenvalue;

Step 7: Use the radial energy accumulation detection method of the range-extended
target to detect the one-dimensional range profile of the maximum eigenvalue, so as to
obtain the distance, size, and other related information of the target.

2.4.2. Algorithm Flow Chart

The flow chart of the detection method based on the maximum eigenvalue of the
Hermitian covariance matrix is shown in Figure 3.
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3. Validation and Analysis of Measured Data
3.1. Measured Data Parameters

In order to verify the performance of the proposed algorithm, this section uses mea-
sured data. The parameters corresponding to the measured data verification radar are
shown in Table 1.

Table 1. Parameter setting.

Parameter Name Numerical Magnitude Unit

Light velocity data 3 · 108 m/s
Pulse width 48 MHz

Step frequency interval 15 MHz
Sampling rate 120 MHz

Radial distance 1500 m
Tail down angle 27 ◦

Step frequency points 64 /
Signal carrier frequency 92 GHz
False alarm probability 10−6 /

Test window width 128 /
Protection window width 64 /
Reference window width 64 /

3.2. Data Acquisition Modes

When collecting data, the acquisition process is mainly carried out in a flying manner.
The schematic diagram of the flight path is shown in Figure 4. The ABCD represents the
flight stage, and the dotted line represents the vertical lift and horizontal flight stage.
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The measured experiment is aimed at the ground vehicle target, and the typical scene
data under different attitude angles are collected according to the specific trajectory. The
3D model of Target 1 is shown in Figure 5.
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3.3. Algorithm Verification

In this study, we utilized the pulse compression technique to enhance the radar echo
of Target 1 in a disk-flying scene. In Figures 6 and 7, we present the two-dimensional and
three-dimensional images obtained after applying pulse compression processing. Figure 6
exhibits the two-dimensional image following pulse compression, while Figure 7 showcases
the corresponding three-dimensional image.
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Upon careful observation of these two images, it becomes apparent that the target is
not adequately distinguishable in both Figures 6 and 7 due to a low signal-to-noise ratio
prevalent in the flying scene. This outcome indicates that in such scenarios, where the
signal and noise data exhibit minimal disparity, the echo signal from the target becomes
susceptible to being concealed by the noise, thereby hindering clear target detection. Con-
sequently, solely relying on pulse compression may not suffice to effectively enhance radar
target detection performance in this particular case.

Based on the theoretical analysis presented in Section 2, it can be deduced that stepped-
frequency radar has the capability to achieve high-resolution imaging by employing IFFT
processing on the pulse-compressed radar echo. In Figures 8 and 9, we showcase the two-
dimensional and three-dimensional images of the radar echo obtained after inter-pulse IFFT
processing, where the highlighted red area represents the scattering center of the target.
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Upon comparison of Figures 8 and 9, it is noticeable that the inter-pulse IFFT process-
ing leads to a certain level of enhancement in the signal-to-clutter ratio within the echo
image. However, owing to the presence of significant background clutter intensity, the
differentiation between the target signal and clutter signal is not distinctly evident. This
poses considerable challenges for subsequent radar target detection.

In view of the presented scenario, it is evident that the identification and extraction of
the target signal from the radar echo following inter-pulse IFFT processing pose significant
challenges. Consequently, future research endeavors should prioritize the development of
effective methods to mitigate the interference stemming from background ground clutter
on the target signal. This strategic focus aims to enhance the precision and dependability
of radar target detection.

In this paper, we propose a method that utilizes the echo map obtained after inter-
pulse IFFT processing. Subsequently, we calculate the maximum eigenvalue of the sliding
window block’s covariance matrix. For this experiment, we opted to use a 2 × 2 size
sliding window as the calculation unit. By analyzing the eigenvalues of the covariance
matrix of the data within the sliding window block, we can effectively extract the critical
characteristics of the radar target.

To showcase the results of our proposed method based on the maximum eigenvalue of
the sliding window covariance matrix, we present two-dimensional and three-dimensional
images in Figures 10 and 11. These images exhibit evident high-contrast features. Upon
observation of these images, the distinction between the target and background becomes
significantly apparent, facilitating accurate detection and recognition of radar targets. Upon
analyzing Figures 8 and 10, it is apparent that the two-dimensional image of the maximum
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eigenvalue of the covariance matrix highlights target scattering centers in red, demonstrat-
ing superior discrimination compared with the clutter background. This enhancement is
notably pronounced when contrasted with the two-dimensional image of the radar echo
after inter-pulse IFFT. Furthermore, observations from Figure 11 reveal that the amplitude
of the target scattering center in the three-dimensional representation of the maximum
eigenvalue of the covariance matrix significantly surpasses that of the clutter. Comparing
Figures 9 and 11, it becomes evident that the amplitude of the target scattering center in
Figure 10 further elevates the signal-to-clutter ratio, thereby creating favorable conditions
for subsequent radar target detection. These findings underscore the potential application
prospects of the maximum eigenvalue of the sliding window covariance matrix in radar
target detection.
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In the field of radar target detection, signal-to-noise ratio (SNR) and signal-to-clutter
ratio (SCR) are crucial indicators that determine the radar’s performance. To improve the
SCR in target detection of stepped-frequency radar, we propose a maximum eigenvalue
image extraction algorithm based on the Hermitian matrix. Figure 12 presents the local
amplification of the target one-dimensional range profile using three range profile extrac-
tion algorithms for radar echoes. The figure reveals a difference between the maximum
value and mean value of the extracted range profile in different range profile extraction
algorithms, with a difference of 15.25 dB.
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In Figure 13, we observe the locally enlarged image of the one-dimensional eigen-
value image obtained by utilizing three-range image extraction algorithms to extract the
maximum eigenvalue of the covariance matrix. The maximum and mean values of the
extracted eigenvalue images differ by 23.8 dB. These findings highlight the effectiveness
of the proposed algorithm in enhancing SCR and improving the detection performance of
stepped-frequency radar.
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Figure 13. One-dimensional Hermitian matrix maximum eigenvalue distance profile extraction for
local magnification.

By comparing Figures 12 and 13, we observe that the signal-to-clutter ratio (SCR) of the
eigenvalue image obtained using the proposed one-dimensional range profile extraction
algorithm to extract the maximum eigenvalue of the covariance matrix surpasses that
of the extracted target one-dimensional range profile, with an increase of 8.55 dB. This
significant improvement highlights the effectiveness of the proposed method in enhanc-
ing the SCR of radar target detection, thereby providing robust support for subsequent
radar target detection efforts. These findings demonstrate that employing the eigenvalue
one-dimensional range profile for range profile extraction can effectively enhance radar
performance. Therefore, in the context of radar target detection, this method holds practical
application value and offers important insights for radar system design and optimization.

In the field of radar-extended target detection, this paper employs the integral ex-
tended target detection method for experimental analysis. Figure 14 presents the results of
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target detection on the radar’s one-dimensional panoramic range image using this method.
Upon comparison with prior information on the radar scattering center, it becomes evident
that only one scattering center is detected in the panoramic range profile due to the low
signal-to-noise ratio. This observation underscores the challenges posed by the limited
detectability of scattering centers in a low signal-to-noise environment during the detection
of panoramic range profiles.
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Figure 14. One-dimensional range profile target detection for local magnification.

Furthermore, Figure 15 demonstrates the outcome of target detection on the maximum
eigenvalue distance image of the Hermitian matrix utilizing the integral extended target
detection method. A notable observation is that the panoramic maximum eigenvalue range
image exhibits a significant enhancement in the signal-to-noise ratio. Consequently, upon
comparison with prior information on the radar scattering center, it becomes evident that
the improved signal-to-noise ratio enables the successful detection of all four scattering
centers. This outcome highlights the efficacy of the integral extended target detection
method in enhancing the detectability of scattering centers and improving the overall
performance of radar target detection.
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The experimental results indicate that utilizing the maximum eigenvalue of the Her-
mitian matrix as a test statistic can significantly enhance the signal-to-clutter ratio and
improve radar target detection probability. This observation underscores the efficacy of
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the proposed method in enhancing the overall performance of radar target detection. The
results further highlight the potential of the maximum eigenvalue of the Hermitian matrix
as a test statistic in the context of stepped-frequency radar target detection, thereby offering
promising opportunities for enhancing radar target detection capabilities.

4. Discussion

To further validate the effectiveness of the proposed method, Target 2 and Target 3
were selected as the subjects for detection. The 3D model diagrams of Target 2 and Target 3
are depicted in Figure 16a and Figure 16h, respectively. The detection process was carried
out using a stepped-frequency radar in the same scene. This experimental design allows
for the observation and analysis of the reflection characteristics and radar return signals of
Target 2 and Target 3 at different frequency steps. The subsequent analysis presented in
this paper aims to assess the applicability and effectiveness of the proposed method across
various targets, thereby providing comprehensive insights into its performance.
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Figure 16. (a) 3D model of Target 2. (b) IDFT radar 3D image of Target 2. (c) Hermitian matrix
maximum eigenvalue IDFT 3D image of Target 2. (d) One-dimensional range profile extraction
for local magnification of Target 2. (e) One-dimensional Hermitian matrix maximum eigenvalue
distance profile extraction for local magnification of Target 2. (f) One-dimensional range profile
target detection for local magnification of Target 2. (g) One-dimensional Hermitian matrix maximum
eigenvalue distance profile target detection for local magnification of Target 2. (h) 3D model of
Target 3. (i) IDFT radar 3D image of Target 3. (j) Hermitian matrix maximum eigenvalue IDFT 3D
image of Target 3. (k) One-dimensional range profile extraction for local magnification of Target
3. (l) One-dimensional Hermitian matrix maximum eigenvalue distance profile extraction for local
magnification of Target 3. (m) One-dimensional range profile target detection for local magnification
of Target 3. (n) One-dimensional Hermitian matrix maximum eigenvalue distance profile target
detection for local magnification of Target 3.
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In this study, we utilized a pulse compression technique to enhance the radar echo of
Target 2 in a disk-flying scene. Figure 16b depicts the three-dimensional radar echo map
obtained after performing the Inverse Fast Fourier Transform (IFFT) between two pulses
of the target. The observation from Figure 16b indicates a minimal difference between
the target and the background, resulting in a less conspicuous target appearance. To
address this challenge, we introduce the maximum eigenvalue of the Hermitian matrix
as the detection statistic. Subsequently, Figure 16c presents a three-dimensional image
of the maximum eigenvalue of the Hermitian matrix, revealing that the utilization of the
maximum eigenvalue of the sliding window covariance matrix as the detection statistic
enables clear differentiation of the target from the background. This enhancement facilitates
more accurate target location detection.

Furthermore, to assess the performance of the maximum eigenvalue of the sliding
window covariance matrix, localized enlarged images of the one-dimensional range profile
and the maximum image of the one-dimensional covariance matrix are extracted, as de-
picted in Figure 16d and Figure 16e, respectively. The experimental results demonstrate
that the signal-to-clutter ratio of the one-dimensional range profile is approximately 14.56
dB, while the signal-to-clutter ratio of the maximum range profile of the one-dimensional
covariance matrix reaches approximately 21.5 dB. By utilizing the maximum eigenvalue of
the Hermitian matrix as the detection statistic, a noteworthy improvement in the signal-to-
clutter ratio of approximately 6.94 dB is observed. This significant increase signifies that
the maximum eigenvalue of the Hermitian matrix plays a crucial role in enhancing the
signal-to-noise ratio, thereby leading to improved target detection performance.

Furthermore, Figure 16f,g exhibits the localized amplification maps of the one-dimensional
range profile and the maximum range profile of the one-dimensional covariance matrix in
target detection. Upon observation of these two images, it becomes apparent that employing
the maximum range profile of the one-dimensional covariance matrix enables the detection
of two scattering centers, whereas the one-dimensional range profile can only detect a single
scattering center.

In this study, we utilized a pulse compression technique to enhance the radar echo of
Target 3 in a disk-flying scene. Figure 16i illustrates a three-dimensional radar echo map
obtained through the Inverse Fast Fourier Transform (IFFT) of three pulses from the target.
Upon examining Figure 16i, it becomes apparent that there is a minimal difference between
the target and the background, resulting in a less pronounced target appearance. In contrast,
Figure 16j presents a three-dimensional image depicting the maximum eigenvalue of the
sliding window covariance matrix. By analyzing Figure 16j, it can be observed that utilizing
the maximum eigenvalue of the sliding window covariance matrix as the detection statistic
enables clear differentiation of the target from the background. This enhancement in target
distinguishability allows for more accurate target location detection. To further assess
the effectiveness of the maximum eigenvalue of the sliding window covariance matrix,
localized enlarged images of the one-dimensional range profile and the maximum image of
the one-dimensional covariance matrix are extracted, as shown in Figure 16k and Figure 16l,
respectively. The experimental results indicate that the signal-to-clutter ratio of the one-
dimensional range profile is approximately 13.98 dB, while the signal-to-clutter ratio of the
maximum image of the one-dimensional covariance matrix reaches approximately 22.8 dB.
It is noteworthy that the utilization of the maximum eigenvalue of the sliding window
covariance matrix as the detection statistic leads to an increase in the signal-to-clutter
ratio by approximately 8.82 dB. This improvement highlights the significant capability
of the maximum eigenvalue of the sliding window covariance matrix in enhancing the
signal-to-noise ratio, ultimately improving the performance of target detection.

In summary, the target detection outcomes obtained through the utilization of the
maximum range profile of the one-dimensional sliding window covariance matrix align
with our prior knowledge of the target. This alignment serves to further validate the
efficacy of the maximum eigenvalue of the sliding window covariance matrix as a reliable
detection statistic. By adopting this approach, there is a noteworthy enhancement in the
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signal-to-clutter ratio, leading to an increased probability of successful target detection.
Consequently, this method holds significant practical value in enhancing the detection of
Target 2 and Target 3 when utilizing stepped-frequency radar.

5. Conclusions

In this paper, we propose a novel target detection method for ground target detection
using stepped-frequency radar. Our method addresses the challenges posed by non-
uniform, non-stationary, and complex ground clutter. Unlike traditional approaches that
rely on clutter characteristics, our method utilizes the eigenvalue decomposition of the
Hermite matrix to enhance target detection accuracy.

To achieve this, we construct a sliding window Hermite matrix and compute the
covariance matrix of the samples within the window blocks. The maximum eigenvalue
of this covariance matrix is then employed as the test statistic. By avoiding the need for
statistical modeling of clutter, our method mitigates the performance degradation caused by
model inaccuracies and mismatches. We validate the effectiveness of our proposed method
using measured data from a stepped-frequency radar. In this study, we utilized the pulse
compression technique to enhance the radar echo of Target 1, Target 2, and Target 3, which
are three different scattering center targets in a disk-flying scene. Experimental results
demonstrate significant improvements in the signal-to-clutter ratio and target detection
probability compared with traditional methods that rely on energy-based test statistics.
This indicates the promising application potential of our proposed method.

Therefore, our research makes an important contribution to ground target detection
using stepped-frequency radar. It provides valuable insights and can serve as a reference
for future studies in related fields.
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