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Abstract: Inverse synthetic-aperture radar (ISAR) can achieve precise imaging of targets, which
enables precise perception of battlefield information, and it has become one of the most important
tasks for radar systems. In multi-target scenarios, a resource scheduling method is required to
improve the sensing ability and the overall efficiency of a radar system due to the limited resources.
Considering the motion state of the target will change as the observation distance increases and image
defocusing can occur due to the prolonged coherence accumulation time and significant changes
in the target’s motion state, the optimal observation period should be an important consideration
factor in the resource scheduling method to further improve the imaging efficiency of radar system,
which has not yet been involved in existing research. In this paper, we first derive the expressions
of the target’s effective rotation angle and the equivalent rotation angular velocity and then define
the target’s optimal observation period. Then, for multi-target imaging scenarios, we allocate pulse
resources within a given time period based on sparse-aperture ISAR imaging technology. An adaptive
radar resource scheduling algorithm for multi-target ISAR imaging is proposed, which prioritizes
allocating resources based on the optimal observation periods for the targets. In the algorithm, a
radar resource scheduling model for multi-target ISAR imaging is established, and a feedback-based
closed-loop search optimization method is proposed to solve the model. Finally, the best scheduling
strategy can be obtained, which includes imaging task duration and the pulse allocation sequence for
each target. Simulation results validate the effectiveness of the algorithm.

Keywords:optimal observation period;radar imaging; radar resource scheduling; observation time
scheduling; resource allocation strategy

1. Introduction

Inverse synthetic-aperture radar (ISAR) imaging technology is the use of ground-based
radar to detect and image moving aerial and spaceborne targets, which enables the capture
of detailed characteristics of the targets, such as dimensions and geometry, and is of wide
value in the military and civil domains. Unlike optical imaging systems, radars can operate
effectively under adverse weather conditions like clouds and fog, and they can also provide
additional information on the range dimension. Therefore, target imaging has become one
of the most important tasks of radar systems [1–3].

ISAR imaging technology achieves high resolution in the range direction by trans-
mitting signals with a large time-bandwidth product and achieves high resolution in the
azimuth direction by forming a large synthetic aperture through the relative motion be-
tween the radar and the target, thereby obtaining high-resolution two-dimensional images.
Radar range resolution is primarily determined by the bandwidth of the transmitted signal,
while azimuth resolution depends on the relative rotation angle between the radar and the
target [4]. In order to achieve a higher azimuth resolution, radar often requires prolonged
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continuous observation of the target, which means consuming more time resources [5].
However, radar resources are often limited. In multi-target scenarios, a reasonable and
effective radar resource scheduling algorithm will allocate radar resources appropriately,
thereby effectively enhancing the overall performance of the radar system [6–13].

Several research teams have explored diverse radar resource scheduling methods for
imaging tasks, each contributing to improved radar system performance. Reference [14]
first studied a radar resource scheduling problem for imaging tasks based on sparse-
aperture ISAR imaging technology. By efficiently alternating observations of different
targets, it simultaneously imaged multiple targets within a period of time, significantly
improving imaging efficiency. On this basis, Reference [15] introduced the pulse interleav-
ing technique into the resource scheduling process. The utilization rate of radar system
resources is further improved by effectively utilizing the time resources of pulse waiting
periods. Reference [16] combined pulse interleaving with pre-allocation strategies to avoid
pulse conflicts and enable adaptive scheduling of radar time resources. Additionally, Ref-
erence [17] introduced aperture segmentation technology to jointly allocate radar time
and aperture resources. Reference [18] leveraged multiple-input multiple-output (MIMO)
phased array radar technology for multi-target imaging, optimizing array elements, power,
and frequency resources to achieve enhanced efficiency. Moreover, for the networked radar
imaging resource scheduling problem, Reference [19] investigated the resource scheduling
problem of distributed MIMO radar for multi-target imaging and solved the problem based
on maximizing scheduling benefits. Furthermore, Reference [20] defined a cooperative
game-theoretic framework for task assignment optimization in radar network multi-target
imaging, achieving efficient distribution and scheduling of radar nodes to minimize total
imaging duration. However, it is important to note that most existing research in this area
assumes that the motion state of the target remains unchanged during the observation
period, whereas, as the observation distance increases and the observation time lengthens,
the motion state of the target will change during the observation period. Additionally,
dynamic changes in the target motion state will directly impact the imaging quality and
the coherent accumulation time for imaging, thereby further influencing the resource
scheduling strategy in multi-target scenarios.

When dealing with targets exhibiting changing motion states, it becomes crucial to
select an optimal observation period based on state prediction results from target tracking.
As we all know, higher angular velocity in the relative rotation between the radar and
the target results in shorter coherent accumulation time for imaging, leading to reduced
consumption of radar resources. In addition, when the target motion is smooth, the Doppler
information generated by the target echo is basically unchanged, facilitating better imaging
results when employing range-Doppler (RD) algorithms [21,22]. However, it is important
to note that prolonged coherence accumulation time or significant changes in target motion
states can lead to image defocusing [23–25]. Therefore, the selection of the optimal obser-
vation period directly affects both the coherence accumulation time and the performance
of target imaging, and the radar resource scheduling algorithms that consider the optimal
observation periods will further enhance the imaging efficiency of the radar system.

In one of the working modes of a multifunction phased array radar, a certain amount
of time is often allocated for an imaging task, which is called imaging task duration.
To enhance the flexibility of resource allocation, a sparse-aperture ISAR imaging algorithm
is employed for target imaging, transforming continuous observation into sparse-aperture
observation. This involves transmitting only a subset of pulses during selected observation
periods and then using a signal reconstruction algorithm at the receiver side to recover the
complete signal for target imaging [26]. Based on this sparsifiability property, the radar
can achieve imaging of multiple targets simultaneously within the same period of time.
Therefore, it is necessary to study how to allocate pulse resources to each target within
the imaging task duration, using as few resources as possible to image as many targets
as possible. Based on the aforementioned considerations and analysis, an adaptive radar
resource scheduling method for multi-target ISAR imaging based on optimal observation
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periods is proposed. After we derive the expressions of the target’s effective rotation angle
and equivalent rotation angular velocity, we define and calculate each target’s optimal
observation period. Then, a resource scheduling model is constructed, with the imaging
task duration and the pulse allocation sequence for each target being optimization variables,
and a feedback-based closed-loop search optimization method is proposed to solve the
model. By solving this model, the optimal scheduling strategy (including the imaging task
duration and the pulse allocation sequence for each target) that satisfies various system
performance indices can be obtained.

The paper is structured as follows. Section 2 introduces the main methods proposed in
this paper, which include the formulation of the optimal observation period, the construc-
tion of the resource scheduling model, and the algorithm for model solving. In Section 3,
the effectiveness of the algorithm is verified through simulation experiments. Finally,
Section 4 provides the conclusion.

2. Materials and Methods

Aiming to address the problems of insufficient resources and low imaging efficiency
when imaging multiple targets by radar, this paper proposes an adaptive radar resource
scheduling algorithm for multi-target imaging based on optimal observation periods.
The principle of sparse-aperture ISAR imaging technology is introduced first. Subsequently,
the expressions of the target’s effective rotation angle and the equivalent rotation angular
velocity are derived, and the target’s optimal observation period is defined. The algorithm
then incorporates various constraints to construct the resource scheduling model based on
optimal observation periods. Finally, a feedback-based closed-loop search optimization
method is applied to solve the model and derive the optimal scheduling strategy.

2.1. Sparse-Aperture ISAR Imaging Principle

When observing a target, inverse synthetic-aperture radar can categorize the target’s
relative motion into three types: circular motion around the radar, translational motion,
and rotation around its own axis [27,28]. Circular motion around the radar results in a
consistent motion state for the target. Translational motion refers to movement along
the radar’s line of sight, resulting in uniform Doppler shifts across all scattering points,
which do not contribute to the imaging. Thus, after compensating for any translational
component through appropriate signal processing techniques, ISAR imaging focuses on
isolating and analyzing the rotational component of the target’s motion to synthesize
images as if observing a purely rotating object.

Based on the derivation, the Doppler frequency of the echo signal from each scatter
point in the rotating target is fd =

2vp
λ = 2ω

λ xp, where vp denotes radial velocity relative to
radar line of sight, λ is the wavelength of the transmitted signal, ω is the target’s equivalent
rotational angular velocity, and xp represents cross-range distance from the rotation axis
to the scatter point. Therefore, it is possible to extract cross-range distance information
of a target from the Doppler frequency of echoes from target scatter points. As long as
the Doppler resolution is high enough, it can represent the cross-range distribution of the
target; this ability forms the basic principle behind RD algorithm imaging. According to the
theoretical derivation, radar azimuth resolution is intrinsically related to a target’s effective
rotation angle relative to radar. For uniform rotational motion, this can be expressed as:

ρa =
λ

2∆θ
=

λ

2ωTc
, (1)

where ∆θ is the target’s effective rotation angle, and Tc is the coherent accumulation time
required for target imaging. When accounting for changes in a target’s equivalent rotational
angular velocity, the radar azimuth resolution can be expressed as:

ρa =
λ

2∆θ
=

λ

2
∫ t0 +Tc

t0
ω(t)dt

, (2)
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where ω(t) represents the time-varying equivalent rotational angular velocity, and t0 is the
starting moment of imaging.

The range resolution of radar is usually determined by the bandwidth of the radar
transmission signal. Under the condition of performing matched filtering on the echo,
the range resolution of radar can be expressed as follows:

ρr =
c

2B
, (3)

where c is the speed of light, and B is the bandwidth of the radar signal.
The sparse-aperture ISAR imaging algorithm, based on compressed sensing theory,

offers a method to reduce radar resource consumption for target imaging by transforming
continuous observations into sparse-aperture observations. This involves emitting only a
small number of pulses towards the target at the transmission end. Subsequently, a signal
reconstruction algorithm is utilized at the receiving end to recover and utilize the complete
signal for target imaging [28]. The utilization of this algorithm is particularly effective due
to sparsity in the Doppler domain within the target echo signal, whose main process is
described as follows.

Assuming the coherent accumulation time for target imaging is Tc, the radar full-
aperture echo signals of the target can be represented as sr(ts, tτ), 0 < ts ≤ Γ, 0 < tτ ≤ Tc,
where ts represents the fast time, tτ represents the slow time, and Γ is the pulse width.
A total of Nc pulses need to be transmitted, where Nc = PRF · Tc, PRF is the pulse repetition
frequency, and the full-aperture echo signal is represented in discrete form as sr(ts, n),
n = 1, 2, . . . , Nc. After completing the pulse compression processing in the range direction,
we obtain Sr( fs, n). Further performing the azimuthal Fourier transform, we can obtain the
two-dimensional imaging result of the target Sr( fs, fτ). Under sparse-aperture observation
conditions, where only M(M < Nc) pulses are transmitted towards the target, the signal
after range compression processing can be represented as Sr( fs, m), m = 1, 2, . . . , M. In this
case, the relationship between the full-aperture signal and the sparse-aperture signal
satisfies Sr( fs, m) = Φ · Sr( fs, n), where Φ is the observation matrix, which here is a random
partial identity matrix of M × Nc dimensions. Within the framework of compressed sensing
theory, existing research [29] indicates that, if the observation dimension M ≥ c1K · ln Nc,
where K is the sparsity of the target and c1 is a constant, then, by solving the following
optimization model, two-dimensional image reconstruction of the target can be achieved:

min
∥∥∥Sr( fs, fτ)

′
∥∥∥

1

s.t. Sr( fs, m) = ΦΨSr( fs, fτ)
′
, (4)

where ∥·∥1 represents the l1 norm, and Ψ is a sparse transformation matrix, which is a
inverse Fourier transform matrix here. Due to the simplicity and efficiency of the Orthogo-
nal Matching Pursuit (OMP) algorithm [30], this paper uses the OMP algorithm to solve
Equation (4), thereby obtaining a high-resolution two-dimensional image of the target.

2.2. Optimal Observation Period Formulation

It can be seen from Equation (2) that the radar azimuth resolution is related to the
target’s effective rotation angle. The expressions of the effective rotation angle and the
equivalent rotational angular velocity will be derived as follows.

Through the analysis of the sparse-aperture ISAR imaging algorithm, it can be under-
stood that the process of the target rotating around its own axis is the process of effective
rotation of the target. The effective rotation angle of the target is the angle at which the
target rotates around its own reference point.

When radar performs two-dimensional ISAR imaging of a target, the radar’s line-of-
sight direction and the target’s motion direction form the imaging plane of the radar on the
target. With the assumption that the target does not exhibit significant maneuverability in
the horizontal direction in a short period of time, the imaging plane remains unchanged
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during the imaging process. In this case, the target’s motion trajectory can be reflected on
the two-dimensional plane. When the target is flying in a straight line, the motion states of
the target at moment 0 and moment t are obtained as shown in Figure 1. Numbers ➀ to ➂

represent the three processes after the decomposition of the target movement. φ and φ′ are
the yaw angles at moment 0 and moment, respectively. t. It can be seen that the effective
rotation angle of target ∆θ is equal to the rotation angle of the target moving in a circular
motion around radar θ, which is also equal to the change in yaw angle along the radar’s
line-of-sight direction |∆φ| = |φ′ − φ|, that is, ∆θ = θ = |∆φ|.

(a) (b)

Figure 1. Derivation diagram of the target’s equivalent rotation angle. (a) Target flying in a straight
line. (b) Target flying along a curved path.

When the target is flying along a curved path, the motion states of the target at moment
0 and moment t are obtained, as shown in Figure 1. The effective rotation angle of the target
is ∆θ = α + θ, where α is the deviation of the target’s velocity direction in the geodetic
reference system. At the same time, the effective rotation angle of the target is also equal to
the change in yaw angle along the radar’s line-of-sight direction, that is, ∆θ = α + θ = |∆φ|.

Based on the above analysis, the effective rotation angle of the target is the change in
the yaw angle along the radar’s line of sight |∆φ|. Therefore, by acquiring information on
target search and tracking, and by observing changes in the yaw angle along the radar’s line
of sight, one can derive the value of the target’s equivalent rotational angular velocity over
time by differentiating the yaw angle with respect to time: ω(t) = dφ(t)/dt. However,
considering that errors may be larger when measuring a single variable, the effective
rotation angle is further divided into two parts: one part is the rotation angle of the
target moving in a circular motion around radar θ, and another part is the deviation of
the target’s velocity direction in the geodetic reference system α. Therefore, equivalent
rotational angular velocity can also be divided into two parts: ωθ(t) and ωα(t). Based on the
relationship between linear velocity and angular velocity in a circular motion, an expression
for ωθ(t) can be derived as follows:

ωθ(t) =
|v(t)| sin φ(t)

R(t)
, (5)

where v(t) is the target’s velocity vector, and R(t) is the distance between the target and
the radar. Expressions for α(t) and ωα(t) can be derived as follows:

α(t) = arccos
|v(0)|2 + |v(t)|2 − |v(t)− v(0)|2

2|v(0)||v(t)| , (6)

ωα(t) = d(α(t))/dt, (7)
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where |v(0)| is the velocity of the target at the start of the scheduling period. Therefore,
the expression for the second type of equivalent rotational angular velocity is as follows:

ω(t) = ωθ(t)± ωα(t) =
|v(t)| sin φ(t)

R(t)
± dα(t)

dt
. (8)

When the target is yawing in the positive direction of the z-axis of the geodetic
coordinate system, a positive sign is chosen. In order to reduce the impact of measurement
errors on the final result, the expressions for both types of equivalent rotational angular
velocity are integrated to obtain the final expression as follows:

ω(t) = (
|v(t)| sin φ(t)

R(t)
± dα(t)

dt
+

dφ(t)
dt

)/2. (9)

From Equation (9), it can be seen that the target’s equivalent rotational angular velocity
is directly related to the target’s velocity, distance, and yaw angle. When the target’s motion
states change, the equivalent rotational angular velocity will inevitably change as well.

Therefore, in combination with the above analysis, considering that the target cannot
exhibit significant maneuvering when being imaged with the RD algorithm lest it produce
an obvious defocusing phenomenon, this paper selects time periods when the target’s
equivalent rotational angular velocity is both large and stable as the optimal observation
periods for imaging the target and evaluates the smoothness of these observation periods
by analyzing the magnitude of angular acceleration.

2.3. Resource Scheduling Model Construction

To solve the resource scheduling problem in multi-target ISAR imaging tasks, we first
need to model the problem. Firstly, the optimal scheduling strategy output by the model
consists of two parts: the imaging task duration T and the pulse allocation sequences for
each target, where the pulse allocation sequences for each target are stored in the scheduling
vector x. The vector is initialized as a zero vector of length 1 × NT , where NT = T · PRF
is the total number of pulses within the imaging task duration, and each element in the
vector represents which target is being observed by the radar using the current pulse. If the
kth target is imaged at the ith pulse, then x(i) = k, with the specific expression shown in
Equation (10) as follows:

x(i) =


0, not used
1, k = 1
2, k = 2
. . .
N, k = N

, (10)

where N is the total number of targets to be imaged in the detection area.
Our goal is to accomplish the multi-target imaging tasks using as few resources

as possible while ensuring the success rate of task scheduling. Therefore, the objective
function should include the following points: (1) ensure a certain success rate of task
scheduling; (2) ensure that targets with higher priority are allocated resources for imaging
first; (3) minimize resource consumption as much as possible.

The first point, the success rate of task scheduling, can be measured by the ratio of the
number of successfully scheduled targets to the total number of targets to be imaged. Simi-
larly, for the second point, the ratio of the sum of priority levels of successfully scheduled
targets to the sum of priority levels of all targets to be imaged can be used as a measure.
Regarding the third point, in one of the working modes of a multi-function phased array
radar, a specific time segment is often reserved for imaging tasks. Therefore, the shorter
the imaging task duration, the less resource consumption. Additionally, since we allocate
sparse pulse sequences to each target, we define a metric called pulse utilization rate to
measure resource utilization within the imaging task duration. If the pulse utilization rate
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is too low, it indicates significant resource waste within the imaging task duration and
should be further reduced by shortening the imaging task duration.

Based on the above analysis, the following three performance indicators are defined:

(1) Success Rate of Task Scheduling (SRTS)

SRTS =
ns

N
, (11)

where ns is the number of targets successfully scheduled, ns =
N
∑

k=1
Xk.

(2) Priority Implementation Rate (PIR)

PIR =

N
∑

k=1
Pk Xk

N
∑

k=1
Pk

, (12)

where Pk is the priority of the kth target, and Xk can only take the values 1 or 0. Xk = 1
indicates that the kth target is scheduled, while Xk = 0 indicates that it is not. Then, Xk can
be expressed as:

Xk =

1
NT
∑

i=1

i
|i| |(x(i) = k) ̸= 0

0 else
. (13)

(3) Pulse Utilization Rate (PUR)

PUR =
Ms

Nc
, (14)

where Ms is the total number of pulses used within the imaging task duration, Ms =
N
∑

k=1

NT
∑

i=1

i
|i| |(x(i) = k) , and Nc is the total number of pulses during the imaging task duration.

Based on the performance indicators set above, with the scheduling vector x and the
imaging task duration T as the variables to be optimized, a radar resource scheduling
model for multi-target ISAR imaging is constructed:

max
x,T

{ l1 ·

N
∑

k=1
Pk · Xk

N
∑

k=1
Pk

+ l2 ·

N
∑

k=1
Xk

N
+ l3 ·

N
∑

k=1

T·PRF
∑

i=1

i
|i| |(x(i) = k)

T · PRF
}

s.t. Ta < T < Tb, T ∈ Z+

ts ≤ tk ≤ ts + T − Tk

∆θk =
∫ tk+Tk

tk
ωk(t)dt, Nk = Tk · PRF

max(ϖk(tk : tk + Tk)) < ϖ0

Mk =
NT
∑

i=1

i
|i| |(x(i) = k)

Mk ≥ c1 ·Kk · ln Nk
N
∑

k=1
Mk · Xk/PRF ≤ T

. (15)

The objective function is the weighted sum of the three performance indicators; l1, l2,
and l3 are, respectively, the weights of these three indicators, and they are respectively set
to 0.4, 0.3, and 0.3 here. The first constraint ensures that imaging task duration falls within
a predefined range [Ta, Tb]. The second constraint indicates that the target’s observation
period must be within the imaging task duration, where ts is the start time of scheduling,
and tk and Tk are, respectively, the start time of observation and coherent accumulation



Remote Sens. 2024, 16, 1496 8 of 21

time for the kth target. The third constraint requires sufficient rotation angle ∆θk during
observations to achieve desired azimuth resolution, and Nk is the number of pulses emitted
during coherent accumulation time. The fourth constraint represents that the observation
period should satisfy the condition of smoothness, where ϖk is the angular acceleration,
which can be obtained by differentiating the equivalent rotational angular velocity with
respect to time t, and ϖ0 is the threshold of angular acceleration that satisfies the imaging
quality requirements. The fifth constraint indicates that the target’s observation dimension
can be retrieved through scheduling vector x. The sixth constraint indicates that the
observation dimension must satisfy conditions required for reconstructing the original
signal using the OMP algorithm. The seventh constraint states that the total number of
transmitted pulses during observations cannot surpass available pulses as defined by the
imaging task duration.

2.4. Algorithm for Model Solving

Through analysis, it can be determined that Equation (15) presents a multi-dimensional
and computationally intensive optimization challenge in resource scheduling, and it is
challenging to solve using conventional gradient-based mathematical methods. Therefore,
in response to this problem, we have developed a feedback-based closed-loop search
optimization method. This method is inspired by the evolutionary algorithm’s approach
of continuously generating and refining candidate solutions to find the optimal solution.
Feedback is introduced into the candidate solution mutation mechanism, allowing for
directed mutation of candidate solutions based on the output of each iteration, ultimately
converging on an optimal solution. The solution method consists of two main parts: one
part is a specific method for allocating pulse sequences to each target when the imaging
task duration is determined, which we call the inner loop allocation method; the other
part is the closed-loop search optimization process for the imaging task duration, referred
to as the outer loop search method. Next, we will provide a detailed description of the
solution method.

2.4.1. Prior Information Acquisition

First, we need to obtain the necessary prior information. The radar first transmits a
small number of pulses to the targets to obtain information about the targets’ size, sparsity,
and other relevant data. Then, utilizing the target tracking information, the future motion
states of the target are predicted, including parameters such as velocity, distance, and yaw
angle information. Based on this, the target’s priority, equivalent rotational angular velocity,
and optimal observation period can be calculated.

(1) Calculate the target’s azimuth resolution and coherent accumulation angle.

Using the method described in Reference [14], the target’s azimuth size Skx and
sparsity Kk are estimated based on the coarse ISAR image obtained from transmitting a
small number of pulses. Then, assuming a reference size Sx_re f and a reference azimuth
resolution ρre f , the azimuth resolution of the target can be obtained based on the target’s
size as follows:

ρk =
Skx

Sx_re f
ρre f . (16)

Then, based on the expression for azimuth resolution, the expression for the coherent
accumulation angle can be obtained as follows:

∆θk =
λ

2 ρk
. (17)

(2) Calculate the priority of the target.

Typically, we consider targets with high flight velocity, close proximity to the radar,
and movement towards the radar to pose a greater threat and therefore require a higher
priority. Thus, when calculating the priority of a target, we focus on three factors: the
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target’s flight velocity vk(t), the distance from the target to the radar Rk(t), and the yaw
angle φk(t). Taking into account fluctuations in the target’s motion state, the priority is set
as follows:

Pk = ω1
Rk

′

max(Rk
′)
+ ω2

vk
′

max(vk
′)
+ ω3

φk
′

max(|φk
′|) , (18)

where Rk
′ = 1/ min(Rk(t)), vk

′ = max(|vk(t)|), and φk
′ = − cos(φk(0)). Rk

′ is the
reciprocal of the shortest distance from target k to the radar within the imaging task
duration, representing the threat level due to proximity; vk

′ is the maximum velocity of
target k within the imaging task duration; and φk

′ is the negative cosine value of the initial
yaw angle of target k, used to characterize the threat level of the target’s flight direction.
ω1, ω2, and ω3 are, respectively, the weights of these three factors, and weights can be set
for different scenarios according to their requirements.

(3) Calculate the optimal observation period for the target.

First, based on the predicted data of the target’s motion velocity, distance, and yaw
angle over time within the imaging task duration, the data of the target’s equivalent
rotational angular velocity over time ωk(t) can be calculated via Equation (9). Then,
the angular acceleration ϖk(t) can be obtained by differentiating the equivalent rotational
angular velocity with respect to time t, which is used to evaluate the smoothness of the
angular velocity.

The optimal observation period for each target can be determined by solving the
following optimization model:

min Tc

s.t.
∫ t0 + Tc

t0
ωk(t)dt = ∆θk

0 ≤ t0 ≤ T − Tc
0 < Tc < T
ϖk = d(ωk(t))/dt
max(ϖk(t0 : t0 + Tc)) < ϖ0

, (19)

where t0 and Tc are the variables to be optimized in the model, [t0, t0 + Tc] represents the
optimal observation period being sought, T is the imaging task duration, and ϖ0 is the
threshold of angular acceleration that satisfies the imaging quality requirements, represent-
ing the requirement for smoothness of angular acceleration within the optimal observation
period. The solution to this model can be obtained through a single mathematical traversal.

2.4.2. Inner Loop Allocation Method

When the imaging task duration is determined, the radar imaging resource optimiza-
tion scheduling problem mainly aims to maximize the SRTS and PIR and to allocate pulse
sequences to each target within the imaging task duration. The mathematical model serves
as a simplification of the model constructed in this paper and can be expressed as follows:

max
x

{ 0.5 ·

N
∑

k=1
Pk · Xk

N
∑

k=1
Pk

+ 0.5 ·

N
∑

k=1
Xk

N
}

s.t. ts ≤ tk ≤ ts + T − Tk

∆θk =
∫ tk+Tk

tk
ωk(t)dt, Nk = Tk · PRF

max(ϖk(tk : tk + Tk)) < ϖ0

Mk =
NT

∑
i=1

i
|i| |(x(i) = k)

Mk ≥ c1 ·Kk · ln Nk
N
∑

k=1
Mk · Xk

/
PRF ≤ T

. (20)
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For the solution to Equation (20), an inner loop allocation method is proposed. Due
to the fact that radar imaging targets are often threatening, it is necessary to prioritize
allocating resources for imaging to high-priority (i.e., high threat level) targets. Therefore,
the main idea of the method is to allocate pulses to each target individually based on priority
and on the optimal observation period for each target. To ensure that the pulses allocated to
each target meet the sparse reconstruction condition and achieve a better imaging quality,
the pulse sequence allocated to the target should satisfy conditions such as continuous
observation during the observation period, a sufficient number of pulses, and relatively
even distribution of sparse pulses. To achieve the realization of the third condition, we
divide the observation period into several small segments and then allocate a certain
number of pulses to the target in each segment. For example, if a total of M pulses needs
to be allocated, and we divide the observation pulses into n segments, then M/n pulses
need to be allocated to the target in each segment. By employing this method, we ensure a
certain degree of uniform distribution of pulse sequences within the observation period.

The specific steps of the inner loop allocation method are as follows:
Step 1: Perceive the characteristics of the target and predict the target’s motion state;
Step 2: Evaluate the priority of the targets;
Step 3: Calculate the optimal observation period for each target within the imaging

task duration;
Step 4: Sort targets according to priority and allocate observation pulses to each target

sequentially. When allocating, prioritize giving each target its optimal observation period.
If resources are insufficient within this optimal period, then, based on experience, search
for an available suboptimal observation period near it. The allocated pulses must comply
with sparse reconstruction conditions;

Step 5: When all targets have been assigned or when resources are insufficient, the
allocation process ends, and the pulse allocation sequence for each target can be obtained.

2.4.3. Outer Loop Search Method

For the outer loop search method, we introduce a feedback structure based on evolu-
tionary algorithms, which quickly converges to the optimal solution of the problem after a
limited number of iterations, obtaining the optimal imaging task duration.

Firstly, an evaluation indicator called Degree of Excellence (DoE) is defined according
to the objective function in the model, as shown in Equation (21) as follows:

DoE =
SRTS − S0

|SRTS − S0|
· (l1 ·PIR + l2 ·SRTS + l3 ·PUR), (21)

where SRTS−S0
|SRTS−S0|

represents the positive or negative nature of the DoE. Only when SRTS
meets certain requirements can DoE be positive, and l1, l2, and l3 are respectively set to 0.4,
0.3, and 0.3.

Then, we design the feedback structure as shown in Figure 2.

Figure 2. Feedback structure.
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The mutation operator in the figure is defined as follows:

muor = ⌊10 × (PUR − SRTS)⌋, (22)

operator =


1, muor ≤ 0&DoE ≤ 0
−1, muor ≤ −T&DoE > 0
break, muor = 0&DoE > 0
muor, else

, (23)

where muor is a coarse operator that is designed based on experience, and it is feasible in
most cases. For example, in the case where DoE is a positive value, when SRTS is high but
PUR is low, it indicates that the imaging task duration has become too long, and the imaging
task duration should be mutated towards shortening. At this point, muor takes a negative
value. Since we usually set the imaging task duration as an integer, the operators here are
also set as integers. Compared to setting the operator as a decimal, setting it as an integer
can significantly reduce the number of iterations, thereby reducing the computational
complexity of the algorithm. The adjustment step size of the mutation operator is set
to 1; a more detailed definition for the operator is shown in Equation (23). When muor
is calculated not as a positive value and DoE is also not positive, the obtained solution
does not meet the condition of SRTS, and the imaging task duration should not be further
shortened. Therefore, in this case, the operator is set to 1 for calibration. When muor
is calculated as less than −T and DoE is a positive value, it indicates that the mutation
operator value is too large. In order to avoid a negative value for the imaging task duration,
the operator is set to −1 for calibration. When muor is calculated as equal to 0 and DoE is a
positive value, it indicates that both PUR and SRTS have reached a high level. The obtained
solution at this point is satisfactory, and the iterative process can be terminated.

The main idea of the outer loop search method is as follows: initially, based on
empirical values, an initial solution is determined, which includes an imaging task duration
and its corresponding pulse allocation sequence for each target. Then, we calculate the
SRTS, PIR, and PUR, and the DoE of the current solution can also be obtained. Following
this, a mutation operator is constructed as feedback based on SRTS and PUR, which is
utilized to mutate the imaging task duration. After mutation, a new imaging task duration
can be obtained, and then the algorithm proceeds to the next iteration. After a limited
number of iterations, if T starts to oscillate slightly in a regular pattern and DoE no longer
increases, we consider that T has converged. At this point, the mutation stops, and the
scheduling strategy with the highest DoE is selected as the optimal scheduling strategy,
which includes an imaging task duration and its corresponding pulse allocation sequence
for each target.

Finally, the adaptive radar resources scheduling algorithm for multi-target ISAR
imaging based on optimal observation periods is described in Algorithm 1.
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Algorithm 1 Adaptive Radar Resource Scheduling Algorithm for Multi-Target Imaging
Based on Optimal Observation Periods

Input: N, Sk, Kk, vk(t), Rk(t), φk(t), and T0;
Output: xbest and Tbest;

1: Calculate the equivalent rotational angular velocity ωk(t) and angular acceleration
ϖk(t) according to the input;

2: Calculate the target’s azimuth resolution ρk via (16), the coherent accumulation angle
∆θk via (17), and the priority Pk via (18);

3: Initialize maxDoE = 0, T = T0;
4: Sort the targets in order of priority to get the sorted order I;
5: while ¬(T has converged) do
6: Initialize x = [0, 0, . . . , 0];
7: for i=1:N do
8: k = I(i);
9: Calculate the optimal observation period for the target by solving the optimization

model of Equation (19);
10: Calculate the observation dimension Mk = c1 · Kk · ln Nk, the observation period

xk = x( tk
PRF : tk+T

PRF ), and the free pulse in xk: f ree_pulse = f ind(xk = 0);
11: if count( f ree_pulse) ≥ Mk then
12: Select Mk pulse in f ree_pulse as Kpulse , make x(Kpulse) = k;
13: Update x;
14: else
15: Find another available period around the optimal period;
16: Update x;
17: if no available period exit then
18: Break;
19: end if
20: end if
21: end for
22: Get the PIR, SRTS, PUR and calculate the DoE, operator;
23: if DoE > maxDoE then
24: maxDoE = DoE;
25: Tbest = T;
26: xbest = x;
27: end if
28: T = T + operator;
29: end while
30: return Tbest, xbest

3. Simulations
3.1. Algorithm Effectiveness Verification

Assuming the radar emits a linear frequency modulated signal, the carrier frequency
of the emitted signal fc = 10 GHz, the bandwidth B = 300 MHz, the range resolution
ρr = 0.5 m, the pulse repetition frequency PRF = 1000 Hz, the pulse width Tp = 1 µs,
the baseline size of the target in azimuth Sx_re f = 25 m, the required azimuth resolution
ρre f = 0.5 m, the threshold for SRTS S0 = 0.99, the angular acceleration threshold is set to
ϖ0 = 2× 10−4 through several simulation experiments, and ω1, ω2, and ω3 are respectively
set to 0.3, 0.3, and 0.4 according to the expert experience.

Assuming there are a total of 20 targets to be imaged within the radar detection area,
the target parameters are shown in Table 1. Among them, size and sparsity represent the
size and sparsity of the targets in the azimuth direction. Figure 3 shows the scattering point
models of two of these targets (Target 4 and Target 8). Each target is approximately 50 km
away from the radar and moves at a uniform or variable speed at different angles within
the radar detection area. The angular velocity of each target over time is shown in Figure 4.
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Table 1. Target parameters.

Size (m) Sparsity Size (m) Sparsity

Target 1 21.45 40 Target 11 25.5 45
Target 2 41.87 87 Target 12 21 46
Target 3 22.5 47 Target 13 26 40
Target 4 65.5 134 Target 14 28.5 52
Target 5 23 50 Target 15 30 62
Target 6 23.5 48 Target 16 21.5 43
Target 7 24 42 Target 17 24 42
Target 8 23 45 Target 18 18.5 41
Target 9 66 146 Target 19 19 39
Target 10 17 36 Target 20 28 54
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Figure 3. Scattering point models. (a) Target 4. (b) Target 8.

Figure 4. Angular velocity of 20 target over time.

Using the algorithm proposed in this paper, an optimal scheduling strategy for radar
imaging of 20 targets can be achieved after a finite number of iterations. To avoid random-
ness, 100 Monte Carlo experiments were conducted for the inner loop allocation method in
each iteration, and the changes in three performance indicators with the number of itera-
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tions are shown in Figure 5a. Furthermore, the graphs of DoE and imaging task duration
varying with the number of iterations are calculated and shown in Figure 5b,c.
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Figure 5. Indicators varying with iteration number. (a) Three performance indicators varying with
iteration number. (b) Degree of Excellence (DoE) varying with iteration number. (c) Imaging task
duration varying with iteration number.

From Figure 5, it can be observed that the parameters in all three subplots start
oscillating after the 3rd iteration, and the solution with the highest DoE will be selected as
the optimal scheduling strategy. From Figure 5b, it can be seen that the solution obtained
in the 5th iteration has the highest DoE, and from the corresponding position in Figure 5c,
the imaging task duration is 11 s. Therefore, we can conclude that, for the scenario with
20 targets in this experiment, an imaging task duration of 11 s can maximize the overall
system efficiency. Thus, an imaging task duration of 11 s and its corresponding pulse
allocation sequence for each target constitute the optimal scheduling strategy.

At the same time, the experimental results provide the pulse allocation sequence for
each target when the imaging task duration is set to 11 s, as shown in Figure 6. When PRF
is set to 1000 Hz, 11 s means emitting 11,000 pulses. Each subplot in Figure 6 represents
the sequence of observation pulses assigned to each target by the radar, and the assigned
pulses are indicated by blue lines.

From Figure 6, it can be observed that the proposed algorithm successfully assigns
observation pulses to all of the targets, achieving an SRTS of 100% and a PIR of 100%;
the PUR is determined as 86.57% by calculation. For Target 7, which has the highest
priority, its optimal observation period of [2744, 7821] is allocated first. However, due
to limited resources, Target 1, which has the lowest priority, does not receive its optimal
observation period of [1, 5817]. Instead, the period [2372, 8178] is allocated. For Target 4 and
Target 9, which are large in size and have a greater number of scattering points, the required
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coherent accumulation time is shorter due to their higher resolution. However, due to
their greater sparsity, a larger number of observation pulses is needed. Although the
coherent accumulation time for other targets is slightly longer, their sparsity is lower, and
the distribution of observation pulses is more dispersed.

(a) (b)

Figure 6. Pulse allocation sequences for 20 targets when the imaging task duration is set to 11 s. (The
blue line indicates that the pulse at the current position is assigned to observe the corresponding
target). (a) The first 10 targets. (b) The last 10 targets.

Finally, based on the scheduling results, the targets are observed and imaged using the
sparse-aperture ISAR imaging algorithm, with the results of some typical targets shown in
Figure 7. Lines of different colors in the figure represent different magnitudes of scattering
coefficients. The imaging results of Target 4, Target 8, Target 9, and Target 17 are displayed.
As can be seen from Figure 7, the shapes and structures of the targets in the imaging results
are clear and consistent with their true scattering distributions.

The image contrast of the imaging result for each target is shown in Table 2. Image
contrast is the normalized standard deviation of the image. The greater the image contrast,
the higher the focus of the image and the better the image quality.

Table 2. The image contrast of the imaging result for each target.

Image Contrast

Target 1 18.7298 Target 6 16.7991 Target 11 15.43178 Target 16 17.7603
Target 2 17.2339 Target 7 16.7066 Target 12 18.8842 Target 17 16.4868
Target 3 17.4812 Target 8 17.5831 Target 13 18.5087 Target 18 19.2912
Target 4 7.7819 Target 9 7.2393 Target 14 15.2905 Target 19 16.7248
Target 5 17.7054 Target 10 18.779 Target 15 15.4148 Target 20 12.2694

The experiment proves that the proposed algorithm achieves a rational allocation of
radar resources among various targets. At the same time, according to the data in Table 2,
it can be demonstrated that the imaging results obtained by observing the targets based on
the scheduling results are satisfactory in terms of quality.
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Figure 7. Imaging results. (a) Target 4. (b) Target 8. (c) Target 9. (d) Target 17.

3.2. Comparative Performance Analysis

In order to verify the performance advantages of the algorithm proposed in this
paper, it is compared with the existing algorithms. The main idea of the existing resource
optimization scheduling algorithm for multi-target imaging based on single-base radar [14]
is to allocate a limited number of observation pulses to each target according to target
feature cognition, and then target imaging can be achieved based on sparse-aperture ISAR
imaging algorithm. Specifically, it first evaluates the priority or scheduling benefit of each
target based on the target detection and identification outcomes. Then, according to the
priority or scheduling benefit, it randomly assigns a limited number of observation pulses
to each target sequentially without considering the impact of optimal observation periods
on the resource scheduling strategy. Finally, the target imaging can be achieved by using the
sparse-aperture ISAR imaging algorithm according to the scheduling results (hereinafter
referred to as Algorithm 2).

Furthermore, in order to validate the necessity of including an angular velocity smooth-
ness constraint and performing imaging task duration optimization in the algorithm pro-
posed in this paper, we consider using only the maximum angular velocity as the sole
criterion for optimal observation period selection to illustrate its impact and make it a
comparative algorithm (hereinafter referred to as Algorithm 3).

Since Algorithms 2 and 3 do not take into account the optimization of the imaging
task duration, the imaging task duration is firstly fixed at 10 s. The scheduling performance
of the three algorithms is shown in Table 3.

Table 3. Scheduling performance of the three algorithms.

SRTS PIR PUR

Algorithm 1 0.955 0.986431 0.921626
Algorithm 2 0.869 0.896871 0.834812
Algorithm 3 0.99 0.993156 0.921178
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From Table 3, it can be seen that all the performance indicators of the proposed
algorithm are significantly better than Algorithm 2 and, compared with Algorithm 3,
the performance is comparable.

Taking Target 8 as an example, the scheduling and imaging results of the three algo-
rithms are shown in Figure 8. To facilitate the observation of the relationship between the
pulse allocation method and the equivalent rotation angular velocity, we have displayed
the pulse allocation sequence in the angular velocity–time diagram of Target 8, as shown in
Figure 8a,c,e.
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Figure 8. The scheduling and imaging results of the three algorithms. (The red lines represent the
pulses assigned to Target 8 for observation, and they are sparsely distributed.) (a) The scheduling
result of the proposed algorithm for Target 8. (b) The imaging result of the proposed algorithm for
Target 8. (c) The scheduling result of Algorithm 2 for Target 8. (d) The imaging result of Algorithm 2
for Target 8. (e) The scheduling result of Algorithm 3 for Target 8. (f) The imaging result of Algorithm
3 for Target 8.
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From Figure 8, it can be observed that the proposed algorithm, which considers
angular velocity smoothness constraints, selects a slightly lower but relatively stable angular
velocity time period as the optimal observation period during scheduling, resulting in a
higher quality image with an image contrast of 17.5831. Algorithm 2 schedules based on
priority from front to back. Given that Target 8 has a higher priority, it selects an earlier
time period for observation, also yielding good image quality, with an image contrast
value of 17.5397. Algorithm 3, on the other hand, does not account for the smoothness of
target motion and selects observation time periods solely based on higher angular velocity.
Consequently, this approach leads to images with noticeable defocusing and a significantly
lower image contrast of only 15.6305 compared to the first two algorithms.

Therefore, although Algorithm 3 appears to have performance indicators comparable
to the algorithm proposed in this paper, its imaging quality is not guaranteed.

In addition, the scheduling performance of the three algorithms was compared under
varying numbers of targets. The algorithm proposed in this paper can achieve joint
optimization of imaging task duration and the pulse allocation sequence for each target,
while Algorithms 2 and 3 require a fixed imaging task duration, which is set to 10 s.
The imaging task duration optimization result of the proposed algorithm is shown in
Figure 9, and the comparison of performance indicators between different algorithms is
shown in Figure 10.
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Figure 9. Imaging task duration varying with the number of targets for the proposed algorithm.

From Figures 9 and 10, it can be seen that the proposed algorithm can adaptively adjust
the length of the imaging task duration according to the number of targets, ensuring that
both the PUR and SRTS remain at a high level. As the number of targets increases, the rate
of growth in imaging task duration accelerates in order to ensure that the pulse sequence
meets the sparse reconstruction condition. Additionally, the graph shows that, before
reaching 20 targets, while achieving the same or higher SRTS as the other two algorithms,
the proposed algorithm can obtain a higher PUR. After exceeding 20 targets, although there
is a decline in PUR for the proposed algorithm, it still demonstrates a clear advantage over
the other two algorithms in two important aspects: priority implementation rate (PIR) and
success rate of task scheduling (SRTS).

Therefore, based on the comprehensive performance comparison analysis above, it can
be proven that the algorithm proposed in this paper has an overall performance advantage.
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Figure 10. Comparison of performance indicators between different algorithms. (a) PIR varying with
the number of targets. (b) SRTS varying with the number of targets. (c) PUR varying with the number
of targets.

4. Conclusions

In this paper, we addressed the problem of radar resource allocation in multi-target
imaging scenarios. Initially, we defined the optimal observation periods of the targets under
varying motion states. Subsequently, an adaptive radar resource scheduling algorithm
for multi-target ISAR imaging based on optimal observation periods was proposed. This
algorithm considers the imaging task duration and the pulse allocation sequence for
each target as optimization variables and involves the construction of the radar resource
scheduling model for multi-target ISAR imaging. Then, a feedback-based closed-loop
search optimization method was proposed to solve this model, ultimately achieving a
rational allocation of radar resources among the targets and an enhancement in the overall
performance of the radar system.

The collaborative work mechanism and integration of resources among multiple
radars in a radar network can enhance its capability beyond that of individual radars,
rendering it more suitable for ISAR imaging missions involving aerial and space targets in
modern warfare scenarios. Hence, our future research will focus on developing a resource
scheduling method for a radar network tailored to 2D and 3D imaging tasks involving
multiple targets to improve the efficiency of radar systems.
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RD Range Doppler
OMP Orthogonal Matching Pursuit
PRF Pulse Repetition Frequency
PIR Priority Implementation Rate
SRTS Success Rate of Task Scheduling
PUR Pulse Utilization Rate
DoE Degree of Excellence

References
1. Bai, X.; Zhang, Y.; Liu, S. High-Resolution Radar Imaging of Off-Grid Maneuvering Targets Based on Parametric Sparse Bayesian

Learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5112611.
2. Tian, X.; Bai, X.; Xue, R.; Qin, R.; Zhou, F. Fusion Recognition of Space Targets with Micro-Motion. IEEE Trans. Aerosp. Electron.

Syst. 2022, 58, 3116-3125. [CrossRef]
3. Wang, Y.; Zhang,Y.; Bai, X. High-Resolution ISAR Imaging With SSFCS Based on Nonparametric Bayesian Learning and Genetic

Algorith. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5106612.. [CrossRef]
4. Hovanessian, S.A. Introduction to Synthetic Array and Imaging Radars; Artech House Publishers: Dedham, MA, USA, 1980.
5. Ausherman, D.A.; Kozma, A.; Walker, J.L.; Jones, H.M.; Poggio, E.C. Developments in Radar Imaging. IEEE Trans. Aerosp.

Electron. Syst. 1984, AES-20, 363–400. [CrossRef]
6. Shi, C.; Tang, Z.; Ding, L.; Yan, J. Multi-Domain Resource Allocation for Asynchronous Target Tracking in Heterogeneous Multiple

Radar Networks with Non-Ideal Detection. IEEE Trans. Aerosp. Electron. Syst. 2023, 60, 2016–2033.
7. Shi, C.; Wang, Y.; Salous, S.; Zhou, J.; Yan, J. Joint Transmit Resource Management and Waveform Selection Strategy for Target

Tracking in Distributed Phased Array Radar Network. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 2762–2778. .. [CrossRef]
8. Yan, J.; Jiao, H.; Pu, W.; Shi, C.; Dai, J.; Liu, H. Radar sensor network resource allocation for fused target tracking: A brief review.

Inf. Fusion 2022, 86–87, 104–115. [CrossRef]
9. Yan, J.; Pu, W.; Zhou, S.; Liu, H.; Greco, M.S. Optimal Resource Allocation for Asynchronous Multiple Targets Tracking in

Heterogeneous Radar Networks. IEEE Trans. Signal Process. 2022, 68, 4055–4068. [CrossRef]
10. Yan, J.; Pu, W.; Zhou, S.; Liu, H.; Bao, Z. Collaborative detection and power allocation framework for target tracking in multiple

radar system. Inf. Fusion 2020, 55, 173–183. [CrossRef]
11. Li, A.; Liao, K.; Ouyang, S. ISAR imaging resource-scheduling algorithm in network radar based on information fusion. J. Eng.

2019, 20, 7078–7082. [CrossRef]
12. Xu, F.; Wang, R.; Mao, D.; Zhang, Y.; Zhang, Y.; Huang, Y.; Yang, J. Resource Allocation Optimization of Distributed Radar

Imaging System Based on Spatial Spectrum Analysis. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience
and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 9101–9104. [CrossRef]

13. Shao, S.; Zhang, L.; Liu, H. An optimal imaging time interval selection technique for marine targets ISAR imaging based on sea
dynamic prior information. IEEE Sens. J. 2019, 19, 4940–4953. [CrossRef]

14. Chen, Y.; Zhang, Q.; Yuan, N.; Luo, Y.; Lou, H. An adaptive ISAR-imaging-considered task scheduling algorithm for multi-function
phased array radars. IEEE Trans. Signal Process. 2019, 63, 5096–5110. [CrossRef]

15. Meng, D.; Xu, H.; Zhang, Q.; Chen, Y.J. Adaptive scheduling algorithm for ISAR imaging radar based on pulse interleaving. In
Machine Learning and Intelligent Communications; Springer: Berlin/Heidelberg, Germany, 2017; pp. 169–178. [CrossRef]

16. Wang, H.; Liao, K.; Ouyang, S.; Wang, H.; Yang, L. Resource scheduling algorithm optimization for multitarget inverse synthetic
aperture radar imaging in radar network. J. Appl. Remote 2021, 15, 016521–016521. [CrossRef]

17. Du, Y.; Liao, K.F.; Ouyang, S.; Li, J.J.; Huang, G.J. Time and Aperture Resource Allocation Strategy for Multitarget ISAR Imaging
in a Radar Network. IEEE Sens. J. 2020, 20, 3196–3206. [CrossRef]

18. Chen, Y.J.; Zhang, Q.; Luo, Y.; Li, K.M. Multi-Target Radar Imaging Based on Phased-MIMO Technique—Part II: Adaptive
Resource Allocation. IEEE Sens. J. 2017, 17, 6198–6209. [CrossRef]

19. Hu, T.; Liao, K.; Ouyang, S.; Wang, H. Resource Scheduling for Multitarget Imaging in a Distributed Netted Radar System Based
on Maximum Scheduling Benefits. Sensors 2022, 22, 6400.. [CrossRef] [PubMed]

20. Wang, D.; Li, K.M.; Zhang, Q.; Lu, X.F.; Luo, Y. A cooperative task allocation game for multi-target imaging in radar networks.
IEEE Sens. J. 2021, 21, 7541–7550. [CrossRef]

http://dx.doi.org/10.1109/TAES.2022.3145303
http://dx.doi.org/10.1109/TGRS.2023.3291873
http://dx.doi.org/10.1109/TAES.1984.4502060
.
http://dx.doi.org/10.1109/TAES.2021.3138869
http://dx.doi.org/10.1016/j.inffus.2022.06.009
http://dx.doi.org/10.1109/TSP.2020.3007313
http://dx.doi.org/10.1016/j.inffus.2019.08.010
http://dx.doi.org/10.1049/joe.2019.0531
http://dx.doi.org/10.1109/IGARSS.2019.8898858
http://dx.doi.org/10.1109/JSEN.2019.2903399
http://dx.doi.org/10.1109/TSP.2015.2449251
http://dx.doi.org/10.1007/978-3-319-73447-7_20
http://dx.doi.org/10.1117/1.JRS.15.016521
http://dx.doi.org/10.1109/JSEN.2019.2954711
http://dx.doi.org/10.1109/JSEN.2017.2740038
http://dx.doi.org/10.3390/s22176400
http://www.ncbi.nlm.nih.gov/pubmed/36080856
http://dx.doi.org/10.1109/JSEN.2021.3049899


Remote Sens. 2024, 16, 1496 21 of 21

21. Chen, V.; Qian, S. Joint time-frequency transform for radar range-Doppler imaging. IEEE Trans. Aerosp. Electron. Syst. 1998, 34,
486–499. [CrossRef]

22. Stankovic, L.; Thayaparan, T.; Dakovic, M.; Popovic-Bugarin, V. Micro-Doppler removal in the radar imaging analysis. IEEE
Trans. Aerosp. Electron. Syst. 2013, 49, 1234–1250. [CrossRef]

23. Wang, Y.; Chen, X. 3-D Interferometric Inverse Synthetic Aperture Radar Imaging of Ship Target With Complex Motion. IEEE
Trans. Geosci. Remote Sens. 2018, 56, 3693–3708. [CrossRef]

24. Xu, G.; Xing, M.; Xia, X.G.; Zhang, L.; Chen, Q.; Bao, Z. 3D Geometry and Motion Estimations of Maneuvering Targets for
Interferometric ISAR With Sparse Aperture. IEEE Trans. Image Process. 2016, 25, 2005–2020. [CrossRef] [PubMed]

25. Wang, J.; Wu, Y.; Deng, X.; Zhang, L.; Wang, J.; Zhou, L. Highly Maneuvering Target Detection Based on Neural Network and
Generalized Radon-Fourier Transform. IEEE Geosci. Remote Sens. Lett. 2023, 20, 3507805.. [CrossRef]

26. Zhang, L.; Xing, M.; Qiu, C.W.; Li, J.; Bao, Z. Achieving Higher Resolution ISAR Imaging With Limited Pulses via Compressed
Sampling. IEEE Geosci. Remote Sens. Lett. 2009, 6, 567–571. [CrossRef]

27. Xu, G.; Zhang, B.; Chen, J.; Hong, W. Structured Low-Rank and Sparse Method for ISAR Imaging With 2-D Compressive Sampling.
IEEE Trans. Geosci. Remote Sens. 2022, 60, 5239014.. [CrossRef]

28. Xu, G.; Zhang, B.; Chen, J.; Wu, F.; Sheng, J.; Hong, W. Sparse Inverse Synthetic Aperture Radar Imaging Using Structured
Low-Rank Method. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5213712.. [CrossRef]

29. Luo, Y.; Zhang, Q.; Hong, W.; Wu, Y. Waveform design and high-resolution imaging of cognitive radar based on compressive
sensing. Sci. China Inf. Sci. 2012, 55, 2590–2603. [CrossRef]

30. Cheng, P.; Wang, X.; Zhao, J.; Cheng, J. A Fast and Accurate Compressed Sensing Reconstruction Algorithm for ISAR Imaging.
IEEE Access 2019, 7, 157019–157026. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/7.670330
http://dx.doi.org/10.1109/TAES.2013.6494410
http://dx.doi.org/10.1109/TGRS.2018.2806888
http://dx.doi.org/10.1109/TIP.2016.2535362
http://www.ncbi.nlm.nih.gov/pubmed/26930684
http://dx.doi.org/10.1109/LGRS.2023.3312677
http://dx.doi.org/10.1109/LGRS.2009.2021584
http://dx.doi.org/10.1109/TGRS.2022.3221971
http://dx.doi.org/10.1109/TGRS.2021.3118083
http://dx.doi.org/10.1007/s11432-011-4527-x
http://dx.doi.org/10.1109/ACCESS.2019.2949756

	Introduction
	Materials and Methods
	Sparse-Aperture ISAR Imaging Principle
	Optimal Observation Period Formulation
	Resource Scheduling Model Construction
	Algorithm for Model Solving
	Prior Information Acquisition
	Inner Loop Allocation Method
	Outer Loop Search Method


	Simulations
	Algorithm Effectiveness Verification
	Comparative Performance Analysis

	Conclusions
	References

