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Abstract: Satellite precipitation products (SPPs) are of great significance for water resource manage-
ment and utilization in China; however, they suffer from considerable uncertainty. While numerous
researchers have evaluated the accuracy of various SPPs, further investigation is needed to assess
their performance across China’s nine major water resource regions. This study used the latest precip-
itation dataset of the China Meteorological Administration’s Land Surface Data Assimilation System
(CLDAS-V2.0) as the benchmark and evaluated the performance of six SPPs—GSMaP, PERSIANN,
CMORPH, CHIRPS, GPM IMERG, and TRMM—using six indices: correlation coefficient (CC), root
mean square error (RMSE), mean absolute error (MAE), probability of detection (POD), false alarm
rate (FAR), and critical success index (CSI), at both daily and hourly scales across China’s nine water
resource regions. The conclusions of this study are as follows: (1) The performance of the six SPPs
was generally weaker in the west than in the east, with the Continental Basin (CB) exhibiting the
poorest performance, followed by the Southwest Basin (SB). (2) At the hourly scale, the performance
of the six SPPs was weaker compared to the daily scale, particularly in the high-altitude CB and
the high-latitude Songhua and Liaohe River Basin (SLRB), where observing light precipitation and
snowfall presents significant challenges. (3) GSMaP, CMORPH, and GPM IMERG demonstrated
superior overall performance compared to CHIRPS, PERISANN, and TRMM. (4) CMORPH was
found to be better suited for application in drought-prone areas, showcasing optimal performance in
the CB and SB. GSMaP excelled in humid regions, displaying the best overall performance in the
remaining seven basins. GPM IMERG serves as a complementary precipitation data source for the
first two.

Keywords: satellite precipitation products; accuracy assessment; water resource regions; GSMaP;
CLDAS

1. Introduction

Precipitation data serve as an indispensable foundation for flood forecasting, drought
prediction, and climate change research [1], while also finding extensive applications in
various fields such as agricultural production, water resource management, and ecological
environment governance. Presently, the primary methods for acquiring precipitation
data involve measurements from ground meteorological stations and observations from
meteorological radars. Ground meteorological stations offer direct measurements of rainfall,
ensuring the highest level of accuracy. However, they are not without limitations, as
precipitation data obtained is point-based rather than surface-based, and thus regional
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precipitation monitoring accuracy is significantly influenced by station distribution. Despite
a global increase in the number of meteorological stations in recent years [2], distribution
remains inadequate in remote regions with complex terrain, such as deserts and mountains,
and is notably absent over oceanic areas [3]. Meteorological radar, on the other hand, utilizes
microwave sensors to acquire high-precision precipitation data within its observation
radius. However, it faces two main limitations: firstly, microwave propagation is hindered
in complex terrain, leading to varying degrees of data accuracy decline [4]; secondly,
the high cost associated with weather radar infrastructure impedes the establishment of
comprehensive radar networks in many countries.

In recent years, the continuous advancement of remote sensing technology has led to
the development of numerous satellite precipitation products (SPPs), including Global Satel-
lite Mapping of Precipitation (GSMaP) [5], Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks (PERSIANN) [6], The Climate Prediction
Center morphing method (CMORPH) [7], Climate Hazards Group InfraRed Precipitation
with Station data (CHIRPS) [8], The Tropical Rainfall Measuring Mission (TRMM) [9], and
Integrated Multi-satellite Retrievals for GPM (GPM IMERG) [10]. Satellite remote sensing
offers significant advantages for large-scale, long-term, and remote measurements, with
SPPs emerging as vital sources of precipitation data. Several studies have already utilized
SPPs for hydrological modeling, flood forecasting, and other research endeavors [11,12].
However, the accuracy of SPPs is influenced by various factors, including season, climate,
terrain, and time scale. Moreover, different SPPs employ sensors and algorithms with their
own sets of advantages and limitations [13,14].

Researchers have conducted accuracy evaluations and comparative analyses of various
SPPs. In terms of accuracy evaluation of a single SPP, Paredes-Trejo et al. [15] assessed the
accuracy of CHIRPS precipitation data in northeastern Brazil, finding that CHIRPS accuracy
was higher in the inland region than the coastal region, being higher in months with heavier
rainfall than those with lighter rainfall. Sunilkumar et al. [16] separately evaluated the
accuracy of GPM IMERG precipitation data in Japan, Nepal, and the Philippines, showing
that in the warm season (June to September) and cold season (January to May, October to
December), the CC between GPM IMERG precipitation data and ground-based station data
were around 0.6, with low levels of BIAS and RMSE. In other studies, researchers compared
the accuracy of various SPPs. For instance, Roy et al. [17] evaluated the precipitation
observation accuracy of tropical cyclone “FANI” in Bangladesh in 2019 using four satellite
precipitation datasets: TRMM-3B42RT, CMORPH-V1.0, GSMaP, and PERSIANN-CDR.
The results indicate that TRMM-3B42RT exhibits the highest correlation, followed by
CMORPH-V1.0, while PERSIANN-CDR has the lowest. Hussain et al. [18] discovered in
their research in Pakistan that the accuracy of CMORPH-Adj exceeded that of TRMM-Adj
and PERSIANN-Adj datasets. Moreover, CMORPH, TRMM, and PERSIANN encountered
challenges in distinguishing between snow, glaciers, and rainfall, leading to overestimated
rainfall in glacier areas. Furthermore, Anjum et al. [19] found in their research in Saudi
Arabia that GPM IMERG V6 demonstrated the highest CC at the monthly scale, while
CMORPH exhibited the best performance at this scale.

China has a vast territory, diverse topography, and a complex and variable climate. In
recent years, the flood season has shortened, the dry season has prolonged, and extreme
weather events have become more frequent [20]. Numerous researchers have evaluated
the performance of satellite precipitation data across China. These studies typically exhibit
several key characteristics: (1) Research areas are typically based on geographical or climatic
divisions [13,21]. However, in applications such as hydrological modeling, flood prevention,
and water resources management, the basin is considered as the fundamental unit [11,12,22],
emphasizing the importance of basin-based research to advance the application of SPPs.
(2) Ground meteorological station data serve as the primary benchmark [21,23,24]. However,
the data integrity of ground meteorological stations remains poor, with less than 900 stations
providing daily precipitation data publicly available for download, and scarce sources
providing hourly precipitation data. (3) Most studies focus on one or two SPPs, with GSMaP
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and GPM IMERG being the most prevalent choices [20,21]. (4) These studies primarily
focus on annual, seasonal, monthly, and daily time scales [25–29], lacking evaluations
of hourly precipitation accuracy. However, hourly scale is of significant importance for
applications such as flood forecasting.

Furthermore, due to the discrepancy between ground meteorological stations and SPPs
being grid-based, previous studies have employed various methods to ensure temporal and
spatial consistency: (1) Some studies solely compared precipitation values between ground
station locations and the grid cells of SPPs [13,28,30–34], ensuring precise evaluation results
but underutilizing satellite precipitation data, particularly in representing SPP accuracy
spatially. (2) Others interpolated ground meteorological station precipitation data onto
grids [35] and assessed the accuracy of all SPP pixels. While this approach can yield
accurate grid-based evaluations, the interpolation process itself introduces uncertainties
that may distort ground precipitation data to different extents. (3) Some studies aggregated
rainfall data from all stations in the study area [12], resulting in a single index value for the
entire region, overlooking spatial variations in the evaluation index.

This study employed the latest CLDAS-V2.0 dataset developed by the China Mete-
orological Administration (CMA) as a substitute for ground meteorological stations as
benchmark data. Despite its slightly lower accuracy than ground meteorological station
data, CLDAS offers several advantages: (1) CLDAS integrates data from over 2400 national-
level ground stations. According to the CMA report, CLDAS exhibits a higher quality
compared to other similar data products, with more accurate spatiotemporal distribution
characteristics [36,37]. (2) CLDAS can provide hourly data, whereas currently available
ground station data for public download lack hourly data. (3) The data integrity of CLDAS
surpasses that of ground meteorological station data. The ground station data currently
available for public download contain significant local omissions, which affects the integrity
of the data. (4) CLDAS is a fusion data product with a grid data structure, facilitating for
the comprehensive utilization of satellite precipitation data. Considering these factors, this
study selected six SPPs (GSMaP, PERSIANN, CMORPH, CHIRPS, GPM IMERG, TRMM)
and utilized CLDAS as benchmark data to evaluate the data quality of multi-source SPPs
across nine water resource regions in China, encompassing both daily and hourly scales.

2. Study Area and Dataset
2.1. Study Area

The complex climate and diverse terrain of China lead to a highly uneven distribution
of water resources. From the southeast to the northwest, there is a gradual decrease in
water availability. The southeastern regions experience an average annual precipitation
exceeding 2000 mm, whereas in the northwest, it ranges merely between 200 and 400 mm.
Moreover, the runoff in the southeast during the rainy season (summer and autumn) is
approximately five times higher than that during the dry season (spring and winter),
while in the northwest, the runoff during the rainy season is about ten times that of the
dry season [20,38]. According to statistics, China’s total water resources in 2020 were
3160.52 trillion m3, of which 47.2% came from precipitation. The annual precipitation
amount was 706.5 mm, an increase of 8.5% compared to 2019 [39]. Considering China’s
diverse geographical features and river systems, the country is segmented into nine major
water resource regions: Yangtze River Basin (YARB), Yellow River Basin (YRB), Pearl River
Basin (PRB), Huaihe River Basin (HURB), Haihe River Basin (HRB), Songhua and Liaohe
River Basin (SLRB), Southeast Basin (SEB), Southwest Basin (SWB), and Continental Basin
(CB). These water resource regions have distinct geographical, hydrological, and climatic
characteristics, with some experiencing persistent droughts and others abundant rainfall,
resulting in different water resources conditions. This study focuses on nine major water
resource regions as the study area. To ensure the integrity of the watershed scope, Hainan
Island, Taiwan Island, and coastal reefs were excluded, focusing instead on the water
resource regions on the inland areas of China. The location of the nine major water resource
regions in China is shown in Figure 1.
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2.2. Dataset
2.2.1. Satellite Precipitation Data

CHIRPS is a high-resolution satellite rainfall product developed for the International
Development Famine Early Warning Systems Network (FEWS NET) [8].

CMORPH is a satellite-based rainfall product released by the National Oceanographic
and Atmospheric Administration (NOAA) and the Climate Prediction Center (CPC), utiliz-
ing infrared sensors and passive microwave sensors to estimate rainfall [7].

Global Precipitation Measurement (GPM) is a global rainfall observation program
implemented in 2014 by the National Aeronautics and Space Administration (NASA) and
the Japan Aerospace Exploration Agency (JAXA). As a successor to the TRMM rainfall
observation program, GPM has a broader observation range, a shorter observation period
(0.5 h), and higher spatial resolution (0.1◦ × 0.1◦) than TRMM. IMERG provides three
versions of SPPs: IMERG-Early, IMERG-Late, and IMERG-Final. IMERG-Early offers near-
real-time rainfall data (6 h), IMERG-Late provides post-real-time rainfall data (18 h), and
IMERG-Final provides rainfall data corrected for biases using the Global Precipitation
Climatology Centre (GPCC) [10,34].

GSMaP is a SPP released by the Japan Aerospace Exploration Agency (JAXA) in 2002.
It provides three versions: GSMaP-NRT, GSMaP-MVK, and GSMaP-Gauge. GSMaP-MVK
is the earliest released precipitation product, serving as the basis for subsequent GSMaP-
NRT and GSMaP-Gauge precipitation products. GSMaP-NRT is a near real-time SPP
adjusted based on GSMaP-MVK. GSMaP-Gauge is a precipitation product obtained by
correcting GSMaP-MVK using global gauge analysis data (CPC) [5,34].

PERSIANN, developed by the Hydrometeorology and Remote Sensing Research
Center at California State University, Central Coast [17], is a comprehensive dataset of
multi-satellite rainfall estimates obtained using an artificial neural network algorithm. It
estimates precipitation by employing the PERSIANN algorithm on GridSat-B1 infrared
satellite data and trains the artificial neural network using hourly precipitation data from
the National Centers for Environmental Prediction (NCEP) Phase IV. Presently, there are
multiple datasets available, such as PERSIANN-CCS and PERSIANN-CDR, with the latter
being adjusted using the Global Precipitation Climatology Project (GPCP) monthly product
version 2.2 (GPCPv2.2).
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TRMM is the world’s first satellite equipped with a precipitation radar, also encom-
passing a microwave imager, visible and infrared scanner, cloud and earth radiation energy
system, lightning imager sensor, etc. [9]. Notably, the fusion of the precipitation radar and
microwave imager enables the provision of three-dimensional precipitation distribution
information for the first time. Furthermore, the integration of visible and infrared scanning
data significantly enhances precipitation inversion accuracy. Despite the cessation of its
primary mission in 2015, TRMM’s data remained accessible for utilization, with official
data updates continuing until 2019.

2.2.2. Benchmark Precipitation Data

Currently, there are fewer than 900 meteorological stations in China with publicly
available downloadable data, and only daily precipitation data is accessible, resulting
in a serious insufficiency in spatial and temporal scales. Therefore, this study opted to
utilize the precipitation dataset of the CLDAS-V2.0 launched by the China Meteorological
Administration (http://data.cma.cn/ (accessed on 19 April 2024)) as the benchmark.

The CLDAS-V2.0 dataset is a grid fusion product covering the Asian region, featur-
ing uniform latitude and longitude grids with a spatial resolution of 0.0625◦ × 0.0625◦.
It provides precipitation data at both hourly and daily temporal resolutions. CLDAS-
V2.0 integrates data from over 2400 national-level ground stations. It employs various
techniques including grid variational assimilation (STMAS), optimal interpolation (OI),
cumulative distribution function matching (CDF), physical inversion, and terrain correction
for multi-source data fusion. The precipitation observation accuracy of CLDAS-V2.0 in
China surpasses that of other multi-source meteorological data fusion products, with more
accurate spatiotemporal distribution characteristics [36,37].

3. Method
3.1. Data Preprocessing

As shown in Table 1, these datasets differ in file format, temporal and spatial resolu-
tion, and numerical units, necessitating the adoption of different strategies for processing
them accordingly.

(1) CHIRPS. The data format for CHIRPS is TIFF, which can be directly used.
(2) CMORPH. The data format for CMORPH is NC, and we have written a program to

convert the NC format to TIFF format.
(3) GPM IMERG. The data format for GPM IMERG is NC. The same program is used

to convert the NC format to TIFF format. Additionally, the GPM IMERG does not
provide hourly precipitation data, but only half-hourly data, and the unit for the
half-hourly data is mm/h. Therefore, it is necessary to add the two sets of data from
the same hour together and then divide by 2 to obtain the hourly precipitation data.

(4) GSMaP. The data format for GSMaP is DAT, and we used Arcpy to convert it to TIFF
format. Additionally, the unit of the GSMaP daily-scale data is in mm/h. To obtain
the actual daily precipitation, the data need to be multiplied by 24.

(5) PERISANN. The data format for PERISANN is TIFF, which can be directly used.
(6) TRMM. The data format for TRMM is NC. The same program is used to convert the

NC format to TIFF.

In order to avoid the uncertainties caused by spatial interpolation, we did not unify
the spatial resolution of the SPPs. During the evaluation process, we used the center of the
pixels in the CLDAS grid data as the reference point. Subsequently, we identified the grid
in the SPPs that is closest to these pixels for comparative analysis.

http://data.cma.cn/
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Table 1. Parameters of six SPPs and data sources.

SPP Temporal
Resolution

Spatial
Resolution Date Range Data Source Format

CHIRPS-2.0 1 d 0.25◦ × 0.25◦ 2017~2022 https://data.chc.ucsb.edu (accessed on
19 April 2024) TIFF

CMORPH 1 h/1 d 0.25◦ × 0.25◦ 2017~2022 https://www.ncei.noaa.gov (accessed on
19 April 2024) NC

GPM IMERG Final 0.5 h/1 d 0.1◦ × 0.1◦ 2017~2021 https://search.earthdata.nasa.gov
(accessed on 19 April 2024) NC

GSMaP_Guage V6 1 h/1 d 0.1◦ × 0.1◦ 2017~2022 https://sharaku.eorc.jaxa.jp (accessed on
19 April 2024) DAT

PERSIANN-CDR 1 d 0.25◦ × 0.25◦ 2017~2022 https://chrsdata.eng.uci.edu (accessed on
19 April 2024) TIFF

TRMM 3B42V7 1 d 0.25◦ × 0.25◦ 2017~2019 https://search.earthdata.nasa.gov/search
(accessed on 19 April 2024) NC

3.2. Evaluation Metrics

This study employed three statistical indicators: correlation coefficient (CC), root
mean square error (RMSE), and absolute mean error (MAE), as well as three classification
indicators: probability of detection (POD), false alarm rate (FAR), and critical success index
(CSI) to assess the accuracy of multi-source SPPs at both daily and hourly time scales.

CC denotes the correlation degree between SPPs and CLDAS. The closer the CC value
is to 1, the higher the positive correlation degree; the closer it is to −1, the higher the
negative correlation degree; and the closer it is to 0, the weaker the correlation degree.
RMSE represents the observation accuracy of satellite precipitation data relative to ground
precipitation data. The closer the value is to 0, the smaller the error and the higher the
observation accuracy. MAE is used to measure the average difference degree between
satellite precipitation data and ground precipitation data. The closer the value is to 0,
the smaller the average difference. POD represents the probability of correctly observing
precipitation in rainfall events by SPPs, while FAR represents the probability of incorrectly
observing precipitation by SPPs; moreover, CSI denotes the probability of successfully
observing precipitation by SPPs among all precipitation events observed by both SPPs
and CLDAS. The calculation formulas and optimal values of the six evaluation indices are
shown in Table 2.

Table 2. Calculation formulas and optimal values of six evaluation indices.

Accuracy Evaluation Indicator Formula Optimal Value

CC CC =
∑n

i=1 (Ci − C)(Si − S)√
∑n

i=1(Ci − C)
2×

√
∑n

i=1(Si − S)
2

1

RMSE RMSE =
√

1
n × ∑n

i=1(Si − Ci)
2 0

MAE MAE = ∑n
i=1

∣∣∣ Si − Ci
n

∣∣∣ 0

POD POD = H
H + M 1

FAR FAR = F
H + F 0

CSI CSI = H
H + M + F 1

The evaluation metrics utilized in this study are based on all records of individual grid
cells in the time series of satellite precipitation data. In the formulas provided, Si represents
the precipitation value of a single grid cell in the satellite precipitation data at a specific
time; Ci represents the precipitation value of a single grid cell in the CLDAS precipitation
data at a specific time; S represents the average value of individual grid cells in the time
series of satellite precipitation data; C represents the average value of CLDAS precipitation
data in the time series; n represents the number of records of individual grid cells in the
time series of satellite precipitation data; H represents the number of records where both

https://data.chc.ucsb.edu
https://www.ncei.noaa.gov
https://search.earthdata.nasa.gov
https://sharaku.eorc.jaxa.jp
https://chrsdata.eng.uci.edu
https://search.earthdata.nasa.gov/search
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the satellite and CLDAS show precipitation; M represents the number of records where
CLDAS shows precipitation but the satellite does not; F represents the number of records
where the satellite shows precipitation but CLDAS does not. In this study, the precipitation
threshold was set at 0.1 mm/h, and data records with precipitation amounts below this
threshold were considered as no precipitation.

4. Results
4.1. Daily and Hourly Average Precipitation

This study initially computed the daily and hourly average precipitation amounts for
six SPPs across nine water resource regions. As shown in Figure 2, the spatial distribution
of average precipitation at both daily and hourly scales was almost identical: (1) Higher
average precipitation was observed in the YARB, PRB, and SEB compared to the other
six basins. According to the study by Xu et al. [40], moderate, heavy, and torrential rains
predominantly occur in the YARB, PRB, and SEB, while light rain is primarily concentrated
in the YARB and SWB, with the CB having the lowest rainfall intensity and frequency.
(2) Across the eight basins, with the exception of the CB region, precipitation was consis-
tently overestimated to varying degrees. This trend is corroborated by the conclusions
drawn in the studies by Zhang et al. [41]. (3) In the CB, CMORPH significantly overesti-
mated the precipitation, whereas the other five SPPs underestimated it. On the daily scale,
the average precipitation in the CLDAS and CMORPH ranged from 0 to 5 mm and 0 to
10.7 mm, respectively. The average precipitation in the other five data products ranged from
0 to 2.5 mm. On the hourly scale, the average precipitation in the CLDAS and CMORPH
ranged from 0 to 0.2 mm and 0 to 0.4 mm, respectively. The hourly precipitation in GSMaP
and GPM IMERG was lower than 0.1 mm.
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4.2. Performance Evaluation on Daily Scale
4.2.1. Daily Scale Index Evaluation and Statistical Analysis

As shown in Figure 3, the CC indicators in the CB and SWB performed worst, with the
lowest overall values and the highest degree of dispersion. Situated in western China, the
CB and SWB regions predominantly experience arid climates, with precipitation primarily
comprising light rain and drizzle [40]. The annual average precipitation in CB stands at a
mere 152 mm (1960–2019) [42]. However, satellite observations of light rain and drizzle
entail notable uncertainties [19,24,29,43]. Among the remaining seven basins, the median
CC indicators of GSMaP, CMORPH, and GPM IMERG exceeded 0.7, while the median
CC of TRMM ranged between 0.6 and 0.7, and those of PERISANN and CHIRPS fell
below 0.6. CMORPH demonstrated a superior capability in addressing inaccuracies in low
precipitation observations, with its CC indicator in the CB and SWB surpassing that of the
other five SPPs. GSMaP performed best in the remaining seven basins, but in the SLRB
and the YARB, the dispersion of GSMaP’s CC index dispersion notably exceeded that of
other SPPs.

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 27 
 

 

 

  
(a) (b) 

 
(c) 

Figure 3. Daily scale statistical indicator box plots for nine water resource regions: (a) CC; (b) RMSE; 
(c) MAE. 

In terms of the RMSE evaluation metric, the CB exhibited the lowest overall RMSE 
values, with a median RMSE below 4 mm. In contrast, the PRB and the SEB presented the 
highest overall RMSE values, typically exceeding 8 mm. However, it is crucial to note that 
concluding that SPPs had superior RMSE performance in the CB would be premature, as 
the region experiences the lowest annual precipitation, thereby minimizing errors. Con-
versely, the PRB and SEB, with their higher annual precipitation levels, experienced in-
creased error rates. Within the SEB, there was notable divergence in the RMSE value dis-
tribution across various SPPs. Overall, CHIRPS demonstrated the highest RMSE value 
distribution and worst performance among the nine basins, while GSMaP consistently 
exhibited the smallest median RMSE values across all nine basins. 

The evaluation results revealed a notable similarity between the MAE index and the 
RMSE index: the CB consistently exhibited the lowest MAE values, while the PRB and 
SEB exhibited the highest MAE values. Additionally, the CB displayed the smallest dis-
crepancies between SPPs, whereas the SEB showed the largest variations among them. 
Given that the SWB and YARB encompass both wet and semi-arid climates, internal pre-
cipitation variations were substantial, leading to a significantly elevated degree of MAE 
dispersion compared to other basins. 

In terms of classification indicators, as depicted in Figure 4a, the performance of the 
POD index in CB was the worst, with a higher degree of dispersion in POD values 

Figure 3. Daily scale statistical indicator box plots for nine water resource regions: (a) CC; (b) RMSE;
(c) MAE.

In terms of the RMSE evaluation metric, the CB exhibited the lowest overall RMSE
values, with a median RMSE below 4 mm. In contrast, the PRB and the SEB presented the
highest overall RMSE values, typically exceeding 8 mm. However, it is crucial to note that
concluding that SPPs had superior RMSE performance in the CB would be premature, as the
region experiences the lowest annual precipitation, thereby minimizing errors. Conversely,
the PRB and SEB, with their higher annual precipitation levels, experienced increased error
rates. Within the SEB, there was notable divergence in the RMSE value distribution across
various SPPs. Overall, CHIRPS demonstrated the highest RMSE value distribution and
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worst performance among the nine basins, while GSMaP consistently exhibited the smallest
median RMSE values across all nine basins.

The evaluation results revealed a notable similarity between the MAE index and
the RMSE index: the CB consistently exhibited the lowest MAE values, while the PRB
and SEB exhibited the highest MAE values. Additionally, the CB displayed the smallest
discrepancies between SPPs, whereas the SEB showed the largest variations among them.
Given that the SWB and YARB encompass both wet and semi-arid climates, internal
precipitation variations were substantial, leading to a significantly elevated degree of MAE
dispersion compared to other basins.

In terms of classification indicators, as depicted in Figure 4a, the performance of the
POD index in CB was the worst, with a higher degree of dispersion in POD values observed
in both the CB and SWB compared to other basins. This indicates that there are significant
differences in SPP observations in drought and semi-drought regions. In CB and HRB,
the POD indicators of PERSIANN and CMORPH performed best. A study conducted
by Heimi et al. [44] in arid areas of Arabia showed that the overall performance of POD
indicators for PERISANN and GPM IMERG was superior, with CMORPH slightly trailing
behind. Among the remaining seven basins, excluding CB and SWB, GSMaP exhibited
the highest POD, indicating its suitability for wet climate regions. CHIRPS and TRMM
exhibited the poorest POD index performance among the nine basins. It is worth noting
that the degree of dispersion in the POD index for GSMaP and GPM IMERG in the CB
was significantly higher compared to other SPPs, suggesting substantial fluctuations in the
observation performance of these two SPPs in drought-prone regions.
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The performance of the FAR index in the CB was the worst, as shown in Figure 4b. The
dispersion of the FAR index in the SWB was significantly higher than in other basins, with
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minimal variation in performance among the six SPPs. In the PRB, GSMaP exhibited the
highest FAR index, while in the remaining eight basins, PERISANN had the highest FAR
index, indicating poor performance. Across all basins excluding the SWB, TRMM displayed
the best FAR index performance, with the majority of values ranging from 0.1 to 0.4,
consistent with the study by Ma et al. [13]. Furthermore, in the SWB, CMORPH showcased
the best FAR index performance, ranking second only to TRMM in the remaining basins.

The CSI box plot is similar to the FAR box plot: the overall performance of the CSI
index in CB was the poorest, and the CSI index in the SWB exhibited the highest degree of
dispersion. GSMaP and CMORPH generally demonstrated the best overall performance
in terms of the CSI index, while PERSIANN, CHIRPS, and TRMM tended to perform less
favorably, as illustrated in Figure 4c.

4.2.2. Spatial Distribution of Daily Scale Evaluation Index

As shown in Figure 5, the overall performance of the CC index across the nine water
resource regions exhibited a gradually increasing trend from west to east. Eastern regions,
such as the PRB, HURB, HRB, SEB, and SLRB, exhibited higher CC values compared to
central regions like the YARB and YRB. The CC values in the YARB and YRB were notably
superior to those in the CB and SWB in the west. However, in the central and southern
areas of the CB, the western portion of the SWB, and the northwest segment of the YARB,
the CC index generally remained low and even negative in some localized areas. Notably,
CMORPH demonstrated significantly higher CC indices than other SPPs in these regions.
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Figure 5. Spatial distribution of daily scale statistical indicators for the nine water resource regions:
(a) CC; (b) RMSE; (c) MAE.

The spatial distribution of the RMSE of six SPPs exhibited strong similarity. Lower
RMSE values were observed in regions with drier climates such as CB, YRB, HRB, and
SLRB, consistent with findings from Zhou et al. [21]. However, in areas like the YARB and
SLRB, localized errors were evident, with maximum RMSE values primarily concentrated
in these specific regions (Figure 5b). Regarding the MAE index, localized maximum values
were concentrated in the SWB, with GSMaP precipitation data contributing to the largest
errors in this region (Figure 5c).

In terms of classification indicators, there was a significant boundary between the
Tarim Basin and the Tianshan Mountains within the CB. Among the five SPPs, namely,
CHIRPS, GPM IMERG, GSMaP, PERSIANN, and TRMM, the POD index performance
was notably poor in the southern region of the Tarim Basin. However, in the rainfall-rich
Tianshan Mountains area, there was a significant enhancement in the POD index (Figure 6a).
In the CB, the spatial distribution of the POD index of CMORPH was relatively consistent,
exhibiting notably higher values compared to other SPPs. Overall, the CHIRPS and TRMM
displayed the weakest performance in the POD index, while GSMaP exhibited the best
performance in the POD index across eight other basins, excluding the CB.

The PRB and the SEB exhibited higher precipitation and a significantly lower FAR
index than other basins. Within the SWB, there was a clear division based on semi-arid and
wet climates, resulting in a substantial disparity in the FAR index between the two regions.
In the small semi-arid areas of the YARB and the YRB, the FAR index was notably elevated
compared to other areas. Moreover, in the northwest part of the SLRB, namely, the Greater
Khingan Mountains, the FAR index was higher. This area is in a high-latitude region with a
long winter and heavy snowfall, which may have a certain impact on satellite precipitation
observation. Additionally, in the Himalayan Mountains area on the southwest border of
the CB, the FAR index was higher. The spatial distribution pattern of the CSI index showed
a strong negative correlation with the FAR index (Figure 6c).

4.3. Performance Evaluation on Hourly Scale
4.3.1. Hourly Scale Index Evaluation and Statistical Analysis

This study selected hourly scale data of three SPPs: GSMaP, CMORPH, and GPM
IMERG. As shown in Figure 7, there was a strong similarity between the hourly evaluation
index and the daily scale: (1) The CB exhibited the lowest CC, RMSE, and MAE indices,
while the SWB showed the highest CC index dispersion, and the PRB and the SEB had
the highest RMSE and MAE values. (2) In the CB and SLRB, the maximum RMSE values
exceeded the overall value distribution. (3) CMORPH performed best in the CC index in the
CB and SWB, while GSMaP performed best in the CC index in the remaining seven basins.
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At the hourly scale, there was a noticeable decrease in the accuracy of statistical
indicators compared to the daily scale. The main differences included the following: (1) At
the hourly scale, the CC index was mostly between 0.2 and 0.6 (Figure 7a), whereas at the
daily scale, the CC index ranged from 0.6 to 0.8 (Figure 3a). This indicates that satellite
precipitation observations face greater challenges in capturing precipitation events at the
hourly scale. (2) At the hourly scale, the RMSE index was generally below 1 mm (Figure 7b),
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and the MAE index was below 0.3 mm (Figure 7c). However, at the daily scale, the RMSE
index ranged from 2 to 10 mm (Figure 3b), and the MAE was mainly distributed between 1
and 5 mm (Figure 3c). (3) Among the nine basins, the RMSE index of GSMaP was lower
than those of CMORPH and GPM IMERG, and there was a relatively high consistency in
the MAE indices of the three SPPs.
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In terms of classification evaluation indicators, the POD index was the lowest in CB,
and the highest dispersion degree of the POD index was found in the SWB (value range of
0.1~0.9). CMORPH exhibited the highest concentration of POD in CB, demonstrating the
best overall performance. Among the remaining eight basins, GSMaP showed the overall
best performance in the POD index (Figure 8a). The box plots of hourly scale FAR and
CSI indices exhibited high similarity with daily scale ones (Figure 8b,c), but the FAR index
values notably increased, generally exceeding 0.6, while CSI decreased below 0.3. In terms
of basin comparison, the FAR index was highest in CB and SWB and lowest in PRB and
SEB. Among the nine basins, the FAR index of CMORPH was lower than GSMaP and
GPM IMERG, and the CSI index of GSMaP was lower than CMORPH and GPM IMERG.
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Compared to the daily scale, the hourly scale exhibited weaker advantages in CSI indices
in PRB and SEB.
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4.3.2. Spatial Distribution of Hourly Scale Evaluation Index

At the hourly scale, poor performance in the CC index was observed in the CB, western
parts of the SWB, western parts of the YARB, and the northwest part of the YRB (Figure 9a).
The highest values of RMSE and MAE in the SLRB were concentrated in the central point-
like region, while the maximum MAE values in the SWB were concentrated in the central
edge areas (Figure 9b,c). The research results of Helmi et al. [44] indicate that hourly SPPs
still lack reliability in drought areas, which is consistent with the evaluation results of
this study.
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Figure 9. Spatial distribution of hourly scale statistical indicators for the nine water resource regions:
(a) CC; (b) RMSE; (c) MAE.

In terms of classification indicators, except for the CB, the POD index of GSMaP was
significantly higher than that of CMORPH and GPM IMERG. In the central region of the
CB, the POD index of CMORPH was significantly higher than that of GSMaP and GPM
IMERG (Figure 10a). Compared to the daily scale, the hourly scale FAR index showed
a significant increase, while the CSI index showed a significant decrease. Additionally,
there was no significant difference in the spatial distribution pattern of these two indices
compared to the daily scale (Figure 10b,c). Unlike in this study, Gao et al. [45] found that
the POD index of IMERG in the PRB was slightly lower than that of GSMaP, while the FAR
index was significantly lower than that of GSMaP.
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5. Discussions
5.1. Influence of Elevation on SPPs

Researchers widely acknowledge the profound influence of topographical features on
satellite precipitation observations [29,36,46,47]. In this study, scatter plots were generated
to analyze three key indicators—CC, MAE, and CSI—in relation to elevation. The Tibetan
Plateau in China typically ranges between 4000 and 5000 m, with elevations above 5000 m
predominantly comprising mountain peaks. Kenawy et al. [48] concluded that microwave
sensors exhibit greater accuracy in detecting precipitation over flat terrain compared to
complex landscapes. Xu et al. [49] also pointed out that passive microwave algorithms
have a strong dependence on ice content in the atmosphere. However, precipitation in
high mountain regions predominantly results from the lifting of cold air, which typically
lacks substantial ice content. Therefore, in Figures 11 and 12, it can be observed that the
CC and CSI of SPPs decreased rapidly above 5000 m elevation. Furthermore, Yu et al. [28]
suggest that the diminishing number of rain gauges at higher elevations contributes to the
reduction in evaluation indices of SPPs. Liu et al. [47] conducted an evaluation of TRMM at
various elevations in southwestern China and similarly observed that TRMM struggles to
accurately capture orographic rainfall due to complex terrain. Furthermore, the presence of
cold surfaces and ice cover on mountaintops may be erroneously classified as rain clouds,
leading to an overestimation of precipitation in mountainous regions. We maintain that this
perspective still remains relevant to satellite rainfall products employing infrared sensors.
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Figure 11. Daily scale indicators and elevation scatter plots of the nine water resource regions: (a) CC;
(b) MAE; (c) CSI. In these figures, the color transitions from blue to yellow, representing an increase
in the index.
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5.2. Uncertainties and Errors in SPPs 
5.2.1. Observation of Light Rain and Drizzle in Continental Basin 
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5.2. Uncertainties and Errors in SPPs
5.2.1. Observation of Light Rain and Drizzle in Continental Basin

In precipitation observation, light rain and drizzle have a high occurrence frequency,
which is crucial for the Earth’s ecosystems, especially in arid and semi-arid areas, as
light rain and drizzle can directly penetrate into the soil, ensuring a certain degree of
moisture [50]. However, there is no unified definition of light rain and drizzle. In China’s
meteorological observation operations, ground station precipitation measurements are only
accurate to 0.1 mm. Rainfall within 0.1 and 10 mm/d is generally referred to as light rain,
while rainfall within 0 and 0.1 mm/d is called drizzle. For drizzle, ground stations generally
do not record it (treating it as 0) and consider it equivalent to no rain. Most previous studies
referred to rainfall between 0.1 mm/d and 10 mm/d as light rain [35], while Hamada
and Takayabu [51] consider rainfall at 0.1 mm/h as light rain (light precipitation). To
facilitate statistics and analysis, we classify rainfall between 0.1 mm and 10 mm as light
rain and rainfall between 0 and 0.1 mm as drizzle, following the prevailing practice in the
meteorological observation field.

As can be inferred from the results and analysis presented above (Figures 5, 6, 9 and 10),
the CB exhibited the worst performance among the nine water resource regions in terms
of all evaluation indicators, both at the daily and hourly scales. Almost all SPPs failed
to demonstrate satisfactory performance in this basin. This can be attributed to the CB’s
classification as an arid and semi-arid area, hosting the expansive Taklimakan Desert, the
largest desert in China. The CB experiences minimal precipitation throughout the year,
mostly in the form of light rain and drizzle. The observation errors and uncertainties of
light rain and drizzle directly affect six of the evaluation indicator values shown in Table 2.
We statistically analyzed the daily and hourly precipitation data of each grid in the CB from
2017 to 2022, calculating the frequency of light rain and drizzle occurrences at the daily and
hourly scales. The results are presented in Tables 3 and 4.

From Tables 3 and 4, it can be seen that if the statistical unit was grid-based, the overall
frequency of appearing non-rain, light rain, and light drizzle in CB reached over 98%,
while the frequency of moderate rain and heavier precipitation events was less than 2%.
Compared with the CLDAS, six SPPs generally overestimated the occurrence frequency of
light rain and drizzle in CB. On the daily scale, TRMM and CLDAS had the best consistency
in observing light rain and drizzle, but the frequency of light rain reached over 15.56%,
while PERSIANN had the largest observation error, with a frequency of 48.19% for light
rain. As representatives of the new generation of SPPs, GPM IMERG and GSMaP had
observation frequencies of over 20% for light rain in CB, indicating that current satellite
precipitation observation algorithms for detecting light rain and drizzle in arid regions
still need to be improved. The study by Li et al. [52] indicates that the GPM IMERG
precipitation product has a higher FAR in desert regions compared to mountainous areas,
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posing a challenge to GPM IMERGE. On an hourly scale, GSMaP and CLDAS showed more
significant differences compared to CMORPH and GPM IMERG, with the frequency of
non-rain periods decreasing to 73.09%, and the frequency of light drizzle periods increasing
to 22.10%.

Table 3. Daily rainfall frequency of light rain and drizzle in CB.

Rainfall (mm/d)
Benchmark Satellite Precipitation Products (SPPs)

CLDAS CHIRPS CMORPH IMERG GSMaP PERSIANN TRMM

Non-rain: [0] 88.75% 73.96% 75.89% 61.18% 66.64% 39.68% 81.94%
Light drizzle: (0, 0.1] 0.36% 6.58% 3.73% 15.77% 8.68% 11.67% 1.38%
Light rain: (0.1, 10] 9.99% 18.47% 18.84% 22.14% 23.93% 48.19% 15.56%

Total 99.10% 99.01% 98.46% 99.09% 99.25% 99.54% 98.88%

Table 4. Hourly rainfall frequency of light rain and drizzle in CB.

Rainfall (mm/h)
Benchmark Satellite Precipitation Products (SPPs)

CLDAS CMORPH IMERG GSMaP

Non-rain: [0] 98.19% 94.39% 91.75% 73.09%
Light drizzle: (0, 0.1] 0.09% 2.36% 4.99% 22.10%
Light rain: (0.1, 10] 1.70% 3.22% 3.24% 4.80%

Total 99.98% 99.97% 99.98% 99.99%

5.2.2. Observation of Snowfall in the Songhua and Liaohe River Basin

In the analysis of the impact of elevation on the performance of SPPs in Section 5.1
(Figures 11 and 12), it can be observed that the performance of most basins gradually
decreases with the increase in elevation. However, the SLRB exhibits an opposite pattern.
Situated in a high-latitude region, the SLRB has unique climate characteristics, with a
long winter and a short summer. During winter, precipitation predominantly manifests
as snow. In contrast to the warm and humid winters experienced in southern China,
where temperatures hover around 0 ◦C and rainfall and snowfall coexist, the SLRB endures
frigid temperatures plummeting below −10 ◦C throughout the winter months (Novem-
ber to March). Such extreme cold renders conditions inhospitable for effective rainfall,
transforming precipitation observation into essentially snowfall observation in this region.

As one of the three most important provincial capitals in the SLRB, Harbin has typical
climate characteristics of high-latitude areas and boasts commendable records of snowfall
events. This study downloaded daily and hourly snowfall data from January to March
and November to December in Harbin from 2017 to 2022 from the WheatA agricultural
meteorological big data software (http://www.wheata.cn/ (accessed on 19 April 2024)),
aiming to compare and analyze the differences between ground snowfall monitoring data
and satellite precipitation observation data within this high-latitude area of the SLRB.

Figure 13 shows the scatter plots of ground snow observation and satellite precipitation
observation at the daily scale. It can be intuitively observed from the figure that the
detection capabilities of CMORPH and IMERG for daily snowfall were the worst, and
there was almost no correlation between rainfall data and snowfall data. In particular,
CMORPH had serious false alarms (ground does not observe snowfall, but satellite observes
rainfall) and missed alarms (ground observes snowfall, but satellite does not observe
rainfall). CHIRPS, TRMM, PERSIANN, and CLDAS have similar detection capabilities
for daily snowfall. However, TRMM exhibited larger RMSE errors compared to the other
three precipitation products. Among the six SPPs, GSMaP demonstrated excellent snowfall
detection capabilities, with better performance than CLDAS, an R2 value of 0.725, and an
RMSE error of only 0.709.

http://www.wheata.cn/
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satellite precipitation observation in detecting snowfall at the hourly scale, as well as there 
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tation type (rain or snow) through satellite observation remains an immensely challenging 
task [53]. Li et al. [52] conducted an analysis of GPM IMERG data in Guizhou Province, 
situated in the Southwest Basin. Their findings revealed considerable errors, particularly 
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Figure 13. Scatter plots of winter daily scale snowfall monitoring data and satellite precipitation data
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We also compared the performance of three SPPs and CLDAS against ground snowfall
observation data at the hourly scale (Figure 14). Unfortunately, none of the precipitation
product’s hourly data met the criteria for detecting snowfall. The most obvious observation
is that false and missed alarms are severe, with precipitation and snowfall data scattered
widely along the horizontal and vertical axes. This indicates the inadequacy of satellite
precipitation observation in detecting snowfall at the hourly scale, as well as there being a
substantial gap from practical implementation. Indeed, determining the precipitation type
(rain or snow) through satellite observation remains an immensely challenging task [53]. Li
et al. [52] conducted an analysis of GPM IMERG data in Guizhou Province, situated in the
Southwest Basin. Their findings revealed considerable errors, particularly in December,
January, and February, with a staggering 80% of precipitation events going undetected
during winter. During these three months, the precipitation characteristics in Guizhou
Province are particularly complex, mainly consisting of freezing rain and snow mixed with
rain [54].
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6. Conclusions

This study evaluated and compared the performance of six SPPs (GSMaP, CHIRPS,
CMORPH, PERISANN, GPM IMERG, and TRMM) in China’s nine water resource regions
at both daily and hourly scales using six evaluation indices: CC, RMSE, MAE, POD,
FAR, and CSI. By employing the fusion data product CLDAS-V2.0, the study conducted a
meticulous grid-by-grid evaluation of the SPPs, providing a more intuitive visualization of
the spatial distribution of observation accuracy. This study is of significant importance for
the application of satellite rainfall products in flood forecasting, hydrological modeling,
and water resource management. The study’s conclusions are as follows:

1. At the daily scale, GSMaP performed best overall in basins such as the HRB, HURB,
PRB, SEB, YARB, and YRB, while CMORPH demonstrated the best overall perfor-
mance in the CB, SLB, and SWB. At the hourly scale, CMORPH exhibited the strongest
rainfall detection performance, while GSMaP demonstrated the best correlation in
seven basins excluding the CB and SWB. This suggests that CMORPH is preferable
for applications involving the statistical counting of precipitation occurrences, while
GSMaP is suitable for hydrological model construction and similar applications in
basins such as the HRB, HURB, PRB, SEB, SLRB, YARB, and YRB, whereas CMORPH
is suitable for the CB and SWB.

2. The temporal scale effect was also an important factor affecting the accuracy of SPPs,
manifested as follows: at the daily scale, SPPs exhibited stronger correlation and better
monitoring performance, whereas at the hourly scale, the error level of SPPs was
much lower than that at the daily scale. From our perspective, there were two reasons
for this: (1) Observing precipitation accurately at smaller time scales is much more
challenging than at larger time scales. (2) Errors accumulate over time at larger
time scales. Helmi et al. [44] have thoroughly demonstrated this point through their
comparison and analysis of RMSE values at daily, monthly, and annual scales.

3. The evaluation indices showed a gradient trend from southwest to southeast regions,
mainly influenced by the spatial distribution of climate and terrain. Specifically,
(1) although the error levels of six SPPs were relatively low in the arid climate of the
CB, SWB, and YASB, their correlation was poor and reliability was low; (2) in the
humid PRB and SEB, SPPs demonstrated stronger correlation but higher error levels;
(3) the performance of SPPs decreased with increasing altitude, with a significantly
higher reduction rate above 5000 m compared to regions below 5000 m. Among them,
CMORPH effectively alleviated this downward trend.

4. The six SPPs generally exhibited a tendency to underestimate the frequency of no
rainfall while overestimating the frequency of light rain and drizzle. At the daily scale,
TRMM exhibited the closest observation frequency to CLDAS for light rain, drizzle,
and no rainfall, while at the hourly scale, it was CMORPH. PERSIANN exhibited
the poorest consistency with CLDAS at the daily scale, while at the hourly scale, it
was GSMaP. Although GSMaP’s performance in observing light rain, drizzle, and no
rainfall was relatively poor, its advantage lies in snowfall observation, surpassing
other SPPs.

Future research endeavors should prioritize conducting more in-depth and compre-
hensive evaluations of satellite rainfall products. Observing extreme precipitation remains
a significant challenge for SPPs. In terms of drought monitoring, although CMORPH has
shown clear superiority over other SPPs, its accuracy still does not meet the demands of
practical applications. This leads to a contradiction in the accuracy of drought and storm
monitoring within basins covering various climatic zones such as the YARB, YRB, and
SWB. Additionally, the accuracy of satellite precipitation products fluctuates significantly
across different climatic zones, which can introduce unpredictable errors in the construc-
tion of hydrological models within these basins. Integrating ground-based monitoring
and satellite-based observation precipitation data for hydrological simulation studies is
currently a feasible approach. Moreover, beyond rainfall, there are many other forms of
precipitation, such as snowfall, dew, frost, and rime. The observation of these forms of
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precipitation by SPPs is still very lacking. Although GSMaP has certain advantages in
monitoring snowfall, further research is needed to validate its accuracy.
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