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Abstract: Atmospheric motion vectors, which can be used to infer wind speed and direction based
on the trajectory of cloud movement, are instrumental in enhancing atmospheric wind-field insights,
contributing notably to wind-field optimization and forecasting. However, a widespread problem
with vector data is their inaccuracy, which, when coupled with the mediocre effectiveness of existing
correction methods, limits their practical utility in forecasting, often falling short of expectations.
Deep-learning techniques are used to refine atmospheric motion vector data from the FY-4A satellite,
notably enhancing data quality. Post-training data undergoes a thorough analysis using a quality
evaluation function, followed by its integration into a numerical weather prediction system in order
to conduct forecasting experiments. Results indicate a marked improvement in data quality post-error
correction by the model, characterized by a significant reduction in root mean square error and a
notable increase in correlation coefficients. Furthermore, refined data demonstrate a considerable
enhancement in the accuracy of meteorological element forecasts, particularly for Asian and Western
Pacific regions.

Keywords: atmospheric motion vectors; deep learning; U-Net; self-attention; error correction;
FY-4A satellite

1. Introduction

The study of wind, a fundamental parameter in atmospheric science, is important for
studying mesoscale dynamic processes, atmospheric transportation, and the prediction
and mitigation of extreme weather events globally [1]. Advances in remote sensing have
enabled meteorological satellites to significantly contribute to wind-field observations,
particularly in remote and challenging areas such as oceans, polar regions, and high-
altitude locations. This technology has enriched wind-field information both on the ground
and in the atmosphere, overcoming the limitations of traditional radiosonde observations.

Atmospheric motion vector technology, a satellite–wind measurement approach, es-
timates large-scale wind-field information by tracking cloud movement over time. It
calculates average atmospheric motion vectors (AMVs) in specific areas by identifying
and tracking cloud formations in meteorological satellite images. The introduction of this
technology has significantly enhanced the accuracy of wind-field data. AMV data can be
used to overcome the scarcity of oceanic wind-field observations and to improve typhoon
path, intensity, and precipitation forecasts [2–5]. Moreover, assimilating AMV data from
polar orbit satellites has positively affected forecasting [6].

The launch of China’s Fengyun satellite series, particularly FY-4A with its advanced
geosynchronous radiation imager (AGRI), has significantly enhanced the temporal and spa-
tial resolution and increased the volume of AMV data compared with the FY-2 series [7–9].
Extensive research and applications have been performed based on this advancement.
Studies by Wan Xiaomin using the GRAPES_RAFS system and FNL (Final Operational
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Global Analysis) global reanalysis data as a reference field have demonstrated that FY-4A
AMV data effectively adjusts the model’s height and wind-field analysis. In scenarios
dominated by typhoons, assimilating FY-4A satellite AMV data in particular enhances
atmospheric observation information, especially data assimilated from the water vapor
channel, and allows upper-level atmospheric circulation to be depicted in greater detail.

AMV data, derived from image recognition and dual-channel height determination
methods, inherently contain errors such as cloud-tracking inaccuracies and uncertainties
in height assignments. These issues can significantly distort wind vector data, making
uncorrected AMV data potentially unsuitable for numerical weather prediction models,
which could even lead to model instability [10]. There are two primary sources of error
in AMV data from geostationary satellites: tracking errors of tracer clouds during image
recognition, and uncertainties in height assignment. Of these, the latter is the main error
source, contributing to over 70% of total observational error [11].

Most AMV data require efficient processing and analytical algorithms to distill valu-
able insights. Managing large-scale cloud and wind-field data requires advanced com-
putational power and sophisticated algorithms to derive meaningful meteorological in-
sights [12]. Several scholars have explored error correction in AMVs. For instance, Yang
used fluid motion continuity principles for height reassignment in FY-2C satellite AMV
data [13]; Wan classified FY-2E satellite AMV data into high, middle, and low layers for
quality control [14]; and Chen conducted error comparisons of FY-4A AMV data with FNL
reanalysis data in order to optimize a Weather Researching and Forecasting (WRF) model’s
observation error [15]. While partly effective, the impact of these methods on enhancing
meteorological forecasting was limited. Given the distinct data characteristics of AMVs
across different channels at various altitudes, and the lack of comprehensive research in
this area, a pressing need exists for new methods to correct errors and further investigation
into height reassignment of AMV data.

Since the 1980s, artificial intelligence technology has been integrated into atmospheric
science [16], encompassing areas like identification, classification, and the quality control
of weather phenomena such as clouds, tornadoes, strong winds, hail, precipitation, and
storms. Recently, neural network methods have evolved, leading to advanced models
like Deep Belief Networks, Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNNs), Long Short-Term Memory (LSTM), and Generative Adversarial Nets,
each of which has unique benefits. Extensive research in this field includes the application
of convolutional neural network-based U-Net models for detecting mid-scale eddies in
oceans, enhancing the efficiency and accuracy of such detections [17,18]. Dai [19] used
support vector machine technology for tropical cyclone identification and optimization
using infrared satellite cloud imagery data. Artificial intelligence technology offers a
streamlined approach to advance high-precision forecasting, using fewer computational
resources [20]. It is poised to solve various challenges in numerical weather forecasting,
including initial condition analysis, physical process modeling, and error correction.

Machine learning (ML) has gained significant traction in recent years, permeating
research and a variety of applications such as text mining, spam detection, video rec-
ommendation, image classification, and multimedia concept retrieval [21]. The success
of ML algorithms hinges on the robustness of input data representation. Effective data
representation can enhance performance, in contrast to inferior results from poor repre-
sentation. As a result, feature engineering has emerged as a pivotal area of focus in ML,
dedicated to crafting features from raw data. Deep learning (DL), a subset of ML algo-
rithms, has gained widespread application in these domains [22]. Known as representation
learning, DL thrives on the increasing availability of data and breakthroughs in hardware,
such as high-performance Graphics Processing Units, driving innovation in deep and
distributed learning. Evolving from traditional ML, DL excels in performance, employing
transformation and graph technologies in order to develop multi-layered models, and has
demonstrated remarkable success in fields such as audio and speech processing, and visual
data and natural language processing [23–26]. Significant research in DL includes efforts
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by Huang [27] using CNN and Deep Belief Network models for sea ice-water classifica-
tion, Brajard [28] using DL-enhanced algorithms in data assimilation, and Bonavita and
Laloyaux [29] using Artificial Neural Networks for model initial value construction. Each
study has yielded promising forecasting results. Rasp [30] employed a hybrid physical–
convolutional model to simulate subgrid-level processes.

Traditional numerical methods often focus solely on data fitting, overlooking inherent
data characteristics such as physical properties and patterns in datasets, like AMV data.
Consequently, post-correction by traditional numerical methods typically results in a re-
duction in the volume of AMV data, leading to subpar application results in operational
numerical forecast systems due to negligible quality improvements. In order to address
these limitations, deep learning (DL) is employed to extract deeper insights and characteris-
tics from AMV data, leveraging high-quality reanalysis data as correction benchmarks. This
study builds upon traditional AMV error correction techniques by harnessing the unique
traits of the data and developing a DL model based on convolutional neural networks for
error correction in multi-channel AMV data. Following optimization, the model underwent
evaluation, feedback, and iterative improvements using a reanalysis dataset. Finally, the
enhanced AMV data was integrated into a four-dimensional variational data assimilation
system in order to assess its impact on meteorological forecasting performance.

2. Data and Methods
2.1. Data
2.1.1. AMV Data

Launched in December 2016, the Fengyun-4 satellite (FY-4A), stationed at 104.7◦E
above the equator, commenced meteorological services in May 2018. This advanced geosta-
tionary meteorological satellite provides high spatial, temporal, and spectral resolutions,
and offers extensive observational data on the atmosphere, land, and oceans.

FY-4A, equipped with 14 channels, can generate AMV products from three channels,
including both high- and low-level water vapor channels, and an infrared channel AMV
product [7,8]. AMV products primarily focus on the mid and upper troposphere, with
infrared channel data concentrated on mid-level cloud systems, and water vapor channel
data densely covering the mid to upper troposphere. The water vapor channel provides
more extensive observations than the infrared channel, with peak data concentration
between 300 hPa and 200 hPa [31].

Analyzed data include FY-4A meteorological satellite infrared and water vapor chan-
nel AMV data from 1 July 2020 to 31 August 2022, provided by the National Satellite
Meteorological Center. Data from July 2020 to July 2022 serve as training data, and data
from August 2022 as test data, with a 3 h interval. This dataset mainly covers regions
including East Asia, the Western Pacific, and the Atlantic (Figure 1). Root mean square
error and data volume from three channels of AMV data at different altitude levels are
depicted in Figure 2.

2.1.2. Reanalysis Data

Reanalysis data, a cornerstone in atmospheric science, merges numerical models with
observational data using cutting-edge global assimilation systems and detailed meteoro-
logical databases. This integration systematically reconstructs historical climate conditions
and ensures data quality by controlling and assimilating various observational sources.
The resulting dataset is highly accurate, broad in both scope and time, and pivotal in atmo-
spheric research [32,33]. Given that radiosonde data are too scarce for labelling and quality
checks, this paper employs reanalysis data as training labels and quality assessment relative
truths. Additionally, recognizing that relying solely on one type of reanalysis data may
introduce systematic errors that could potentially affect the overall model performance,
it is difficult to verify whether the model is overfitting with just one dataset. Therefore,
two reanalysis datasets were used: the FNL dataset from the United States National Cen-
ters for Environmental Prediction (NCEP) and the fifth-generation European Centre for
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Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5) dataset from the European
Centre for Medium-Range Weather Forecasts [34], in order to comprehensively evaluate
the robustness, accuracy, and credibility of the model. Upper-air wind components (U and
V) from 2020 to 2022 at 3 h intervals were analyzed.
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Previous studies have demonstrated the high accuracy of both datasets [34]. ERA5
reanalysis data (Figure 3 shows the U-wind component of the ERA5 reanalysis wind
field at 150 hPa on 1 January 2020), categorized into 37 vertical layers at a resolution of
0.25◦ × 0.25◦, were analyzed. The distribution of the smaller FY-4A satellite AMV dataset
is more confined. Using more-abundant ERA5 data for model training labels would be
resource-intensive and inefficient. However, NCEP reanalysis data (Figure 4 shows the U-
wind component of the FNL reanalysis wind field at 150 hPa on 1 January 2020), segmented
into 17 layers of 1◦ × 1◦ resolution, cover the spatial extent of FY-4A satellite AMV data,
and offer a more resource-efficient solution for label data requirements. Accordingly, NCEP
reanalysis data were used for the training labels for AMVs, and ERA5 data were the relative
truth for post-training quality evaluation.
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2.2. Data Preprocessing

Acknowledging diversity in data formats and storage from different sources, the two
data sets were streamlined for training. FY-4A satellite AMV data, NCEP reanalysis data,
and the European Centre for Medium-Range Weather Forecast ERA5 reanalysis data were
preprocessed as follows:

(1) Data cleaning: A thorough quality inspection was performed in order to remove
anomalies, missing values, or inconsistencies, particularly in AMVs and radiosonde data,
standardizing missing values to “nan” format in numpy, a module in python.

(2) Data organization: Data from varied sources were harmonized to a common spatial
and temporal resolution, laying the groundwork for effective analysis and comparison.
For instance, more comprehensive reanalysis data were interpolated in order to align with
sparse AMV data (primarily covering satellite-detected cloud regions). Firstly, bilinear
interpolation was used to horizontally interpolate the reanalysis data to the positions of
AMVs, resulting in multi-layer wind field data covering their horizontal directions. Then,
the nearest neighbor interpolation was employed for vertical interpolation, obtaining the
label data matched with the AMVs.

(3) Data conversion: Raw data were adapted into an analysis-friendly uniformly
structured array, leveraging Python’s Pandas library in order to create a research-oriented
data structure. This step unified AMVs, and reanalysis data, facilitating DL applica-
tions and comparative studies. Using the Python libraries NumPy and Pandas, inter-
polation processing and masking of missing observations at specific positions can be
effectively achieved.

2.3. Data Quality Evaluation

Our evaluation framework encompassed Mean Bias (Bias), Mean Absolute Error
(MAE), Correlation Coefficient (R), and Root Mean Square Error (RMSE) [35,36], calculated
as follows:

MAE = ∑
|(Ai − Bi)|

N
(1)

R =
∑
(

Ai − A
)(

Bi − B
)√[

∑
(

Ai − A
)2
][

∑
(

Bi − B
)2
] (2)

RMSE =

√
∑(Ai − Bi)

2

N − 1
(3)

where A represents the data before correction, B the true label data, and N the sample size.
MAE gauges the average deviation between evaluated data and its true value, providing
insight into a model’s precision. Meanwhile, RMSE and R assess data dispersion and a
model’s reliability, respectively, offering a measure of a model’s overall stability.

3. Model
3.1. U-Net

CNNs (Convolutional Neural Networks) stand out in DL for their ability to capture
intricate details within data, particularly outstanding in image recognition and classification.
Their application is rapidly expanding in meteorology, especially in remote sensing [37]. U-
Net, a model built around multi-layer convolutional networks, has proven to be an efficient
framework in computational vision. Its simplicity, flexibility, and lower computational
demands make it an upgrade over traditional network structures [38]. Because it is easily
adaptable in order to be able to handle various inputs, its potential has been explored
in temporal and spatial predictions, including near-term lightning forecasting [39] and
global weather prediction [40]. Motivated by these developments, U-Net was selected
as the core model for constructing the Atmospheric Motion Vector Correction Network
(AMVCN) (Figure 5).
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Figure 5. U-Net Network. (The red arrow represents the data copying operation, the blue arrow
represents the convolution process, and the green arrow represents the up-convolution process, the
gray arrow represents the skip connection operation. The blue square represents the data for the
convolution operation, and the white square represents the downsampled data for connection.).

The U-Net architecture was divided into downsampling encoder and an upsampling
decoder. The encoder captured and condensed deep spatiotemporal information from
the data through successive convolution layers. This condensed information was then
expanded and refined in the decoder via upsampling. In order to address the inevitable
loss of data detail in downsampling, skip connections were integrated. These connections
bridged the downsampling and upsampling stages, preserving crucial information and
enhancing the model’s ability to reconstruct and predict data more accurately [41].

For handling AMV data, specific strategies were employed in the downsampling
phase:

(1) Maxpool layers enhanced the model’s ability to discern AMVs features.
(2) Batch normalization layers were selectively used between stages, boosting the

model’s speed in converging and fitting parameters.
(3) LeakyRelu was chosen as the activation function, tailored for AMV features.
During upsampling, data underwent a decoding process, gradually restoring AMV

information to a higher resolution. This involved:
(1) Employing transposed convolutions for feature decoding.
(2) The integration of ConvLSTM modules, a critical step for reconstructing the robust

temporal characteristics inherent in AMV data.

3.2. Long Short-Term Memory

AMV data, characterized by their strong temporal attributes, challenge traditional
multi-layer convolutional approaches that excel in spatial analysis but struggle to retain
long-term data memory, compromising prediction accuracy. Enter LSTM (Figure 6), an
advanced variant of RNNs, specifically engineered for sequence data. LSTM overcomes the
limitations of traditional RNNs, such as gradient vanishing and explosion, by incorporating
gating mechanisms. This innovation enables them to adeptly capture and remember long-
term dependencies, a trait that has led to their widespread adoption in meteorological
model training [42–44]. LSTM was integrated into the upsampling phase in order to
effectively extract and interpret the temporal dynamics of AMVs.
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Figure 6. LSTM structure. ht is the output at time step t, Ct is the candidate memory cell at time step

t, ft is the forget gate, it is the input gate,
∼
Ct is the candidate memory, Ot is the output gate, σ and

tanh are the corresponding activation functions, + and × represent vector fusion methods, denoting
addition and multiplication, respectively.

3.3. Attention Mechanism

Addressing the inherent imperfections in AMV data, such as noise or biases in the
input, a byproduct of satellite inversion algorithms, is important. These imperfections can
skew predictions when processed through multi-layer convolutions. Our model counters
this challenge by adaptively redistributing training weights, implemented through an
attention-based adaptive module (Figure 7).
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Remote Sens. 2024, 16, 1562 9 of 18

Its formula can be summarized as follows:

Attention(Query, Source) =
n

∑
i=1

simliarity(Query, Valuei)× Valuei (4)

The attention mechanism significantly boosts the model’s capacity to discern and
prioritize crucial aspects within the sequence data. It dynamically allocates varying weights
to different time steps or features, honing in on pivotal information within the sequence.
This intelligent learning of data patterns and dependencies allows the model to adjust its
focus fluidly across time steps, a critical aspect of the AMV quality control model. The
integration of this mechanism ensured that our model both adapted to and emphasized the
most influential aspects of the training steps, enhancing its overall modeling effectiveness
and predictive power.

3.4. AMVCN

Our AMVCN (Figure 8) was a synergistic blend of CNN, LSTM modules, and attention
mechanisms, each contributing strength in order to elevate the task of AMV quality control.
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Figure 8. AMVCN (Atmospheric Motion Vector Correction Network) structure. During the downsam-
pling stage, we utilized a total of 5 neural layers for encoding, leveraging CNN convolutional layers
and multi-LSTM layers to encode spatial and temporal features separately. Within the multi-LSTM, an
attention mechanism was employed to adapt different weights for varying time scales. The encoded
information (Center) was then fed into the decoder for upsampling operations, also employing
5 neural network layers for this step. Each layer utilized skip connections to fuse features with their
corresponding downsampling layers, and created independent attention modules for each low-level
feature to adjust their weights, thereby fully extracting data features.

The model’s core, built on a multi-layer CNN with a U-Net architecture, excels in
processing image data and extracting a wealth of feature representations. U-Net’s encoder–
decoder structure, complemented by its skip-connection mechanism, empowers the model
to capture and retain rich, multi-scale spatial information.

During downsampling, our model implemented a multi-scale temporal feature fusion
approach (Multi-LSTM). This technique involved integrating layers tailored for various
time spans at different processing levels, which extracted temporal features from the data
by setting three time windows (large, medium, and small scales) based on atmospheric
motion patterns, effectively amalgamating data across time scales. It leveraged attention
mechanisms in order to dynamically manage the weights of different temporal windows,
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allowing for a thorough extraction of the temporal characteristics in atmosphere motion
vector data.

During upsampling, our model introduced an innovative skip-connection design
tailored to the nuances of atmosphere motion vector data. It featured distinct channel-
attention modules for each low-level feature map, enhancing the model’s ability to flexibly
process features at various levels. This enhancement significantly boosted the efficiency of
identifying and using crucial features. Subsequent to the application of attention mecha-
nisms on low-level feature maps, these were blended with the advanced feature maps in
the upsampling phase. This integration is key to effectively preserving and capitalizing on
vital information embedded in the low-level features.

4. Results

In order to assess the efficacy of our model, we focused on data from August 2022,
and used two distinct methods for this evaluation:

(1) A quality evaluation function approach, with ERA5 reanalysis data serving as the
benchmark for analysis.

(2) Analysis using a four-dimensional variational assimilation system to examine
forecast outcomes after integrating model data.

4.1. Quality Evaluation

By feeding AMV raw data from August 2022 into the model for training, previously
mentioned (Section 2.3) evaluation metrics were able to be used for quality assessment.
Visual representations (Figures 9 and 10) compare the RMSE and MAE of both the original
FY-4A AMV data and the output from the AMVCM model training against the ERA5
reanalysis data, which acted as the comparative truth. Figure 11 shows the RMSE of both
the original FY-4A AMV data and the output at different atmospheric pressure levels.
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Figure 9. (There are six models in total, where (a–f) respectively represent the U and V models of
the three channels C009, C010, and C012). RMSE comparison between data before correction and
data after correction against ERA5 data (red, data before correction; blue, data after correction). C009
represents the high-level water vapor channel, C010 represents the low-level water vapor channel,
and water vapor channel data mainly focus on the mid to upper troposphere. C012 represents the
infrared channel, with data primarily concentrated in the mid-level troposphere.
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Figure 10. (There are six models in total, where (a–f) respectively represent the U and V models of
the three channels C009, C010, and C012). MAE comparison between data before correction and data
after correction against ERA5 data (red, data before correction; blue, data after correction). C009
represents the high-level water vapor channel, C010 represents the low-level water vapor channel,
and water vapor channel data mainly focus on the mid to upper troposphere. C012 represents the
infrared channel, with data primarily concentrated in the mid-level troposphere.

These visual insights demonstrate an enhancement in the quality of FY-4A satellite
AMV data, thanks to the DL model. This improvement was especially evident in the two
water vapor channels (C009 and C010), while in the infrared channel (C012), the V-wind
component showed a more significant quality enhancement compared to the U-wind
component. Across various atmospheric pressure levels, the model consistently achieved
effective correction, particularly in layers where original data exhibited greater errors.
Adjustments reduced error volatility and trend towards greater stability, underscoring the
DL model’s adeptness at identifying and mitigating noise within original data.

In order to filter original data, further analysis used standard AMV quality control
methods based on fluid consistency inspection, with detailed steps outlined in the refer-
ence document [13]. This was then juxtaposed with ERA5 analysis data. The findings
(Tables 1 and 2) detail monthly average quality assessment results for original AMVs, data
processed using conventional quality control methods (Correction), and data output from
the DL model (Model).

This comprehensive evaluation both highlights the model’s ability to refine and stabi-
lize AMV data, and showcases its superiority over conventional quality control techniques.
By effectively reducing errors and enhancing data reliability, our model proves its potential
in revolutionizing AMV data analysis, paving the way for more accurate and reliable
meteorological forecasting.

These tables clearly indicate that the DL model significantly enhances data quality
across all measured channels. For instance, focusing on the U-wind component of the
C009 channel, the model’s output showcases a remarkable reduction in errors. The RMSE
dramatically dropped from 5.804 in the original AMV data to 4.278. Concurrently, the MAE
decreased to 0.708, while the R saw an uptick from 0.951 to 0.974. This performance sur-
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passed that of traditional quality control methods, with all three channels showing notable
improvements. The MAE exhibited slight fluctuations, attributable to its already low value
in the original data. These marked enhancements across various metrics underscore the
DL model’s proficiency in error correction within AMV data, highlighting its potential to
revolutionize accuracy in AMV analysis.
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data after correction at different atmospheric pressure levels against ERA5 data (red, data before
correction; blue, data after correction; green, data volume at respective pressure levels).
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Table 1. Comparison of experimental data results (U-wind component, ↑ indicates improvement
compared to AMVs, ↑↑ indicates improvement compared to both AMVs and correction, ↑↓ indicates
improvement compared to AMVs but no improvement compared to correction).

Channels Data RMSE/(m/s) MAE/(m/s) R

C009

AMV 5.804 0.790 0.951

Correction 4.962 (↑) 0.706 (↑) 0.967 (↑)

Mdole 4.278 (↑↑ ) 0.694 (↑↑ ) 0.974 (↑↑ )

C010

AMV 4.832 0.954 0.965

Correction 4.438 (↑) 0.866 (↑) 0.972 (↑)

Mdole 4.178 (↑↑ ) 0.894 (↑↓ ) 0.974 (↑↑ )

C012

AMV 6.889 1.118 0.885

Correction 6.601 (↑) 0.973 (↑) 0.900 (↑)

Mdole 4.195 (↑↑ ) 0.805 (↑↑ ) 0.956 (↑↑ )

Table 2. Comparison of experimental data results (V-wind component, ↑ indicates improvement
compared to AMVs, ↑↑ indicates improvement compared to both AMVs and correction, ↑↓ indicates
improvement compared to AMVs but no improvement compared to correction).

Channels Data RMSE/(m/s) MAE/(m/s) R

C009

AMV 5.010 0.733 0.855

Correction 4.416 (↑ ) 0.666 (↑ ) 0.886 (↑ )

Mdole 3.816 (↑↑ ) 0.635 (↑↑ ) 0.912 (↑↑ )

C010

AMV 4.164 0.872 0.892

Correction 3.948 (↑ ) 0.802 (↑ ) 0.905 (↑ )

Mdole 3.665 (↑↑ ) 0.804 (↑↓ ) 0.916 (↑↑ )

C012

AMV 4.684 0.867 0.816

Correction 4.504 (↑ ) 0.765 (↑ ) 0.837 (↑ )

Mdole 3.416 (↑↑ ) 0.680 (↑↑ ) 0.899 (↑↑ )

Figure 12 illustrates the distribution of the U-wind component data for Channel C009
from the FY-4A satellite. This figure presents the original data alongside adjustments made
using both DL and traditional methods, categorized at various atmospheric levels. Specifi-
cally, the AMV data for this channel was segmented into three strata: >200 hPa, between
200 hPa and 300 hPa, and <300 hPa, reflecting the unique distribution characteristics
observed at each level.

The combined analysis of Tables 1 and 2, and Figure 10 highlights the effectiveness
of DL models in correcting errors in FY-4A AMVs. These models not only significantly
reduced both the RMSE and the MAE, but also enhanced the correlation with relative true
values. Importantly, this was achieved without a loss in data volume, preserving the com-
pleteness of the original dataset. Marked improvement across these metrics underscores
the practicality and efficiency of DL models in the precise error correction of AMV data.
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4.2. Meteorological Element Forecast Analysis

Integrating the model-trained data into the four-dimensional variational assimilation
system of the National University of Defense Technology (YH4DVAR), two experiments
were performed:

(1) Assimilating a comprehensive range of conventional observational data, including
inputs from meteorological stations and radar systems.

(2) Building on (1), introduction of AMV data refined through model training.
Given the primary coverage of FY-4A AMV data over Asia and the Western Pacific,

our analysis concentrated on meteorological element forecast outcomes for these regions,
with a horizontal resolution of 16 km. Forecast results from both experiments are illustrated
in Figures 13 and 14.

From the figure, it can be seen that the inclusion of corrected cloud wind data signifi-
cantly reduced the RMSE of the four variables (GH, T, U, and V) in the Asia and Western
Pacific regions at the 500 and 850 hPa levels, especially in the later forecast period. Even
after incorporating a robust set of observational data, the addition of model-refined AMV
data enhanced the forecasting of meteorological elements. Significant improvements were
observed in the RMSE of potential, temperature, and the U- and V-wind components at two
crucial atmospheric pressure levels, 850 hPa and 500 hPa. This improvement in forecast
accuracy, particularly for meteorological elements in the Asian and Western Pacific regions,
underscores the model’s potential for application in real-world meteorological forecasting.
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Figure 13. RMSE results for 850 hPa upper-level geopotential, temperature, U-wind, and V-wind
components for two sets of experiments (red, experiment 1; blue, experiment 2; GH, geopotential;
T, temperature; U, U-wind; V, V-wind; Asia, the Asia region; WPac, the Western Pacific region).
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Figure 14. RMSE results for 500 hPa upper-level geopotential, temperature, U-wind, and V-wind
components for two sets of experiments (red, experiment 1; blue, experiment 2; GH, geopotential;
T, temperature; U, U-wind; V, V-wind; Asia, the Asia region; WPac, the Western Pacific region).
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5. Conclusions

The FY series satellites’ cloud motion vector data, as a critical and independently
controlled meteorological asset of China, have influenced numerical weather forecasting,
proving valuable in scenarios characterized by severe information constraints. Addressing
the challenge of error correction in the assimilation of autonomous satellite cloud motion
vector data, we harnessed DL technologies, incorporating the U-Net framework, LSTM
networks, and attention mechanisms, paired with high-quality reanalysis data, in order to
refine FY-4A satellite cloud motion vector data.

Our model significantly mitigates errors in cloud motion vector data, particularly
within C009 and C010 water vapor channels. When benchmarked against ERA5 reanalysis
data, our model demonstrates its efficacy by outperforming in critical metrics like RMSE,
MAE, and R. Additionally, data refined through the model show promising applicability in
real-world meteorological forecasting. In meteorological element forecasts for Asia and
the Western Pacific, comparative experiments reveal marked enhancements in forecast
accuracy with the inclusion of model-processed data.

Our DL approach stands out for several reasons. Its proficiency in capturing spatial
and temporal aspects of cloud motion vector data is pivotal for elevating data quality, an
aspect where it surpasses traditional error-correction methods. The model’s adaptability to
noise and anomalies within the data also bolsters forecast accuracy and reliability. After
the model’s strong spatial feature capturing capability based on the U-Net network was
further enhanced by the LSTM’s temporal feature extraction ability, there was a significant
improvement in the extraction effectiveness of cloud wind data features, which more fully
utilized the deep characteristics of the cloud wind data. At the same time, the introduction
of an attention mechanism enabled the model to focus more on features that have a greater
impact on wind field correction. Crucially, the model’s performance continuously improves
as the volume of training data increases, and it remains effective in scenarios with limited
information, capable of correcting new data with the pre-trained model without concurrent
high-quality reanalysis data.

Inherent limitations include the model’s training and validation hinging upon the
accuracy of labeled datasets. While reanalysis data quality is high, it is not without
discrepancies from true values. Future endeavors could involve expanding and diversifying
the dataset in order to further validate and enhance the model. Finally, the substantial
computational requirements and dependency on hardware and data resources of DL
models might restrict their utility in certain practical applications.
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