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Abstract: In environments with a low signal-to-reverberation ratio (SRR) characterized by fluctuations
in clutter number and distribution, particle filter-based tracking methods may experience significant
fluctuations in the posterior probability of existence. This can lead to interruptions or even loss
of the target trajectory. To address this issue, an adaptive PF-based tracking method (APF) with
joint reverberation suppression is proposed. This method establishes the state space model under
the Bayesian framework and implements it through particle filtering. To keep the weak target
echoes, all the non-zero entries contained in the sparse matrix processed by the low-rank and sparsity
decomposition (LRSD) are treated as the measurements. The prominent feature of this approach
is introducing an adaptive measurement likelihood ratio (AMLR) into the posterior update step,
which solves the problem of unstable tracking due to the strong fluctuation in the number of point
measurements per frame. The proposed method is verified by four shallow water experimental
datasets obtained by an active sonar with a uniform horizontal linear array. The results demonstrate
that the tracking frame success ratio of the proposed method improved by over 14% compared with
the conventional PF tracking method.

Keywords: target tracking; low signal-to-reverberation ratio; reverberation suppression; low-rank
and sparse matrix decomposition; particle filtering

1. Introduction

The active tracking of weak targets in the off-shore scenario has always been a hot
issue of research in the field of underwater acoustics engineering [1–4]. Active sonar,
which can simultaneously obtain the point measurements of the range and bearing of the
target [5,6], is widely used for target surveillance and tracking in scenarios such as harbor
and naval bases. A recent study [7] compared the signal-to-reverberation ratio (SRR) of
pulsed active sonar (PAS) and continuous active sonar (CAS) and analyzed the impact on
detection probability. Under ideal SRR conditions, the PAS maintains a higher probability
of detection and ranging accuracy [8], while the CAS [9] increases the number of continuous
detection opportunities. For a lower SRR, it is difficult for active sonar to distinguish target
echo signals and reverberation in both the time domain and frequency domain [10].

In complex off-shore environments, due to the reflection of the objects, such as dams,
ships, buoys, etc., and the multipath propagation, the number of high-energy clutters is
numerous. Underwater target tracking methods combined with conventional threshold
detection have been widely studied [8,10,11] in this environment. However, for the low
SRR conditions, this kind of method faces challenges [12,13]. Primarily, the weak target
signals may be damaged or discarded after the high detection threshold, which leads
to interruption or even missing target trajectories. On the other hand, the low detection
threshold may cause plentiful false target echoes within a single measurement frame, which
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leads to error association with clutters of the target trajectory. Above all, the classic target
tracking techniques are not reliable for the weaker target in complex underwater scenarios.

To resolve the problem, some methods that take non-thresholding measurements as
input data for weak target tracking have been proposed [14–17]. This kind of approach
exploits the complete received data to enhance the energy of the target echo through
multiple continuous frames. It performs the tracking and detection simultaneously. The
particle-filter-based approach [15,18] inherits the advantages of the particle filter that is
not limited by the nonlinear and non-Gaussian conditions and has been widely applied to
underwater signal processing [19–21] in recent years. Duan et al. [20] presented a multipath
time delay tracking approach based on particle filtering by introducing the correlation
function of the signal-related peaks into the measurement equation. The results indicated
that it can track time delays effectively by taking advantage of the continuous evolution
relationship of the correlations between multipath arrivals submerged by the background
noise. Wei et al. [21] combined a data fitting and particle filter to recursively estimate the
joint multi-target probability density (JMPD) and achieved multi-target bearing tracking.

In recent years, some research has been conducted on active sonar tracking methods
based on the Bayesian framework. Saucan et al. [22] take into account the impulsive nature
of active sonar signals in the prior information, proposing a robust tracking algorithm, and
effectively tracking the direction of arrival (DOA) of multiple echoes. After that, they [23]
propose a Cardinalized Probability Hypothesis Density (CPHD) filter for tracking multiple
distributed targets from impulsive observations. Zhang et al. [24] designed low-power and
high refresh rate active sonar signals and achieved effective tracking of weak targets. It can
be concluded that the non-thresholding tracking method is suitable for tracking problems
with weak target echoes.

It must be pointed out that the non-thresholding tracking method can be also ineffec-
tive when the reverberation appears as large patches. In general, these patches are relatively
steady in adjacent frames and are the so-called steady component of reverberation. The rest
is the dynamic component. Recent studies have revealed a strong connection of the separa-
tion of the steady component and the dynamic component with the matrix decomposition
problem [25–27]. By taking advantage of the strong reverberation correlation between
adjacent detection frames, a reverberation-suppression method based on the low-rank and
sparsity decomposition (LRSD) was proposed [28]. It can effectively reduce the similar
steady components of reverberation in multiple frames and has been widely applied in
underwater acoustic engineering [29,30]. The non-zero entries contained in the sparse
matrix after LRSD can be treated as the measurements for the non-thresholding tracking
method to track the target in the reverberation that appears as large patches.

However, in a low SRR environment characterized by fluctuations in clutter quantity
and distribution, the tracking method utilizing a sparse matrix may experience significant
fluctuations in the posterior probability of the target existence. This can lead to interruptions
or even the complete absence of the target trajectory. Aiming at designing a stable tracking
method in this complex scenario, this work proposes an adaptive PF-based tracking method
(APF) for joint reverberation suppression. The weak echo signals are separated from the
steady component of reverberation by exploiting the LRSD to the multi-frame joint matrices.
Then, the random dynamic reverberation and clutter are filtered out by utilizing the
continuous evolution of the target over time in the state space. The prominent feature of this
approach is introducing adaptive measurement likelihood ratio (AMLR) into the posterior
update step, which solves the problem of unstable tracking due to the strong fluctuation
in the number of false measurements per frame. Finally, the method is implemented by
particle filtering.

The rest of this paper is organized as follows. Section 2 introduces the methodology for
the APF-tracker, especially providing the details of the measurements, state space model,
and adaptive Bayesian filter theory. In Section 3, the implementation detail and steps of
particle filtering for the proposed method are presented. In Section 4, a simulation study
is conducted to evaluate the tracking performance of the proposed method. In Section 5,
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the performance of the proposed method is validated through four experimental datasets
carried out on the harbor scene. The conclusions are given in Section 6.

2. Methodology

The proposed APF method achieves stable tracking of targets through adaptive fil-
tering based on the Bayesian framework. Figure 1 gives the flowchart of the proposed
APF method. Specifically, within the state equation, we consider the birth and death of
the target in the state space set, corresponding to the appearance or disappearance of the
target. In the measurement equation, the non-zero entries contained in the sparse matrix
processed using LRSD are treated as the measurements. In the Bayesian filter, the adaptive
measurement likelihood ratio (AMLR) is introduced into the posterior update step, which
effectively solves the problem of unstable posterior probability estimates. The APF method
is given with details in the following parts.
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2.1. State Equation

For a moving target in the state space, the equation of the target state transition is
expressed as

xk+1 = f (xk) + vk k = 1, 2, . . . , K, (1)

where xk denotes the target state vector at frame k, f (·) represents a general expression for
the state transition model, where a more explicit and detailed description can be found from
Equations (25)–(27). vk is the corresponding process noise with mean 0 and covariance Q
that describes the model uncertainties. The maximum change rate of the target state vector
is typically chosen as the standard variance of the process noise in the tracking problem.

To consider the birth and death of targets, the random finite set (RFS) Xk in the state
space can be defined as [31]

Xk =
{

xk,1, . . . , xk,nk

}
∈ Rnk , (2)

where nk denotes the number of targets and Rnk denotes the state space. Based on the
Bayesian frame proposed by [32], we can express the target dynamic model associated with
probability density as

φ(Xk+1|Xk) =


1 − pb,
pb · bk+1|k(xk+1),

ps(xk) · πk+1|k(xk+1

∣∣∣xk),
1 − ps(xk),

Xk+1 = ϕ, Xk = ϕ
xk+1 ∈ Xk+1, Xk = ϕ
xk+1 ∈ Xk+1, xk ∈ Xk
Xk+1 = ϕ, xk ∈ Xk

(3)
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where pb and ps denote the probability of target birth and survival from frame k to k + 1.
bk+1|k(xk+1) denotes the spatial distribution of target birth and πk+1|k(xk+1

∣∣∣xk) is the target
transition density from frame k to k + 1. ϕ indicates that there is no target at the present.

2.2. Measurement Equation

Consider the situation that targets tracking by means of an active sonar with a
fixed transmitting and receiving location. The bearing-range spatial spectrum matrix
Mk ∈ Nn1×n2(k = 1, 2, . . . , n3) can be obtained by conventional beamforming for the kth
frame echo data, where n1 and n2 represent the number of range and bearing resolution
cells, respectively. After stacking each matrix Mk as a column vector mk ∈ Nn1n2×1, the
continuous multi-frame column vectors are reconstructed to obtain matrix M ∈ Nn1n2×n3 ,
where n3 is the number of detection frames for joint processing.

The alternating direction method of multipliers (ADMM) is an effective implemen-
tation of the LRSD [33]. After LRSD, the steady component of the reverberation can be
separated from M, and the sparse matrix S with dynamic components can be obtained (see
Appendix A for details). The reverberation suppression result Sk ∈ Nn1×n2 of the kth frame
can be obtained by inverse vectorizing the kth column of S ∈ Nn1n2×n3 . Figure 2 gives the
flowchart of the suppression of the steady component of reverberation. In general, the
non-zero entries in Sk include the target echo, clutter noise, and dynamic component of
reverberation. When the energy of interferences is strong, the target echo in a single frame
is often masked. Furthermore, due to the fluctuation of the environment, the number and
distribution of the kept dynamic components in Sk have strong fluctuations. The above
two problems will lead to the dramatic fluctuation in the posterior probability of target
existence for the conventional Bayesian tracking method. It will be further discussed in
Section 4.
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Figure 2. Illustration of the suppression of the steady component of reverberation principles. The
green asterisks represent the target echo, the blue triangles represent the steady component of
reverberation, and the red circles represent the dynamic component of reverberation. Note that the
target echoes and the dynamic component are kept in matrix Sk.

Define the observation set Zk including all the groups of range and bearing corre-
sponding to the non-zero entries in matrix Sk as the following:

Zk =
{
[rm, θn, ]

∣∣m ∈ [1 n1], n ∈ [1 n2], Sk(m, n) ̸= 0
}
∈ Zr,θ , (4)

where m and n represent the indexes of the range r and the bearing θ respectively. Zr,θ is
the measurement space in range and bearing.

When the target exists in Xk the target state mapping to measurement set through
the measurement Equation. For the nonlinear non-Gaussian problem of the target, the
observation zk ∈ Zk can be expressed as

zk = h(xk) + uk, (5)

where h(·) denotes the known deterministic function from the state space to the measure-
ment space. uk denotes independent distribution measurement noise with the mean 0 and
covariance matrix Rk.
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2.3. Adaptive Bayesian Filter

The estimation of target state is defined by the posterior spatial probability density
function (PDF) fk|k(xk) and the posterior probability pk|k. In the context of active sonar
target detection and tracking under a high refresh rate operating mode, it is generally
assumed that the probability of target survival is not significantly influenced by factors
such as its speed and location. To simplify the mathematical model of the prediction step,
we assume that the probability of target survival ps is state-independent [31]. Under the
Bayesian framework, the posterior spatial PDF of the target is given by state prediction and
measurement updates. The prediction equations for pk|k and fk|k(xk) are given by:

pk+1|k = pb ·
(

1 − pk|k

)
+ ps · pk|k, (6)

fk+1|k(xk+1) =
pb·(1 − pk|k) · bk+1|k(xk+1)

pk+1|k
+

ps·pk|k
∫

πk+1|k(xk+1 | xk) · fk|k(xk)dxk

pk+1|k
, (7)

where bk+1|k(xk+1) denotes the predicted birth density related to the measurement set at
frame k.

At frame k + 1, the posterior probability pk+1|k+1 based on the measurement set Zk+1
can be updated as:

pk+1|k+1 =
1 − pd(1 − Λk+1)

1 − pk+1|k · pd(1 − Λk+1)
· pk+1|k, (8)

where

Λk+1 = ∑
zk+1∈Zk+1

∫
Lk+1(zk+1 | xk+1) · fk+1|k(xk+1)dxk+1

Γ
, (9)

Λk+1 denotes the measurement likelihood ratio and pd denotes the detection probability,
which is state independent. Γ denotes the false target echoes parameter that indicates the
mean number of measurements except for the target echo in each scan. It is generally
assumed to obey a known distribution [32]. However, in a heavy dynamic reverberation
scenario, the number of dynamic components in Sk is time-varying during target tracking,
and thus the parameter Γ is, in fact, time-varying correspondingly. To reduce the accumu-
lation of the posterior update bias, the parameter Γ should be set as a variable instead of
a constant. Therefore, in this paper, the parameter Γ changes in correspondence with the
measurements at each update step.

In a background characterized by significant reverberation fluctuations, the number
of false targets often exhibits substantial variations due to the influence of dynamic inter-
ference. Consequently, the number of false targets updates dynamically throughout the
iteration of a tracking procedure. We consider all non-zero entries in the sparse matrix Sk as
the number of effective measurements, denoted by NZ

k This algorithm applies threshold de-
tection to the updated posterior probabilities of measurements in each tracking frame. The
count of measurements with a posterior probability exceeding the threshold is considered
the estimated target number, denoted as Ne

k By subtracting the estimated target number
Ne

k at frame k from the effective measurements NZ
k+1, the number of false targets Nc

k+1, at
frame k + 1 is calculated. Therefore, the parameter Γ at frame k + 1 can be approximated as

Γk+1 =

{
Nc

k+1/(n1 × n2) xk+1 ∈ Xk+1
NZ

k+1/(n1 × n2) otherwise
. (10)

Then, the measurement likelihood ratio Λk+1 from Equation (9) can be written as:

Λk+1 = ∑
zk+1∈Zk+1

∫
Lk+1(zk+1 | xk+1) · fk+1|k(xk+1)dxk+1

Γk+1
. (11)
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Let Lk+1(zk | xk) denote the measurement likelihood function of the state xk+1, and
the expression is

Lk(zk | xk) =
1√

2πRk
exp

{
−1

2
(zk − hk(xk))

TR−1
k (zk − hk(xk))

}
, (12)

where (·)T represents the transpose of matrix. Subsequently, the measurement updated
equations for the posterior spatial PDF can be expressed as

fk+1|k+1(xk+1) =

1 − pd + ∑
zk+1∈Zk+1

Lk+1(zk+1|xk+1)
Γk+1

· pd

1 − pd(1 − Λk+1)
· fk+1|k(xk+1). (13)

3. Implementation with Particle Filter

In general, the posterior spatial PDF does not have an analytic solution and there-fore
needs to be implemented numerically. The PF-based approaches have emerged as a potent
tool in underwater signal processing, offering distinct advantages that are not constrained
by the nonlinearity and non-Gaussian conditions. It approximates the posterior spatial
PDF fk|k(xk) by a set of weighted particles

{
xi

k, wi
k
}N

i=1, where xi
k is the ith particle, wi

k
denotes the corresponding normalized weight, and ∑N

i=1 wi
k = 1. Then, the approximation

of fk|k(xk) can be expressed as

fk|k(xk) ≈
N

∑
i=1

wi
kδxi

k
(xk), (14)

where δxi
k
(·) represents the Dirac delta function concentrated at xi

k.

Draw a set of particles
{

ωi
k = 1/N1, xi

k
}N1

i=1 from p(xk) which obeys the uniform dis-
tribution in measurement space. The algorithm is then implemented in steps as follows
and summarized in Algorithm 1.

Predict: The particles are evaluated by the state transition model using Equation (1).

This step creates a set of weighted particles
{

ωi
p,k+1, xi

p,k+1|k

}N1

i=1
. Draw a set of newborn

particles
{

ωi
b,k, xi

b,k

}N2

i=1
from target birth density bk(xk) at frame k. Then, compute the

posterior probability pk+1|k with Equation (6). The predicted spatial PDF of target is
approximated by the persistent and newborn particles, whose weights are given as

ωi
p,k+1 = ps · pk|kωi

k/pk+1|k (i = 1, . . . , N1), (15)

ωi
b,k+1 = pb · (1 − pk|k)ω

i
b,k/pk+1|k (i = 1, . . . , N2). (16)

A newborn set of particles xi
b,k+1|k, i = 1, . . . , N2 is generated from the fk+1|k(xk+1

∣∣∣xi
b,k)

at frame k + 1. Union the particles as the following{
ωi

k+1, xi
k+1|k

}Nu

i=1
=

{
ωi

p,k+1, xi
p,k+1|k

}N1

i=1
∪
{

ωi
b,k+1, xi

b,k+1|k

}N2

i=1
, (17)

where Nu = N1 + N2 denotes the total number of particles.
Update: From the observation model in Section 2.2 and Equation (5), the likeli-

hood Lk+1(zk+1 | xk+1) for each particle xi
k+1|k and measurement zk+1 can be computed

by Equation (13). Then, use the present particles to approximate the integration term in
Equation (11) by

∫
Lk+1(zk+1 | xk+1) · fk+1|k(xk+1)dxk+1 ≈

Nu

∑
i=1

Lk+1(zk+1 | xi
k+1) · ωi

k+1. (18)
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The posterior probability pk+1|k+1 is then updated with Equation (8), and each weight
ω̃i

k+1 is updated based on Equation (13) as

ω̃i
k+1 =

1 − pd + ∑
zk+1∈Zk+1

Lk+1(zk+1|xk+1)
Γk+1

· pd

1 − pd(1 − Λk+1)
· ωi

k+1|k. (19)

The particle weights are normalized with

ωi
k+1 = ω̃i

k+1/ ∑Nu
i=1 ω̃i

k+1. (20)

Resample: Obtain a new set of particles with identical weights
{

ωi
k+1 = 1/N1, xi

k+1

}N1

i=1

by resampling from
{

ωi
k+1, xi

k+1|k

}Nu

i=1
We adopt the regularization strategy [34] in resam-

pling step to reduce the effect of sample impoverishment.
Output: For target tracking problems, set a reporting threshold Dt ∈ [0, 1] to determine

whether the tracking is successful at the present frame. When the posterior probability
pk+1 is higher than Dt, it is judged that the tracking is successful and outputs pk+1 and{

ωi
k+1 = 1/N1, xi

k+1

}N1

i=1
. Subsequently, the estimated state of target can be calculated

using

x̂k+1 =
N1

∑
i=1

ωi
k+1xi

k+1. (21)

Repeating the above steps, the particle approximation of the posterior spatial PDF
fk+1|k+1(xk+1) and the posterior probability pk+1 for k = 1, 2, . . ., K is obtained.

Algorithm 1: Flow of Our Tracking Algorithm

Initialization: pk|k, Zk, Zk+1,
{

ωi
k = 1/N1, xi

k

}N1

i=1
;

State Predict:
1. Evolve particles with Equation (1), to obtain xi

p,k+1|k, i = 1, . . . , N1.

2. Draw a set of newborn particles
{

ωi
b,k, xi

b,k

}N2

i=1
from bk(xk).

3. Compute pk+1|k with Equation (6).
4. Compute the weights of particles with Equations (15) and (16) at k + 1: ωi

p,k+1 and ωi
b,k+1.

5. Draw newborn particles xi
b,k+1|k, i = 1, . . . , N2 from fk+1|k(xk+1

∣∣∣xi
p,k) at k + 1.

6. Union the set of predict particles
{

ωi
k+1, xi

k+1|k

}Nu

i=1
with Equation (17).

Measurement Update:
7. Compute the likelihood Lk+1(zk+1 | xk+1) for each particle xi

k+1|k, i = 1, 2, . . . , Nu and
measurement zk+1 with Equation (12).
8. Compute Λk+1 with Equations (11) and (18).
9. Update pk+1|k+1 with Equation (8).
10. Update the weight of particles ω̃i

k+1 and normalize weights according to Equations (19) and (20).
Resampling:

11. Resample N1 times from
{

ωi
k+1, xi

k+1|k

}Nu

i=1
to obtain a new set of particles{

ωi
k+1 = 1/N1, xi

k+1

}N1

i=1
.

Output:

12. If pk+1 ≥ Dt, output the quantities pk+1, fk+1|k+1(xk+1) and
{

ωi
k+1 = 1/N1, xi

k+1

}N1

i=1
,

repeating the above steps.

For off-shore short-range active sonar, real-time detection of the surveillance area is re-
quired. It is generally required to detect potential targets as soon as possible after each scan,
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so the computational efficiency of the algorithm needs to be considered. The computational
complexity of this approach mainly involves two stages: the LRSD, and the target tracking
algorithm. The computational complexity of LRSD based on ADMM [33] is mainly con-
tributed by singular value decomposition [30,35]. For the signal processing in Section 2.2,
the computational complexity of singular value decomposition is OSVD(n1n2n3), where
OSVD represents the singular value computational complexity. In Equation (A4), the com-
putational complexity for calculating the low-rank matrix L is O(n1n2n3min(n1n2, n3)).
In Equation (A5), the computational complexity of the sparse matrix S is expressed as
O(n1n2n3). The computational complexity of the Lagrange multiplier Y is 4O(n1n2n3). The
computational complexity of the Frobenius norm in iterative processing is 4OF(n1n2n3). In
the preprocessing step of obtaining the sparse matrix S, the computational complexity of
one iteration processing is

OLRSD = OSVD(n1n2n3) +O(n1n2n3min(n1n2, n3)) + 5O(n1n2n3) + 4OF(n1n2n3). (22)

The PF-based method is a dynamic and recursive algorithm whose computational
complexity comes from particle state transition, the weights update, and resampling [36,37].
Adopting the common notation for computational complexity [38], the computational
complexity of the two tracking methods can be expressed as

OT = K(O(Nn2
xk
) +O(NZk Nn2

xk
) +Or(N)), (23)

where O(Nn2
xk
) represents the computational complexity of particle state transition, N

is the number of particles, nxk is the number of state dimensions, O(NZk Nn2
xk
) is the

computational complexity of weight update step, NZk is the number of measurements at
kth frame, Or(N) is the computational complexity of the resampling, and K is the number
of tracking frame.

4. Simulation Study

Virtual target tracking simulations were employed with different SRR conditions.
By overlaying target echo signals of varying energies onto measured reverberation data,
controlled SRR conditions for tracking experiments were simulated. This approach takes
advantage of the reverberation background from the experimental data to evaluate the
performance in a more realistic environment.

The background datasets of simulations are collected from a 64-elements uniform
line array (ULA) in harbor scenes. The dataset consists of 332 continuous frames. These
frames are processed using conventional beamforming. Each individual frame is structured
as a matrix containing 192 grids of range and 241 grids of bearing. We have artificially
added a target echo with a two-dimensional Gaussian energy distribution into each frame
following the strategy outlined in [28]. Let Tk ∈ Nn1×n2(k = 1, . . . , K) represent the energy
distribution of the target in the bearing-range spatial spectrum. We defined the SRR by

SRR = 10lg
||Tk||max
||Mk||max

, (24)

where Mk ∈ Nn1×n2(k = 1, 2, . . . , K) represents the bearing-range spatial spectrum energy
matrix of the kth frame and ||·||max represents the maximum value among all matrix cells.

According to the definition of Equation (24), the datasets containing target trajectories
under different SRR conditions are established. These datasets will be used to validate the
performance of the proposed method. Figure 3 shows the bearing-range spatial-spectral of
the same background data frame with SRRs of −5 dB and −15 dB, respectively. It can be
observed that the background is filled with large patches of reverberation and clutter. In
comparison to Figure 3a, the target echo is barely observable in Figure 3b.
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Figure 3. One frame of bearing-range spatial spectral with different SRRs: (a) SRR = −5 dB; and
(b) SRR = −15 dB. The target echo is marked by a red rectangle.

According to [29], setting the trade-off parameter γ = 0.02 and the penalty factor
parameter ς = 0.5 in LRSD yielded favorable results in reverberation suppression. Figure 4
depicts the reverberation suppression results (i.e., Sk) for two consecutive frames with
SRRs of −5 dB and −15 dB, respectively. All data have been normalized in terms of energy.
The dynamic clutters result in a substantial number of false target echoes. Comparing
Figure 4a,b, it can be observed that LRSD effectively enhances the target echo signals
and the fluctuations in the number and distribution of clutter between adjacent frames
are not significant when the SRR is high. Conversely, in Figure 4c,d, when the SRR
decreases to −15 dB, the target echoes are faint, and the fluctuations of clutter become
significant. It is evident that as the target echo becomes exceedingly weak, the reverberation
suppression capability of LRSD decreases accordingly. In such cases, in addition to the
steady component of reverberation, the high-energy dynamic components remain and
mask the target echoes.
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Figure 4. The results of reverberation suppression using LRSD under different SRRs in two tracking
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To run the PF-tracker and the APF-tracker, the parameters are set as follows: the
specified probability pd = 0.95, pb = 0.02, and ps = 0.95, the number of particles for both
trackers is 10,000, the number of newborn particles is 2000, and the reporting threshold Dt
is set to 0.6. The target is moving based on the transition probability of model [32]

πk+1|k(xk+1

∣∣∣xk) = Π(xk+1; Fxk, Q), (25)

and the state transition matrix for the nearly constant velocity model is

F = I2 ⊗
[

1 T
0 1

]
, (26)

where I2 denotes identity matrix, ⊗ denotes the Kronecker product, and T of 1 s is the
sampling period of the sensor. The target state vector is xk = [xk vx,k yk vy,k]

T. The variables
xk and yk represent the target position. The vx,k and vy,k represent the target velocity. The
covariance Q of corresponding process noise vk can be set as:

Q = I2 ⊗
[

T3/3 T2/2

T2/2 T

]
· υ̃, (27)

where υ̃ represents the intensity of process noise and the value is set to 10.
The measurement Equation, a fundamental component of the nonlinear underwater

target tracking model, establishes the mapping between the predicted target state and the
measurement space. It can be expressed as follows:

h(xk) =

[ √
x2

k + y2
k

arctg( yk/xk )

]
, (28)

and the measurement noise covariance matrix Rk = diag[σ2
r , σ2

θ ]. The σr of 3.85 m and σθ of
0.5◦ denote the standard deviation of the range and bearing measurement, respectively.

For each group of tracking experiments, the target trajectory of 60-frame is added to
the continuous reverberation background. In addition to the difference in SRR, the target
trajectory is also uncertain for each experiment. The generation of target trajectories is
subject to the following constraints: (1) The 60-frame trajectory of the target is always
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within the sonar detection range. (2) The target state equation follows Equation (25). (3) The
initial velocity of the target is within the range of (4 m/s, 6 m/s).

Figure 5 illustrates the true trajectory of the target and the corresponding tracking
results by the two methods. Figure 5a shows the accumulation of all clutter in Sk for
60 frames overlaying the true target trajectory. Figure 5b shows the tracking results of
the APF-tracker and PF-tracker with SRR of −5 dB, where the value of bearing-range
points on trajectories are presented by posterior probabilities. The PF-tracker misses one
frame trajectory marked by the white rectangle. The matrixes Sk shown in Figure 4a,b
corresponds to the previous frame and this missing frame, respectively. Due to significant
changes in the number and distribution of clutter from the 13th frame to the 14th frame,
the posterior probability of the PF-tracker rapidly decreases. In contrast, the posterior
probability of APF-tracker does not show a significant decrease. Moreover, the overall
posterior probability of the APF is higher than that of the PF as shown by the brighter
intensity of the target trajectory. The tracking results with the SRR of −15 dB are shown in
Figure 5c. The strong fluctuations in clutter occur after applying LRSD for reverberation
suppression, as shown in Figure 4c,d. In this condition, the posterior probability of the
PF-tracker exhibits significant fluctuations, leading to the continuous multi-frame missing
trajectory (marked by the white rectangle). In contrast, the APF-tracker reliably tracks the
target and maintains a higher overall posterior probability.
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Figure 5. Tracking results of one target moving from far to near: (a) the background of clutter
overlaying true trajectory; (b) tracking results of PF-tracker and APF-tracker under SRR of −5 dB;
and (c) tracking results of PF-tracker and APF-tracker under SRR of −15 dB. The arrows represent
the direction of moving target.

Figure 6 analyzes the relationship between the posterior probability and the param-
eters in two tracking experiments. The APF-tracker adaptively updates the false alarm
parameter Γk based on the number of false echoes Nc

k as demonstrated in Equation (10).
Therefore, the measurement likelihood ratio Λk adjusts correspondingly, which alleviates
the fluctuation of the posterior probabilities pk. In contrast, the ratio Λk of PF-tracker
almost remains unchanged resulting in the drop of the pk with the increase of Nc

k . For
example, the ratio Λk of the APF-tracker decreases at the 14th frame when the clutters Nc

k
leap sharply, while the ratio Λk of the PF-tracker has no reaction. Above all, the APF-tracker
demonstrates a superior ability of adjustment based on the measurements, leading to more
complete tracking trajectories and higher posterior probabilities. Furthermore, as shown in
the bottom panels of Figure 6, the APF-tracker demonstrates superior convergence speed
and stability in terms of the parameter pk when compared to the PF-tracker.
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Figure 6. The evolution of parameters with tracking frames: (a) Experiment 1 (SRR = −5 dB); and
(b) Experiment 2 (SRR = −15 dB).

The performance assessment of the two tracking methods is conducted through
Monte Carlo simulations, employing the aforementioned scenario and parameters. The
statistic results are compared using box plots, as shown in Figure 7. The APF-tracker
maintains overall higher and more stable posterior probabilities under both SRR conditions,
while the PF-tracker experienced a significant performance degradation at SRR of −15 dB.
Specifically, the APF-tracker exhibits higher median and mean posterior probabilities by
about 6%, indicating superior overall tracking performance compared to the PF-tracker.
The interquartile ranges (IQR) of the APF-tracker are narrower than those of the PF-tracker,
indicating a more concentrated distribution of posterior probabilities. Therefore, the APF-
tracker is expected to be more stable. Furthermore, the APF-tracker exhibited fewer outliers
(the red plus signs), also indicating its higher stability. Based on the above analysis, the
APF-tracker is more suitable for the low SRR environment with the fluctuation of clutter
number and distribution.
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Figure 7. Box plots of the posterior probability pk in 100 Monte Carlo runs for both trackers: (a) the
PF-tracker with SRR of −5 dB; (b) the APF-tracker with SRR of −5 dB; (c) the PF-tracker with SRR of
−15 dB; and (d) the APF-tracker with SRR of −15 dB. The median represents the middle value of the
pk. The IQR represents the distribution of the central 50% value of the pk.
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The two-sample t-test [39] is a robust and unbiased method for conducting statis-
tical hypothesis testing. This test evaluates whether the mean and median of posterior
probabilities generated with the APF and PF trackers are statistically equivalent. The null
hypothesis posits no difference in the mean and median values of the posterior probabilities
between the two trackers. Distinguishing the significant differences between the two data
groups under the given significance level of 0.05. The analysis is conducted under two SRR
conditions: −5 dB and −15 dB. At SRR = −5 dB, we observed p-values of 0.0182 for the
mean and 0.0212 for the median. Similarly, at SRR = −15 dB, the p-values for the mean and
median are 0.0005 and 0.0011, respectively. These results indicate statistically significant
differences in both the mean and median of the posterior probabilities generated by the
APF and PF trackers under varying SRR conditions.

Monte Carlo experiments are conducted with SRR ranging from −25 dB to 0 dB. For
each tracking experiment, when the number of frames with pk ≥ Dt accounted for more
than 80% of the total frames, the track is denoted as successful. The success rate of tracking
St is then defined as the ratio of the successful tracking. The results are presented in Table 1
with different SRRs. When the SRR is below −25 dB, both tracking methods fail. When
the SRR is greater than −2.5 dB, both methods achieve a 100% success rate. As the SRR
decreases from −5 dB to −15 dB, the success rate of the APF-tracker surpasses that of the
PF-tracker with an increasing difference. Notably, at an SRR of −15 dB, the APF-tracker
exhibits a 40% higher success rate compared to the PF-tracker.

Table 1. The success rate of tracking with different SRRs in each 100 Monte Carlo runs.

SRRs (dB) <−25 −20 −17.5 −15 −12.5 −10 −7.5 −5 >−2.5

St of APF (%) 0 16 43 81 90 97 99 100 100

St of PF (%) 0 2 9 41 71 85 91 96 100

Exceed (%) 0 14 34 40 19 12 8 4 0

Figure 8 illustrates the true trajectory of three targets and the corresponding tracking
results using the two methods at SRR of −10 dB. The speed of targets 1 and 2 is about
4 m/s, and the speed of target 3 is about 0.6 m/s. Figure 8a shows the true trajectories (solid
green lines), as well as the tracking results obtained using the APF method (red trajectory)
and the PF method (blue trajectory). The starting positions and movement directions of the
targets are visually depicted by black arrows. Figure 8b showcases the posterior probability
outcomes for both methods, with pl

k denoting the posterior probability of the lth target. To
enhance the visibility of the trajectory for the slow-moving Target 3, we increase the value
of joint frame n3 during the LRSD processing. Additionally, we adjusted Constraint 3 by
modifying the speed range to 0.5 m/s–6 m/s.

The results demonstrate that APF achieves better convergence and trajectory stability
than PF for all three targets. Specifically, the PF experiences one frame loss in tracking Target
1 at frame 39, while the APF tracks the trajectory successfully. From frames 48 to 60, the PF
suffered continuous multi-frame trajectory loss for Target 2 (marked by rectangle), while
the APF was only missing one frame. Moreover, the PF method exhibits more pronounced
posterior probability fluctuations for the slow-moving Target 3 compared to APF. These
findings highlight the superior performance of APF over PF in terms of convergence speed
and trajectory stability for multiple target tracking.
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5. Experimental Results and Discussion

In this Section, we evaluate the performance of the proposed method using four
experimental datasets of active sonar captured during May 2020 in a shallow water harbor.
The active sonar system was deployed at a depth of 5 m below the surface, while the
average depth of the surveillance area was approximately 12 m. The active transmission
signal utilized was LFM with a modulation band ranging from 50 kHz to 70 kHz. The
active transmission signal had a period of 1 s with a duration of 40 ms. The horizontal
array consisted of 64 elements with a uniform interval of 0.012 m. The sampling frequency
is 200 kHz. The target traveled back and forth at a depth of approximately 5 m. Each
frame of received data underwent processing via conventional broadband beamforming
(CBBF). The tracker parameters setting for the experimental datasets remained the same as
discussed in Section 4.

Figure 9 presents the results of the two tracking methods on dataset A. Figure 9a
displays the pseudo-color image accumulation of 60 frames after reverberation suppres-
sion, where the target trajectory (highlighted by a red rectangle) cannot be distinguished
clearly from the cluttered background due to the presence of high-energy clutter. Two
suspected target trajectories (highlighted by white ellipses) formed by high-energy clutter
are relatively more prominent. Figure 9b depicts the tracking results of the PF-tracker and
APF-tracker, respectively. In the tracking results of the PF-tracker, there are two noticeable
trajectory interruptions (highlighted by white rectangles). In contrast, the APF-tracker
performs complete tracking of the target trajectory. Besides, the APF-tracker initiates the
tracking at a further range of 712 m compared to the 677 m of the PF tracker. It should be
noted that the false target trajectories in Figure 9a are caused by random dynamic clutters
and do not have continuous spatial-temporal evolution characteristics. Therefore, both
trackers effectively filter them out.

The Nc
k curves presented in Figure 10 display pronounced fluctuations between frames.

There are 10 frames with an Nc
k value over 200, indicating that the dynamic clutter is still

evident after reverberation suppression. Consequently, the performance of the PF-tracker
significantly deteriorates at these frames. Specifically, from frame 28 to frame 34, the pk of
the PF-tracker decreases sharply, which leads to a trajectory missing in the corresponding
frames of Figure 9b. By comparing the tracking results from frame 73 to frame 97, it can
be observed that the fluctuation of Nc

k has a more significant degradation on the pk of the
PF-tracker. Furthermore, compared with the APF-tracker, the pk of the PF-tracker exceeds
the tracking threshold after a delay of nine frames, which indicates its convergence speed
is inadequate. In conclusion, the APF-tracker demonstrates stronger applicability in the
reverberation environment with strong fluctuations of clutter compared to the PF-tracker.
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Figure 9. Experimental results: (a) the pseudo color image by summing the reverberation suppression
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the moving target.
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Figure 10. The evolution of parameters with tracking frames.

Figure 11 exhibits the comparison of tracking trajectories by the two methods across
four experimental datasets. It is noteworthy that despite conducting the experiments within
the same region, the clutter background in each dataset varies due to the time-varying
characteristic of the underwater environment. Furthermore, the speed and direction of
the target differ across each experiment. The dashed rectangles in the Figure show the
locations where trajectory missing occurred with the PF-tracker in each dataset. It is
evident that the PF-tracker exhibits insufficient tracking stability in this shallow water
environment. As shown in Figure 11a,b, the APF-tracker demonstrates superior continuous
tracking performance when the target motion state is relatively complex. Specifically,
when the motion direction of the target changes (marked by circles), the corresponding
tracking trajectory of the APF-tracker changes more promptly than that of the PF-tracker.
Additionally, due to the faster convergence of the pk value in the APF-tracker, it can track
the target trajectory earlier.

Table 2 presents comprehensive details and the ratio T f of successfully tracked frames
to the total frames in each dataset. Based on the results provided in Table 2, the APF-tracker
demonstrates an overall tracking performance that exceeds that of the PF-tracker by more
than 14% in each dataset. In summary, the APF-tracker exhibits substantial superiority
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over the PF-tracker when large amounts of false target echoes are caused by high-energy
dynamic reverberation.
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and (d) Dataset D. The arrows represent the direction of moving target.

Table 2. The illustration of experiment datasets and the comparison of tracking results.

Datasets Target No. of Frames Tf with
PF-Tracker

Tf with
APF-Tracker

A 1 120 0.7919 0.9500

B 2 87 0.7586 0.9425

C 3 100 0.7700 0.9100

D 4 85 0.7176 0.8824

6. Conclusions

This article presents an adaptive tracking method based on particle filter joint matrix
processing for the purpose of moving target tracking. The proposed method is developed
within the Bayesian framework and achieves continuous and stable tracking of weak targets
in the presence of fluctuations in clutter number and distribution. The approach offers
two significant advantages. Firstly, the sparse matrix processed using LRSD treats the
non-zero entries as measurements, thereby avoiding potential damage or loss of target
echoes caused by threshold detection. Secondly, the Adaptive Measurement Likelihood
Ratio (AMLR) is introduced into the posterior update step, which effectively addresses the
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issue of unstable posterior probability estimates. Through tracking experiments conducted
on both simulated and shallow water datasets, the proposed method demonstrates superior
tracking performance compared to conventional particle filter tracking methods.

This study has value as a reference for enhancing the tracking performance of fixed-
location active sonar across diverse application scenarios. Nevertheless, additional im-
provements are necessary to enhance the capability of effectively separating significantly
slow targets from the steady component. Future work will concentrate on the development
of a more efficient and robust multi-target tracker to achieve reliable tracking of targets
with various motion states.
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Appendix A

When an active sonar transmits pulses repeatedly, the echo data of multi-frame has a
high correlation. It reliably represents the reconstruction matrix M as a low rank matrix
L ∈ Nn1n2×n3 and a sparse matrix S ∈ Nn1n2×n3 based on coherent and incoherent compo-
nents [29]. The maneuvering target echoes and the dynamic reverberation components
appear in matrix S, which is generally sparse. The steady reverberation components appear
in matrix L, which generally has a low rank [29]. The expression for matrix decomposition is

M = L + S. (A1)

Obviously, the key to reducing steady component of reverberation shifts to separating
matrix S from high-dimensional matrix M. Based on the robust principal component
analysis (RPCA) [40] and high-dimensional matrix proximal algorithm [33], the constraint
optimization of Equation (A1) can be rewritten as

argmin
S,L

{∥L∥∗ + γ∥S∥1}

subject to L + S = M
, (A2)

where ∥ ∥∗ and ∥ ∥1 represents the nuclear norm and the 𝓁1-norm, respectively. The
parameter γ serves as a trade-off between S and L.

The constrained optimization of Equation (A2) is jointly minimized with the low rank
matrix L and the sparse matrix S. The augmented Lagrange function used to remove the
equality constraint can be expressed as

Lς(S, Y, L) = ∥L∥∗ + γ∥S∥1 + ⟨Y, M − L − S⟩+ ς

2
∥M − L − S∥2

F, (A3)

where Y ∈ Nn1n2×n3 denotes the Lagrange multiplier and ς is the penalty factor. ∥ ∥F
denotes the Frobenius norm and ⟨·⟩ is the inner product of the corresponding matrixes. The
alternating direction multiplier method (ADMM) [33] has been proven to be a pre-eminent
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parallel implementation for the optimal solution of low-rank matrix L and sparse matrix S.
Therefore, Equation (A2) can be expressed as the following iterations:

Lj+1 = argmin
L

(∥L∥∗ +
ς

2
||M − L − Sj +

1
ς

Yj||2F), (A4)

Sj+1 = argmin
S

(γ∥S∥1 +
ς

2
||M − Lj+1 − S +

1
ς

Yj||2F), (A5)

Yj+1 = Yj + ς(M − Lj+1 − Sj+1). (A6)

The solution of the recursive Equation (A5) is the sparse matrix S containing the n3
frames moving the target echo signal after the jth iteration. By inverse vectorizing the kth
column of the matrix S, the corresponding sparse matrix Sk can be obtained.
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