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Abstract: Human pose estimation (HPE) is an integral component of numerous applications ranging
from healthcare monitoring to human-computer interaction, traditionally relying on vision-based
systems. These systems, however, face challenges such as privacy concerns and dependency on
lighting conditions. As an alternative, short-range radar technology offers a non-invasive, lighting-
insensitive solution that preserves user privacy. This paper presents a novel radar-based framework
for HPE, SCRP-Radar (space-aware coordinate representation for human pose estimation using
single-input single-output (SISO) ultra-wideband (UWB) radar). The methodology begins with
clutter suppression and denoising techniques to enhance the quality of radar echo signals, followed
by the construction of a micro-Doppler (MD) matrix from these refined signals. This matrix is
segmented into bins to extract distinctive features that are critical for pose estimation. The SCRP-Radar
leverages the Hrnet and LiteHrnet networks, incorporating space-aware coordinate representation to
reconstruct 2D human poses with high precision. Our method redefines HPE as dual classification
tasks for vertical and horizontal coordinates, which is a significant departure from existing methods
such as RF-Pose, RF-Pose 3D, UWB-Pose, and RadarFormer. Extensive experimental evaluations
demonstrate that SCRP-Radar significantly surpasses these methods in accuracy and robustness,
consistently exhibiting lower average error rates, achieving less than 40 mm across 17 skeletal key-
points. This innovative approach not only enhances the precision of radar-based HPE but also sets a
new benchmark for future research and application, particularly in sectors that benefit from accurate
and privacy-preserving monitoring technologies.

Keywords: short-range radar; human pose estimation; micro-Doppler; coordinate representation

1. Introduction

Recent advances in wireless technologies have significantly enhanced the capabil-
ities of short-range radar systems [1], particularly in remote sensing for human target
detection and perception. These systems are increasingly sought after for sophisticated
surveillance and monitoring applications that require operation in diverse environments
without compromising privacy or safety [2]. Human pose estimation, a critical component
of urban environmental perception, involves deducing the posture of the human body by
recognizing and locating different body parts, such as ankles, shoulders, and wrists [3].
This technology is pivotal in applications ranging from security to healthcare monitoring,
where understanding human intentions and actions through pose estimation is essential.

Traditional methods for human pose estimation have predominantly relied on optical
sensors, such as cameras, which have achieved significant success in accurately capturing
human movements [4]. These camera-based systems are adept at providing high-resolution
data and have been instrumental in advancing the field. However, the use of continuous
surveillance raises substantial privacy concerns. The intrusive nature of constant video mon-
itoring and the vulnerability of wireless security cameras to hacking are significant draw-
backs that have prompted researchers to explore less invasive methods [5]. To address these
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privacy issues, researchers have explored alternative non-visual technologies such as WiFi
for human pose estimation. WiFi-based systems utilize Channel State Information (CSI)
from commodity WiFi devices to deduce human poses. Pioneering work by Wang et al. [6]
utilized deep learning to process 1D WiFi signals for this purpose, proving that non-
visual methods could effectively estimate human postures. However, the coarse resolution
of common WiFi frequencies, such as 2.4 GHz and 5 GHz with limited bandwidths of
20 MHz and 40 MHz, restricts their ability to capture fine-grained movements, which is
crucial for accurate pose estimation. The use of Radio Frequency Identification (RFID) tech-
nology has been proposed to overcome some of these limitations. RFID systems, such as
the RFID-Pose by Mao et al. [7], employ wearable tags and commodity RFID readers for 3D
pose estimation, effectively monitoring multiple human joints in real time. Although RFID
technology offers a small form factor and the ability to track multiple points, it struggles
with the low data rates that are typical of RFID systems, making it challenging to generate
a joint confidence map for all joints with the precision required in pose estimation.

Despite advancements in WiFi and RFID-based systems, both approaches face inher-
ent resolution and data rate limitations that affect their practicality and effectiveness in
pose estimation. This sets the stage for considering alternative technologies offering more
accurate, reliable, and non-intrusive methods. Radar technology emerges as a superior
alternative in this context. Unlike cameras, WiFi, and RFID systems, radar-based human
pose estimation is not hindered by lighting conditions or line-of-sight restrictions, allowing
continuous operation in diverse environments. However, accurately interpreting radar
reflections to estimate human poses presents significant challenges. The complexity arises
from the need to distinguish between signals reflected from the body and those from other
objects or backgrounds and the dynamic nature of human movement. Recent studies have
focused on developing advanced signal processing algorithms and machine learning mod-
els to improve the accuracy and reliability of pose estimation. These approaches often use
deep learning techniques to classify radar signals and predict body positions. For instance,
technologies such as RF-Pose [8], RF-Pose 3D [9], and RF-Capture [10] utilize Frequency
Modulated Continuous Wave (FMCW) technology and require a complex assembly of a
16 + 4 T-shaped antenna array with extensive bandwidth (1.78 GHz) to produce depth maps.

However, a significant challenge MIMO radar imaging-based approaches encounter is
their susceptibility to environmental variations. Factors such as changes in the surrounding
environment and the relative distance between the human target and the radar can drasti-
cally affect the quality of radar imaging, thereby impacting the pose estimation accuracy.
To address these challenges, this paper introduces a novel approach by employing SISO
FMCW UWB radar for human pose estimation. Unlike traditional methods that rely heav-
ily on radar imaging quality, our technique capitalizes on the micro-Doppler signature, a
feature inherently less affected by environmental variations and the target’s distance from
the radar, thereby offering a more robust solution for accurate pose estimation [11]. Here
are some of the key challenges:

(1) Dataset Limitations in Radar-Based Human Pose Estimation: Acquiring accurately
labeled radar data for human poses is time-consuming and labor-intensive. Large,
diverse, and accurately labeled datasets are necessary for training and evaluating
machine learning models. Determining which part of the reflected signal corresponds
to the human target is not straightforward, making manual annotation of radar signals
with key-points an impractical task.

(2) Challenges with Limited Channel Radar Systems: Current research in radar-based
human pose estimation predominantly relies on massive MIMO radar systems. Short-
range radar systems often have limited spatial resolution due to the radar antennas’
physical size and the signals’ wavelengths. This limitation can make distinguishing
between closely spaced body parts difficult, leading to less precise pose estimation.

(3) Subject Variability: People come in various shapes and sizes, and their clothing can
also affect radar signal reflection. A system trained on a specific dataset might struggle
with generalization across different subjects. Human movements are complex and
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dynamic, with various possible poses and actions. Capturing the full extent of this
variability poses a significant challenge for pose estimation systems.

The micro-Doppler signatures of a human target strongly indicate the target’s pose
and motion. For instance, swinging arms or legs during walking generates characteristic
patterns in the micro-Doppler spectrum that are distinct from those generated by other
actions such as running or waving [12]. This distinction arises because each type of
movement has a unique velocity profile over time, captured by the micro-Doppler effect [13].
Consequently, analyzing these signatures allows for the inference of specific postures
and motions, making it possible to identify and classify human activities based on radar
signals alone.

In radar-based human pose estimation approaches, the head network predominantly
employs heatmap-based methodologies to predict human poses. This technique involves
marking the probable locations of various human joints on predictive heatmaps, offering
an intuitive representation of the spatial distribution and confidence levels of key-points.
However, heatmap-based methodologies are constrained by heatmap resolution, which
affects the precision of joint localization. Higher resolutions improve accuracy but increase
computational demands, which is particularly challenging for real-time applications. Limi-
tations in resolution may also obscure fine movements, necessitating a balance between
precision and performance.

To address these challenges, our paper introduces a novel approach, SCRP-Radar
(space-aware coordinate representation for human pose estimation based on SISO UWB
radar), which utilizes the Simcc method [14] for human pose estimation from the micro-
Doppler signature of human motion. By incorporating the Simcc method, which focuses
on transforming the regression problem of human key-point detection into separate classi-
fication tasks for the x and y axes, we introduce the innovative SCRP-Radar approach to
radar-based human pose estimation. This pioneering methodology redefines pinpointing
human key-points by categorizing them into two distinct classification tasks: one for verti-
cal coordinates and the other for horizontal coordinates. This refined approach significantly
enhances accuracy and provides a more nuanced perspective on human pose estimation
within radar systems.

The main contributions of our work can be summarized as follows.

(1) We introduce a novel benchmark for human pose estimation using UWB radar, named
HPSUR. This benchmark, recorded using a SISO UWB radar system and N3 motion
capture system, encompasses a comprehensive dataset comprising three rooms and
two halls in a living room configuration. The dataset includes 311,963 frames, featur-
ing five subjects of diverse heights and weights, each performing four different types
of actions.

(2) We propose a new approach to coordinate representation for human pose estimation
utilizing SISO UWB radar. This approach separates the representation of key-point x
and y coordinates into individual 1D vectors, allowing us to treat key-point localiza-
tion as separate classification tasks in the vertical and horizontal directions.

(3) We introduce the Hrnet and LiteHrnet models as the foundational backbones for the
SCRP-Radar framework. This approach begins with a high-resolution subnetwork at
the initial stage, progressively incorporating parallel subnetworks of lower resolutions.
Such a configuration allows for the nuanced processing of micro-Doppler features
across different scales and velocities, adeptly representing human motion’s dynamic
and intricate patterns, as captured by radar signals.

The remainder of this paper is structured as follows: Section 2 delves into the existing
literature on human pose estimation and coordinate representation. Section 3 outlines the
theoretical framework, encompassing the geometric modeling of human targets and radar
systems, the micro-Doppler characteristics of human posture, and the structural information
inherent in human models. Section 4 is dedicated to introducing the architecture of the
proposed SCRP-Radar network. Section 5 presents quantitative and qualitative assessments



Remote Sens. 2024, 16, 1572 4 of 31

of the proposed method, utilizing the HPSUR dataset. Finally, Section 6 offers conclusions
from the research and outlines potential future directions.

2. Related Works
2.1. Human Pose Estimation

Human pose estimation (HPE) is a fundamental task in computer vision with critical
implications across various applications. Accurately estimating human posture is essential
in inferring specific behaviors, especially in remote monitoring. However, this task is
complex due to the intricate mechanics of the human body and accompanying constraints.
Research in human pose estimation can be classified into two primary approaches: camera-
based and wireless sensing-based.

Camera-based HPE. Deep learning has revolutionized the camera-based HPE ap-
proach, setting new benchmarks for accuracy and efficiency in this domain. A notable
example is DeepPose [15], which pioneered the application of deep learning techniques
in this field. DeepPose employs an iterative architecture, extracting image features using
cascaded convolutional neural networks and regressing the joint coordinates with fully
connected layers. Xiao et al. [16] proposed a baseline method that predicts the heatmap
by adding several deconvolutional layers to a backbone network. Building upon this,
Sun et al. [17] introduced the Hrnet model, which maintains high-resolution representa-
tions throughout the heatmap estimation process.

Wireless sensing-based HPE. The exploration of wireless sensing technologies marks a
significant departure from traditional camera-based methods, offering novel approaches
that leverage the omnipresence of wireless signals. This research segment capitalizes
on the ability of wireless signals, such as WiFi, RFID, and other radio frequencies, to
penetrate occlusions and operate in non-line-of-sight conditions, thus overcoming some
of the intrinsic limitations of visual sensors. Wang et al. [18] developed a deep learning
methodology that utilizes annotations on 2D images, processes received 1D WiFi signals,
and achieves end-to-end HPE. However, these solutions are typically limited to capturing
poses from a single perspective or constructing poses of individuals at a stationary location,
which hinders their broader applicability in everyday scenarios. Lu et al. introduced
Wi-Pose [19] and Wi-Mose [20]. This system derives skeletons from synchronized video
frames as supervision for WiFi signals and employs a novel neural network to obtain
detailed human skeleton images. Mao et al. introduced the RFID-Pose system [7], marking
the first instance of 3D HPE using standard RFID readers and tags. This system is adept
at monitoring multiple human joints concurrently in real time. However, the bandwidth
range of WiFi results in a too-coarse resolution for capturing fine-grained human poses,
and RFID systems have a low data rate, which makes generating a comprehensive joint
confidence map for all joints as arduous as in other RF-based systems.

In light of this challenge, skeletal estimation utilizing radar devices represents a bur-
geoning area of research. Radar-based devices can be broadly categorized into two groups:
high-frequency radars, such as millimeter-wave (mmWave) or terahertz radars [21,22],
and lower-frequency radars, operating around a few GHz. Studies [23–25] have lever-
aged mmWave radar’s reflection signals, combined with convolutional neural networks,
to estimate the positions of distinct joints in the human body. Chen et al. [26] inno-
vated a domain discriminator that filters user-specific characteristics from mmWave sig-
nals, enabling robust skeleton reconstruction across users with minimal training effort.
Naim Dahnoun et al. [27] designed a novel neural network model for HPE based on point
cloud data, comprising a part detector for initial key-point positioning and a spatial model
that refines these estimates by learning joint relationships.

Conversely, low-frequency radar offers several benefits: it can penetrate walls and
obstructions, function effectively in both daylight and darkness, and is inherently more
privacy-preserving due to its non-interpretability by humans. Pioneering work by MIT
researchers [8,9,28] introduced a neural network system that interprets radar signals for
2D human pose and dynamic 3D human mesh estimations. Tian Jin et al. [29] developed a
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novel through-wall 3D pose reconstruction method using UWB MIMO radar and 3D CNNs.
Guangyong Fang et al. [30] proposed a cross-modal CNN-based method for postural
reconstruction through wall radar imaging (TWRI). Choi et al. [31] introduced the 3D-
TransPose algorithm for 3D HPE, leveraging an attention mechanism to focus on relevant
periods in time-domain IR-UWB radar signals. Nevertheless, these approaches rely on
MIMO radar imaging, and the variances between the human target and the surrounding
environment can significantly impact the quality of radar imaging. Our work employs SISO
FMCW UWB radar for HPE, capitalizing on the micro-Doppler signature, which represents
an innovative convergence of radar signal processing and pattern recognition techniques,
targeting the dynamic and nuanced task of discerning human postures and movements.

2.2. Coordinate Representation

Accurately modeling and predicting human joints and limb positions depends on
the representation of coordinates [32]. The method used to encode the spatial locations of
crucial body parts in the input data is called coordinate representation. This foundational
aspect of pose estimation significantly impacts the effectiveness of the estimation process,
influencing both the precision of the pose inference and the efficiency of the computational
models. Traditionally, three main types of coordinate representation have been prevalent:
heatmap-based, regression-based, and Simcc-based.

Heatmap-based. Heatmap-based representations involve creating a 2D probability
map for each joint, which indicates the likelihood of each pixel being the location of that
joint. This approach provides a more detailed representation of uncertainty. It is commonly
used with convolutional neural networks (CNNs) owing to its compatibility with the spatial
processing strengths of CNNs. In [33,34], Gaussian-smoothed heatmaps are constructed by
assigning higher values to the pixels closer to the dot annotation than those farther away.

Regression-based. Regression-based representations aim to predict the numerical
values of joint coordinates directly. This method often requires less computational over-
head than heatmap-based methods and can be more straightforward. The authors of [35]
proposed a novel regression paradigm called residual log-likelihood estimation (RLE) to
capture the underlying output distribution. In [14], a new Simcc-based coordinate coding
scheme is introduced, which represents the coordinate estimation task as two classification
tasks of horizontal and vertical coordinates.

3. Theory
3.1. Geometry Model of the Human Target and Radar

The geometric relationship between the transmitting and receiving antennas of the
SISO UWB radar is shown in Figure 1. The geometric motion relationship between radar
and moving human target is shown in Figure 2. The coordinate system (U, V, W) is the
global coordinate system, Tx is the position of the radar transmitting antenna, and Rx is
the position of the radar receiving antenna, where Tx = (0, 0, 0)T , Rx =(u1, v1, w1)

T . The
reference coordinate system is (X, Y, Z) parallel to the global coordinate system, and the
origin of the coordinate is Tx. The target coordinate system is (x, y, z), and the origin is
O, as is the reference coordinate system. The initial position vector of the origin O in the
global coordinate system is Ro = (Uo, Vo, Wo)

T , and the initial azimuth angle and elevation
angle are defined as α, β, respectively. Furthermore, the radial unit vector extending from
the radar toward the target is defined as

n = Ro/∥Ro∥ = (cos α cos β, sin α cos β, sin β)T (1)
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Figure 2. The geometric relationship between human motion model and radar.

Assume that the position of the left foot bone of the moving human target at the initial
time t = 0 is designed as J1, and the position vector in the global coordinate system is
ro = (Xo, Yo, Zo)

T. During the observed period, point J1 undergoes four simultaneous
movements characterized by their distinct kinematic properties.

1. The skeleton translates with speed V in the radar coordinate system;
2. The skeleton accelerates with acceleration a;
3. The skeleton vibrates sinusoidally with frequency fv and amplitude Dv. The azimuth

angle and pitch angle are αp, βp, respectively, and the unit vector of the vibration
direction is nv = (cosαpcosβp, sinαpcosβp, sinβp)T.;

4. The skeleton rotates in the reference coordinate system with an angular velocity of
ω = (ωX, ωY, ωz)T. At time t, the J1 skeleton point moves to the new position J ′′1 .

Then, the distance from the radar transmitting antenna to joint J ′′′1 at time t is:

Rtx(t) = TxJ1 = Ro + ro + J1J′′1 + J′′1 J′′′1 + J′′′1 J′1
= Ro + ro + Vt + 1/2at2 + Rot(t) · O′J′′1 + Dv sin(2π fvt) · nv
= Ro + ro + Vt + 1/2at2 + Rot(t) · ro + Dv sin(2π fvt) · nv

(2)

Then, the distance from the radar receiving antenna to joint J ′′′1 at time t is:

RRx(t) = RxJ1 = Rx + Ro + ro + J1J′′1 + J′′1 J′′′1 + J′′′1 J′1
= Rx + Ro + ro + Vt + 1/2at2 + Rot(t) · O′J′′1 + Dv sin(2π fvt) · nv
= Rx + Ro + ro + Vt + 1/2at2 + Rot(t) · ro + Dv sin(2π fvt) · nv

(3)
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The sum of the distances from the joint point J1 to the transmitting antenna and the
receiving antenna at moment t is:

R(t) = Rtx(t) + RRx(t) (4)

Then, the distance from the radar to the J′1 joint at moment t is:

R(t) = ∥R(t)∥ = ∥Rtx(t)∥+ ∥RRx(t)∥
= ∥Ro + ro + Vt + 1/2at2 + Rot(t) · ro + Dv sin(2π fvt) · nv∥
+∥Rx + Ro + ro + Vt + 1/2at2 + Rot(t) · ro + Dv sin(2π fvt) · nv∥

(5)

where ω′ = ω
∥ω∥ =

(
ω′

X , ω′
Y, ω′

Z
)T, Ω = ∥ω∥, ω̂ =

 0 −ωZ ωY
ωZ 0 −ωX
−ωY ωX 0

,

ω̂′ =

 0 −ω′
Z ω′

Y
ω′

Z 0 −ω′
X

−ω′
Y ω′

X 0

, and the rotation matrix Rot(t) can be expressed as:

Rot(t) = I + ω̂′ sin(Ωt) + ω̂′2(1 − cos(Ωt)) = exp(ω̂t) (6)

The baseband signal of the radar echo can be expressed as:

s(t) = ρ(x, y, z) exp
{

j2π f
R(t)

c

}
= ρ(x, y, z) exp{jΦ(R(t))} (7)

where Φ(R(t)) = 2π f R(t)
c .

Derivation of the phase function Φ(R(t)) yields the Doppler frequency of the echo fd.

fd = 1
2π

dΦ(R(t))
dt = f

c
dR(t)

dt
= f

c
d(Rtx(t)+RRx(t))

dt
= 2 f

c VT · np′ +
2 f
c

(
aT · np′

)
t + 2 f

c
d
dt (Rot(t) · r0)

T · np′ +
4 f
c π fvDv cos(2π fvt) · nT

v · np′

(8)

Noting r = Rot(t) · r0, combining ω × r = ω̂ · r and d
dt (Rot(t)) = d

dt (exp(ω̂t)) =
ω̂ · exp(ω̂t), the above equation can be expressed as:

fd =
2 f
c

VT · np′ +
2 f
c

(
aT · np′

)
t +

2 f
c
(ω× r)T · np′ +

4 f
c

π fvDv cos(2π fvt) · nT
v · np′ (9)

When n = R0/∥R0∥ is used as an approximation instead of np′ , the above equation
can be written in the following form:

fd =
2 f
c

VT · n +
2 f
c

(
aT · n

)
t +

2 f
c
(ω× r)T · n +

4 f
c

π fvDv cos(2π fvt) · nT
v · n (10)

The human left ankle joint’s micro-Doppler is:

fm−d =
2 f
c

(
aT · n

)
t +

2 f
c
(ω× r)T · n +

4 f
c

π fvDv cos(2π fvt) · nT
v · n (11)

However, only the modulation characteristics of human motion frequency caused
by acceleration and vibration can be obtained from the above formula. In order to better
understand the modulation characteristics of rotating motion on frequency, the relevant
parameters of the moving human target are set in the target coordinate system. Suppose
at time t = 0, the position vector of the joint point J1 of the human target in the target
coordinate system is r0 = (x0, y0, z0)

T, and then rotates in the target coordinate system with
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the angular velocity ωl =
(
ωx, ωy, ωz

)T, and (ϕ, θ, ψ) represents the initial Euler angles.
The initial rotation matrix is represented by Rinit :

Rinit =

cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

 (12)

Noting ωl
′ = Rinit ·ωl

∥ωl∥
=

(
ω′

x, ω′
y, ω′

z

)T
, ω̂l =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

,

ω̂′
l =

 0 −ω′
x ω′

y
ω′

z 0 −ω′
x

−ω′
y ω′

x 0

, and Ωl = ∥ωl∥, the rotation matrix is still represented by

Rot(t):
Rot(t) = I + ω̂′

l sin(Ωlt) + ω̂′2
l (1 − cos(Ωlt)) = exp(ω̂lt) (13)

Then, the distance from the radar to the joint J′1 at moment t is:

R(t) = ∥R(t)∥ = ∥Rtx(t)∥+ ∥RRx(t)∥
= ∥Ro + ro + Vt + 1/2at2 + Rot(t) · Rinit · ro + Dv sin(2π fvt) · nv∥
+∥Rx + Ro + ro + Vt + 1/2at2 + Rot(t) · Rinit · ro + Dv sin(2π fvt) · nv∥

(14)

Derivation of the phase function yields the Doppler frequency fd of the echo:

fd = 1
2π

dΦ(R(t))
dt = f

c
dR(t)

dt
= f

c
d(Rtx(t)+RRx(t))

dt
= 2 f

c VT · np′ +
2 f
c

(
aT · np′

)
t + 2 f

c
d
dt (Rot(t) · Rinit · r0)

T · np′

+ 4 f
c π fvDv cos(2π fvt) · nv

T · np′

(15)

Noting r = Rot(t) · Rinit · r0, with n = R0/∥R0∥ used as an approximation instead
of np′ , at the time of human movement, the target joint of the micro-Doppler fm−d is
as follows:

fm−d = 2 f
c
(
aT · n

)
t + 2 f

c
(
Ωlω

′
l × r

)T · n + 4 f π fvDv
c cos(2π fvt) · nv

T · n
= 2 f

c
(
aT · n

)
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c
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)T · n + 4 f π fvDv
c cos(2π fvt) · nv

T · n
= 2 f

c
(
aT · n

)
t + 2 f

c
(
Ωl
[
ω̂′2

l sin(Ωlt)− ω̂′3
l cos(Ωlt) + ω̂′

l
(

I + ω̂′2
l
)]

Rinit · r0
)T · n

+ 4 f π fvDv
c cos(2π fvt) · nT

v · n

(16)

The formula presented above indicates that when the target simultaneously exhibits
translation, acceleration, vibration, and rotation characteristics, the parameter fm−d will
undergo linear modulation. This modulation in frequency is directly proportional to the
acceleration of the target. It exhibits a periodic variation over time, with the cycle period
influenced by both the vibration and rotation periods. Furthermore, the amplitude of
these changes depends on the vibration frequency, vibration amplitude, and rotational
angular velocity.

3.2. The Micro-Doppler of the Human Posture

Researchers commonly model the subject as a combination of interconnected rigid
segments when analyzing radar scattering from nonrigid body motion. This approach
simplifies nonrigid body motion by breaking it down into the movements of several rigid
bodies. Human motion, noted for its high degree of articulation and flexibility, presents a
complex and intriguing case of micro-motion. The micro-Doppler (MD) signatures, pre-
sented in a combined time-frequency domain, introduce an invaluable additional time
dimension, which facilitates the examination of evolving MD signatures linked to targets’
rotating or vibrating components. These signatures, which illustrate the kinematics of a
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target’s motion, act as unique identifiers and provide deeper insights into the target’s move-
ments. Fahad Jibrin Abdu et al. proposed an efficient CCA-based feature fusion algorithm
that effectively combines multi-deep CNN features of radar MD spectrograms [36]. Shahid
Hassan et al. crafted a method for classifying human activity based on micro-Doppler and
interferometric micro-motion signatures using a DCNN classifier [37].

The generation of MD frequency is a result of the echo frequency modulation caused
by various movements, including vibration, rotation, and other motions of moving objects.
The traditional Fourier transform analysis, which is often used for frequency analysis,
requires improvements to capture this dynamic frequency information adequately. Yuan
He and Francesco Fioranelli et al. suggested an instance-based transfer learning approach
for recognizing human motion with radar using limited training data [38]. Peng Li et al.
developed a novel spatiotemporal weighted MD spectrum that accounts for the primary
and secondary importance information in the reduced dimension space and the temporal
information of the sequences [39].

The radar data preprocessing chain chart is shown in Figure 3, which outlines the
process from raw radar data to the final output. The first steps in this process involve
applying clutter suppression and noise reduction techniques to boost the signal-to-noise
ratio and reduce unwanted interference. Next, the fast Fourier transform (FFT) is used
along the fast-time dimension of the raw radar data to produce a range bin. Then, the
FFT is applied along the slow-time dimension to create multiple Range-Doppler maps, as
illustrated in Figure 3, referred to as Range-FFT and Doppler-FFT. The Range-FFT calculates
the target distance for each chirp in the original data matrix, while the Doppler-FFT helps
determine target velocities for each distance unit. Each element in the resulting Range-
Doppler maps is known as a “Range Bin” and is represented in the frequency domain
and expressed in decibels. The next step involves summing the Range Bins along the
range axis for each Range-Doppler map, generating a vector e comprising L Doppler Bins.
Finally, concatenating n consecutive frames produces a time-length n-frame micro-Doppler
signature map, which is also known as a time-Doppler spectrogram.
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Additionally, window functions are employed during signal processing to mitigate
spectral leakage and related issues. Our analysis transformed the radar signals of human
activities into the micro-Doppler spectrum using the UOG dataset [12], which comprises
over 1700 radar signatures from six types of human activities. Figure 4 displays the micro-
Doppler spectrum for these activities, where the intense yellow and red zones indicate
the Doppler frequency range associated with the human torso. Meanwhile, the peripheral
pale-yellow regions represent the micro-Doppler signals produced by the movement of
human limbs.
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Our paper employed an FFT size of 512, a frame number of 500 frames, and a Hamming
window for radar signal processing. Notably, our use of ultra-wideband radar necessitated
a pulse repetition frequency (PRF) of 960 frames per second, and we specifically selected
500 frames for analysis. This choice equates to each micro-Doppler representation encapsu-
lating data spanning 0.52 s. The rationale behind this decision lies in the context of human
pose estimation, where we aim to estimate the coordinates of skeletal points corresponding
to a specific moment in time. Given that human movement cycles, such as walking or
other dynamic activities, typically exhibit periods of 2 to 5 s, our selection of 500 frames
per micro-Doppler instance ensures better extraction of micro-Doppler features from radar
echoes, providing a comprehensive representation of the motion characteristics associated
with the human body at that particular moment in time. This parameterization aligns with
our objective of capturing meaningful and temporally relevant information for accurate
human pose estimation using radar signals. The mapped micro-Doppler spectrum is used
as input to the subsequent network to estimate human poses owing to the distinct features
of micro-Doppler signals and leveraging insights from deep learning.

We simplify the intricate Boulic human body model in this paper, initially featuring
62 degrees of freedom across 32 joints, into a more manageable framework that includes
13 standard rigid bodies and 17 nodes, as illustrated in Figure 5. These 13 segments
effectively capture the human body’s complexity, representing the head, shoulders, upper
arms, forearms, thighs, lower legs, and upper and lower torso. The 17 nodes identified
within this configuration are pinpointed at crucial anatomical points such as the hips, upper
and lower segments of both legs, feet, spine, head, shoulders, upper arms, forearms, and
hands, ensuring comprehensive skeletal mapping. Moreover, the interaction between the
foot and the floor is accurately depicted through a rigid contact model, which considers the
shape of the foot’s bottom and its orientation relative to the ground.

Based on experimental data, the proportionate lengths of different human body parts
were calculated and are presented in Figure 5. According to the data, the segment from
the top of the head to the bottom of the neck makes up 18.2% of the body’s height, the
shoulders constitute 25.9%, and the torso accounts for 28.8%. Additionally, the upper arms
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represent 18.8% of the length, the lower arms 14.5%, the thighs 24.5%, the calves 28.5%,
and the hips 19.1%.
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Figure 5. The structure information of the human model.

In order to examine how different parts of the human body interact during movement,
we analyzed the trajectories of body segments from MOCAP data of a human subject at
Carnegie Mellon University. Figure 5 displays the structural information of the human
target segment, while Figure 6 shows the experimental setup of the simulation. In this
setup, a human target, approximately 175cm, starts to fall face down in place at around
2 s, and the total data duration is roughly 5.5 s. We then extracted the corresponding MD
spectrum from the radar echo data of the moving human body. Figure 7 reveals the Doppler
frequency variations of different parts of the moving human body. The zero-frequency line
in this figure represents the human body’s torso. The human target was stationary in a
standing position for 2 s and after 4.5 s. However, between 2 and 4.5 s, the MD frequency
changes in the figure correspond to the movement dynamics of various parts of the moving
human target. A higher MD frequency indicates a larger movement amplitude in that
particular body part.
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The human body is an asymmetric, non-rigid structure with bilateral symmetry, and
during human movement, it follows specific patterns caused by the MD effects. In Figure 8,
the left and right sides of the human body are represented in the first and third rows and
second and fourth rows, respectively, to facilitate a comparative analysis of the MD effects
resulting from micro-movements in the left and right structures of the moving human
subject. For instance, Figure 8c,g showcase the left and right arms resembling a left–right
symmetrical structure. To maintain balance during most movements, the arms often exhibit
symmetrical or reverse symmetrical movements centered around the trunk.
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Both sides’ upper and lower arms, thighs, and calves exhibit large motion amplitudes
during human movement, resulting in higher MD frequencies. The corresponding MD
spectrum mirrors the human body’s inherent symmetrical structural characteristics. By
simulating the MD effect differences caused by micro-motions of different human body
parts during movement, we can more effectively demonstrate that MD spectra accurately
reflect the characteristics inherent in various postural states of the human body. Therefore,
the MD features of moving human subjects can be instrumental in addressing the challenge
of human pose reconstruction.

4. Method
4.1. Experimental Setup and Data Collection

Our UWB radar system utilizes a single transmitter and receiver channel, as shown in
Figure 9. This system is co-located with a inter realsense camera and the Noitom Perception
Neuron 3 (N3) system, simultaneously capturing the subjects’ radar returns and velocity
information. To collect data comprehensively, we set up the UWB radar, a camera, the N3
device, and a personal computer (PC). The UWB radar acquires radar data, whereas the
camera captures scene imagery. The N3 device employs a 2.4G wireless method to collect
data on skeletal key-points of the human body. The PC synchronizes data across these three
sensors, ensuring cohesive and aligned data capture for subsequent analysis.

Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 32 
 

 

data across these three sensors, ensuring cohesive and aligned data capture for subse-
quent analysis. 

 
Figure 9. Experimental setup for UWB Radar Data acquisition. 

The research involved collecting experimental data in a living room with four indoor 
movement scenarios. The radar was mounted on a tripod about 1.2 m above the ground 
and paired with a camera placed above the radar antenna. Ground truth (GT) data were 
obtained using an N3 device, which is an inertial sensor-based motion capture system. 
The 17 skeletal key-points captured by the N3 were timestamped using universal time 
coordinates (UTC) to make associating them with radar frames and compiling the dataset 
easier. 

This paper utilized a SISO UWB radar, specifically an FMCW radar that operates in 
the 2.7 to 3.2 GHz range and has a bandwidth of 500 MHz. Table 1 provides more details 
about the specific parameters of the FMCW radar used. The chosen frequency band for 
the radar provides a degree of penetration and high resolution, which is crucial for accu-
rately determining the posture of the human target. Estimating human poses in indoor 
environments filled with desks, chairs, and debris can be challenging. High-frequency ra-
dars and cameras can have difficulty estimating poses through obstacles, leading to alias-
ing and loss of target pose visibility. A practical approach to independently estimate each 
joint of the human body in indoor settings is to use lower-frequency UWB radar. For this 
purpose, the compact SISO UWB radar is the ideal choice due to its suitability in indoor 
scenarios. As Table 1 shows, the SISO UWB radar has a bandwidth of 500 MHz and a 
range resolution of 0.33m. However, the limited data acquired from the single transmitter 
and receiver antenna pose a significant challenge in estimating the extended posture of 
the human target. 

Table 1. The specification of SISO UWB radar system parameters. 

Parameters Values 
Frequency 2.7 GHz~3.2 GHz 
Bandwidth 500 MHz 

Lambda 11.017 10−×  
Pulse width 44.4 10−×  

FM slope 121.136 10×  
Pulse repetition frequency (PRF) 1923 

Sampling frequency 4 MHz 
Sampling points 1460 

  

Figure 9. Experimental setup for UWB Radar Data acquisition.

The research involved collecting experimental data in a living room with four in-
door movement scenarios. The radar was mounted on a tripod about 1.2 m above the
ground and paired with a camera placed above the radar antenna. Ground truth (GT)
data were obtained using an N3 device, which is an inertial sensor-based motion capture
system. The 17 skeletal key-points captured by the N3 were timestamped using universal
time coordinates (UTC) to make associating them with radar frames and compiling the
dataset easier.

This paper utilized a SISO UWB radar, specifically an FMCW radar that operates
in the 2.7 to 3.2 GHz range and has a bandwidth of 500 MHz. Table 1 provides more
details about the specific parameters of the FMCW radar used. The chosen frequency band
for the radar provides a degree of penetration and high resolution, which is crucial for
accurately determining the posture of the human target. Estimating human poses in indoor
environments filled with desks, chairs, and debris can be challenging. High-frequency
radars and cameras can have difficulty estimating poses through obstacles, leading to
aliasing and loss of target pose visibility. A practical approach to independently estimate
each joint of the human body in indoor settings is to use lower-frequency UWB radar. For
this purpose, the compact SISO UWB radar is the ideal choice due to its suitability in indoor
scenarios. As Table 1 shows, the SISO UWB radar has a bandwidth of 500 MHz and a range
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resolution of 0.33m. However, the limited data acquired from the single transmitter and
receiver antenna pose a significant challenge in estimating the extended posture of the
human target.

Table 1. The specification of SISO UWB radar system parameters.

Parameters Values

Frequency 2.7 GHz~3.2 GHz
Bandwidth 500 MHz

Lambda 1.017 × 10−1

Pulse width 4.4 × 10−4

FM slope 1.136 × 1012

Pulse repetition frequency (PRF) 1923
Sampling frequency 4 MHz

Sampling points 1460

4.2. Overview Architecture

The SCRP-Radar approach is a novel technique for human pose estimation that treats
it as a dual classification task for vertical and horizontal positions. The aim is to minimize
quantization errors by segmenting each micro-Doppler signature patch into several bins.
This strategy is inspired by the techniques used in Simcc [14]. Traditional radar-based
human pose estimation research relies on heatmaps or regression to determine joint coordi-
nates. However, these processes demand substantial computational power owing to the
larger size of radar echo data than conventional images. To address this issue, we intro-
duce the SCRP-Radar method, which marks its debut as a more efficient alternative that
significantly reduces the need for computational resources while enhancing the accuracy of
human joint estimation.

The SCRP-Radar’s overview architecture is demonstrated in Figure 10. The human
pose estimation model processes the radar echo with clutter suppression, producing a
micro-doppler signature, and then extracts features using a backbone network, which can
be either a CNN-based or a Transformer-based network. Through the full convolutional
layer, n key-point representations are extracted. The obtained key-point representation is
flattened from (n, H′, W ′) to (n, H′ × W ′) for subsequent classification. The SCRP-Radar
performs coordinate classification independently for the horizontal and vertical axes based
on the n key-point representations to generate the final predictions. For the i-th key-point
representation, the horizontal and vertical coordinate classifiers generate the i-th key-point
predictions Oi

x and Oi
y, respectively, using only one linear layer for each classifier. The head

and decoding networks can restore the feature map’s resolution and learn from the loss
between the predicted coordinates and the ground truth coordinate. Our model mainly
focuses on converting the regression problem in the human pose estimation task into a
classification problem so that the loss function can incorporate a classification loss with
better properties than L2 (MSE) loss.
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4.3. Efficient Feature Extraction Using Hrnet and LiteHrnet

The SCRP-Radar framework utilizes a High-Resolution Network (Hrnet) model as its
backbone to process micro-Doppler features from radar echoes. The Hrnet model maintains
high resolution throughout the process, allowing for detailed capture of micro-Doppler
features that are essential for human pose estimation accuracy. The network starts with a
high-resolution subnetwork and gradually adds lower-resolution subnetworks, enabling
cross-resolution feature fusion. This design enables information to flow across different
resolution pathways, ensuring that the network can process micro-Doppler features with
varying scales and velocities, effectively capturing the dynamic and complex nature of
human movements represented by radar signals. Using the Hrnet model as the backbone,
the SCRP-Radar network can take advantage of the high-resolution representations of
micro-Doppler features, resulting in precise human pose estimation.

The LiteHrnet model is a streamlined version of the Hrnet model that efficiently
processes radar-derived micro-Doppler features for human pose estimation. It preserves
high-resolution pathways like the Hrnet model but reduces computational costs and
memory usage, making it ideal for resource-constrained settings. The LiteHrnet model
combines lightweight design with competitive accuracy and a simplified feature fusion
strategy, ensuring low computational overhead and suitability for real-time applications on
limited-capacity devices. In subsequent experimental comparisons detailed in our paper,
we rigorously evaluate the LiteHrnet model against the Hrnet model in the SCRP-Radar
network architecture context.

4.4. Advancing Human Pose Estimation with Space-Aware Coordination

In SCRP-Radar, the x and y coordinates are represented as separate one-dimensional
vectors instead of being encoded into a single representation. This disentanglement allows
for independent manipulation of each coordinate, providing flexibility in handling spatial
information. To encode the input’s micro-Doppler features, we generate supervision signals
in a space-aware way.

Coordinate encoding. Given a human motion’s micro-Doppler signature of size H ×W,
we denote the ground-truth coordinate for the p-th type of key-point as (xp, yp). To improve
localization precision, we incorporate a splitting factor, denoted as k (where k ≥ 1) and
subsequently scale the ground-truth coordinates to obtain a refined coordinate system.

p′ =
(

x′, y′
)
= (round(xp · k), round(yp · k)) (17)

where round(.) is a round function, the utilization of this splitting factor has the capability
to elevate localization precision to sub-pixel levels. Additionally, the supervision signals
are defined as follows:

p′
x−sa = [x0, x1, . . . , xW·k−1] ∈ RW·k, xi =

1√
2πσ

exp

(
− (i − x′)2

2σ2

)
(18)

p′
y−sa = [y0, y1, . . . , yH·k−1] ∈ RH·k, yj =

1√
2πσ

exp

(
− (j − y′)2

2σ2

)
(19)

where i ∈ {0, 1, . . . , W · k − 1}, j ∈ {0, 1, . . . , H · k − 1}, and σ is the standard deviation.
Both p′x and p′y are one-dimensional vectors.

Coordinate decoding. Assuming the model generates two one-dimensional vectors Ox
and Oy, corresponding to a specific type of human key-point, the predicted joint position
(Ôx, Ôy) is computed as follows:

ôx =
argmaxi(ox(i))

k
, ôy =

argmaxj
(
oy(j)

)
k

(20)
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5. Results
5.1. Dataset and Annotations and Evaluation Metrics

Dataset and Annotations. We evaluated our model using the HPSUR dataset, which
was created using a SISO UWB radar and N3 systems. The dataset comprises a com-
prehensive indoor environment, specifically a living room, featuring four distinct indoor
movement scenarios, as detailed in Table 2. We collected 311,963 data frames from five sub-
jects of varying height and weight. Each subject performed four types of actions, as shown
in Figure 11, within a controlled visual environment. We divided the dataset into training
and testing subsets to conduct our experiments. The training set included data from three
subjects, totaling 189,462 frames. The testing set included data from the remaining two
subjects, which totaled 122,401 frames. Ground truth (GT) for human pose key-points
was acquired using the N3 system, which accurately captures 17 key-points of the human
skeleton.

Table 2. Detailed descriptions of different human postures in the HPSUR dataset.

ID Type of Posture Specific Description

1001 Walking
Subjects walked back and forth along the radial path of
the radar, including linear movements at both 45 degrees
and 135 degrees to the radar’s central axis.

1002 Punch forward
Subjects performed walking exercises along the radar’s
radial path and diagonally at 45 and 135 degrees,
incorporating fist movements during the walk.

1003 Sit and stand

Subjects assumed sitting and standing postures at
designated positions relative to the radar, specifically at
(0 m, 2 m), (0 m, 3 m), (−1 m, 2 m), and (1 m, 3m), using
the radar as the origin point.

1004 Fall
Subjects performed fall motion at the same coordinates as
the sitting and standing postures, namely at (0 m, 2 m),
(0 m, 3 m), (−1 m, 2 m), and (1 m, 3 m).
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Evaluation metric. We use the MPJPE metric to evaluate the accuracy of our estimated
2D human poses against the GT under the HPSUR dataset. The MPJPE calculates the
average Euclidean distance between the estimated joint positions and their corresponding
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GT counterparts. Since our research primarily focuses on human pose estimation in single-
person scenarios, we also use the Percentage of Correct Key-points (PCK) as a metric to
assess the effectiveness of our training process. The PCK measures the ratio of accurately
estimated human key points, where a key-point is considered correct if the normalized
distance between the estimated key-point and the GT is less than a predefined threshold.
We set the threshold Tk to 0.7, as outlined in our experimental setup.

PCKk
mean = ∑

i
δ

(∥pi − gi∥2
h

≤ Tk

)
/ ∑

i
1 (21)

where i represents the i-th key-point, Tk represents the k-th threshold, pi represents the
predicted value of the i-th key point, gi represents the ground truth of the i-th key-point, h
represents the length of body, and Tk represents the manually set threshold; we choose 0.7.
This means that the Euclidean distance between the predicted value of the key-point and
the ground truth is less than or equal to Tk* (length of body), it is judged that the prediction
of the key-point is correct. During the training process, the accuracy of all joint points of the
batch size is calculated as an evaluation index, which is used to guide the network training.

5.2. Implementations Details

For our study on human pose estimation, we used a dataset called HPSUR to train
and test our networks. This dataset contains UWB radar data from five volunteers: S1
(Male), S2 (Female), S3 (Male), S4 (Male), and S5 (Female). We used data from volunteers
S1, S2, and S3 for the training phase, while data from volunteers S4 and S5 were reserved
for the testing phase. We experimented with four network models: Hrnet-w32, Hrnet-w64,
LiteHrnet-18, and LiteHrnet-30.

During the training phase, we optimized our networks using Adaptive Moment
Estimation (Adam), which combines the benefits of the AdaGrad and RMSProp algorithms.
We set the optimizer with an initial learning rate of 1 × 10−2. We decreased the learning
rate by magnitude after the 20th and 40th epochs to prevent overfitting and facilitate
convergence. We used a batch size of 24 and trained our networks for 60 epochs to ensure
sufficient learning. We implemented our networks using the PyTorch framework and
accelerated all experiments using an NVIDIA RTX3090 GPU.

5.3. Quantitative Evaluation of the HPSUR Dataset

The average precision (AP) curves of the four backbone models throughout their
training iterations are displayed in Figure 12. All the networks demonstrate an increasing
trend in AP, with the Hrnet-w32 and Hrnet-w64 models reaching a plateau earlier than
the LiteHrnet variants. After about 50,000 iterations, the LiteHrnet-30 model exhibits the
highest AP, indicating a more refined learning capability. Hrnet-w64 shows marginally
better performance than Hrnet-w32.

The loss curves for different networks show how the optimization process went during
training, as shown in Figure 13. All networks initially had a quick drop in loss, followed
by a gradual convergence toward a minimum value. The LiteHrnet-30 model had the
lowest loss, which means it had better generalization ability on the training data from
the three volunteers. Although the LiteHrnet-18 model did not perform better than the
LiteHrnet-30, it had a lower loss than both the Hrnet models, indicating the effectiveness of
the LiteHrnet architecture in capturing pose features with fewer parameters. Despite its
lightweight design, the AP and loss curves show that the LiteHrnet-30 model can effectively
learn complex human poses from UWB radar data. These results suggest that LiteHrnet
models have potential in scenarios where model efficiency is crucial without significantly
compromising performance.
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Table 3 and Figure 14 present a comparison of human pose estimation errors across
various network models. Established models such as RF-Pose and RF-Pose 3D exhibit
mean per-joint position errors (MPJPE) of 62.4 mm and 43.6 mm, respectively, with RF-Pose
3D being assessed over a substantial dataset comprising more than 1.6 million samples. In
contrast, UWB-Pose and RadarFormer demonstrate pose estimation errors of 37.87 mm and
33.5 mm, respectively, indicating their higher accuracy in estimating human poses. Radar-
Former’s evaluation involved a dataset of 162,280 samples, highlighting its effectiveness
across a considerable number of data points.

Table 3. Comparison of human pose estimation error based on different network models (unit: mm).

Model Dataset Size MPJPE

RF-Pose [8] — 62.4
RF-Pose 3D [9] 1,693,440 43.6
UWB-Pose [29] 120,000 37.87

RadarFormer [40] 162,280 33.5
Hrnet-w32 (ours) 311,963 34.43
Hrnet-w64 (ours) 311,963 33.48

LiteHrnet-18 (ours) 311,963 32.09
LiteHrnet-30 (ours) 311,963 34.28
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Figure 14. Comparison of our proposed method with several state-of-the-art methods of human pose
estimation.

Our paper proposes Hrnet-w32, Hrnet-w64, LiteHrnet-18, and LiteHrnet-30 models.
These methods demonstrate MPJPEs of 34.43 mm, 33.48 mm, 32.09 mm, and 34.28 mm,
respectively. We analyzed each model over a dataset of 311,963 samples. The LiteHrnet-18
model outperforms all models with the lowest error rate, signifying a significant advance-
ment in radar-based human pose estimation.

Table 4 and Figure 15 provide the performance details of various backbone models for
human pose estimation, as measured using the HPSUR dataset. The focus is on the methods
proposed in this paper. Among the backbones, the Hrformer-base and Hrformer-small
models exhibit higher mean pose estimation errors of 59.16 mm and 49.94 mm, respectively.
Other models, such as theCPM, Mobilenetv2, Resnet 50, Resnet 101, and Vipnas models,
show a range of errors, with CPM having the lowest mean error of 39.75 mm, indicating a
trend toward improvement with more recent architectures.

Table 4. Overall evaluation of the performance of the HPSUR dataset (unit: mm).

Backbone Mean Variance Maximum Minimum

Hrformer-base [41] 59.16 8.13 65.06 10.77
Hrformer-small [41] 49.94 8.53 60.24 6.76

CPM [42] 39.75 4.40 46.45 9.36
Mobilenetv2 [43] 37.85 3.10 39.77 9.36

Resnet 50 35.18 2.62 37.53 8.75
Resnet 101 36.93 3.37 39.36 8.52
Vipnas [44] 36.99 1.74 36.24 11.53

Hrnet-w32 (ours) 34.43 3.42 39.65 7.40
Hrnet-w64 (ours) 33.48 2.85 38.89 7.48

LiteHrnet-18 (ours) 32.09 2.40 36.01 8.26
LiteHrnet-30 (ours) 34.28 3.07 38.22 7.24

The final four backbones, part of this study’s contribution, show significant advance-
ments in estimation accuracy. The Hrnet-w32 backbone model achieved a mean error
of 34.43 mm, showcasing a relatively higher variation in performance with a variance of
3.42 mm. Its maximum and minimum errors were recorded at 39.65 mm and 7.40 mm,
respectively. The Hrnet-w64 model demonstrated a slightly lower mean error of 33.48 mm
and a reduced variance of 2.85 mm, indicating a more consistent performance. The maxi-
mum error was slightly lower at 38.89 mm, with a minimum error close to the Hrnet-w32
model at 7.48 mm. The LiteHrnet-18 model exhibited a mean error of 32.09 mm, the lowest
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among the four models, and had the most minor variance at 2.40 mm, suggesting a more
stable prediction capability. However, it registered a higher maximum error of 36.01 mm
but also showed a better minimum error of 8.26 mm, implying that while its peaks were
higher, its overall performance tended to be more reliable. Lastly, the LiteHrnet-30 model
reported a mean error of 34.28 mm with a variance of 3.07 mm. Its maximum error was
recorded at 38.22 mm, and the minimum error was 7.24 mm, which was the best among
all models.
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several backbone models.

To summarize the comparison between the human pose estimation models, LiteHrnet-
18 had the lowest mean error, which indicates that it has better accuracy on average.
LiteHrnet-30 had the best minimum error, indicating its potential to yield highly accurate
predictions in the best scenarios. Although the Hrnet variants were less consistent than
the LiteHrnet models, they still maintained a competitive range of error metrics. These
insights into the models’ performance highlight the trade-offs between mean and variance
and between the maximum and minimum errors. These trade-offs are crucial for practical
applications of human pose estimation technology.

Tables 5 and 6 provide data on the performance metrics of four different neural
network models evaluated on subjects S4 and S5, respectively. These evaluations were
conducted as part of our study on how well these models perform when estimating human
poses across different subjects. Table 5 shows that, for subject S4, the mean errors ranged
from 36.16 mm for the LiteHrnet-18 model to 40.28 mm for the LiteHrnet-30 model, which
indicates that these models vary in their ability to generalize across different subjects.
However, the Hrnet-w64 and LiteHrnet-18 models showed lower variances of 3.10 mm
and 2.73 mm, respectively, suggesting that they consistently performed well across various
poses of the subject. The Hrnet-w64 model had the lowest maximum error of 41.73 mm,
while the LiteHrnet-18 model exhibited the highest minimum error of 10.85 mm, indicating
that it performed well in best-case scenarios. Table 6 shows that, for subject S5, all models
had a reduced average error rate when compared with their performance on subject S4.
The LiteHrnet-18 model had the lowest average error rate of 30.09 mm, followed closely by
the LiteHrnet-30 model at 31.33 mm. The error variances were minimal across all models,
indicating consistent performance. The Hrnet-W64 model registered the lowest variance
at 2.72 mm. The LiteHrnet-18 model had the advantage in maximum error, recording
a significantly lower figure of 34.34 mm, thereby demonstrating its superior capability
in accurately estimating the poses of subject S5. Additionally, the LiteHrnet-30 model
recorded the smallest minimum error at 5.93 mm, highlighting its outstanding accuracy
under optimal conditions.
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Table 5. Overall evaluation of the performance of S4 of the HPSUR dataset (unit: mm).

Backbone Mean Variance Maximum Minimum

Hrformer-base [41] 61.99 9.27 68.19 11.33
Hrformer-small [41] 52.89 9.53 63.47 7.93

CPM [42] 46.41 4.82 51.49 11.73
Mobilenetv2 [43] 44.93 4.06 46.60 10.91

Resnet 50 41.25 3.05 42.23 11.19
Resnet 101 43.73 4.34 46.14 10.04
Vipnas [44] 43.72 2.16 42.23 13.79

Hrnet-w32 (ours) 38.81 3.85 42.86 9.70
Hrnet-w64 (ours) 36.96 3.10 41.73 10.24

LiteHrnet-18 (ours) 36.16 2.73 39.38 10.85
LiteHrnet-30 (ours) 40.28 3.73 41.77 9.88

Table 6. Overall evaluation of the performance of S5 of the HPSUR dataset (unit: mm).

Backbone Mean Variance Maximum Minimum

Hrformer-base [41] 57.76 7.56 63.52 10.49
Hrformer-small [41] 48.49 8.03 58.65 6.17

CPM [42] 36.46 4.20 43.97 8.20
Mobilenetv2 [43] 34.36 2.63 36.40 8.65

Resnet 50 32.19 2.41 35.20 7.55
Resnet 101 33.57 2.90 36.02 7.77
Vipnas [44] 33.66 1.53 33.28 10.43

Hrnet-w32 (ours) 32.27 3.20 38.06 6.26
Hrnet-w64 (ours) 31.76 2.72 37.49 6.12

LiteHrnet-18 (ours) 30.09 2.24 34.34 6.98
LiteHrnet-30 (ours) 31.33 2.74 36.47 5.93

The analysis that compares the effectiveness of models across different subjects high-
lights the unique capabilities of each architectural design. The Hrnet model versions
demonstrate consistent performance, while the LiteHrnet models excel in specific metrics
and have average or minimal error rates. This evaluation emphasizes the importance
of considering individual differences when creating and evaluating human pose estima-
tion models. Gaining such an understanding is crucial for developing pose estimation
technologies that are robust and reliable across different individuals.

Tables 7 and 8 show the performance of the S4 subject performing two different
postures, labeled 1001 and 1003. These tables give us insights into the models’ performance
across diverse subjects and postures. For posture 1001, as shown in Table 7, the mean errors
for the models range from 36.33 mm for the LiteHrnet-30 model to 39.91 mm for the Hrnet-
w32 model, indicating a modest range of mean prediction accuracy across the network
architectures. The LiteHrnet-18 and LiteHrnet-30 models show the lowest variances of 3.09
and 2.69 mm, respectively, indicating consistent performance across multiple instances
of posture 1001. The maximum error is smallest for the LiteHrnet-30 model at 39.72 mm,
whereas the minimum error does not vary significantly across the models, with the Hrnet-
w32 model showing slightly better performance at 8.64 mm.

Table 7. Overall evaluation of the performance on S4 1001 of the HPSUR dataset (unit: mm).

Backbone Mean Variance Maximum Minimum

Hrnet-w32 39.91 3.96 44.96 8.64
Hrnet-w64 38.31 3.47 43.20 8.77

LiteHrnet-18 36.37 3.09 41.85 9.27
LiteHrnet-30 36.33 2.69 39.72 9.78
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Table 8. Overall evaluation of the performance of S4 1003 of the HPSUR dataset (unit: mm).

Backbone Mean Variance Maximum Minimum

Hrnet-w32 37.97 3.77 41.29 10.50
Hrnet-w64 35.94 2.83 40.62 11.34

LiteHrnet-18 35.70 2.46 37.52 12.04
LiteHrnet-30 43.24 4.51 43.32 9.96

In the case of posture 1003, as illustrated in Table 8, the mean errors are relatively
lower, with the Hrnet-w64 and LiteHrnet-18 models showing similar performance at
around 35.94 mm and 35.70 mm, respectively. However, the LiteHrnet-30 model shows
a notable increase in mean error to 43.24 mm. The variance metrics are consistent with
the previous posture, but the LiteHrnet-18 model shows a marginally better variance of
2.46 mm. The maximum error for the LiteHrnet-18 model is significantly lower at 37.52 mm,
highlighting its effectiveness in handling posture 1003. Conversely, the LiteHrnet-30 model
has the least favorable minimum error at 9.96 mm.

It is important to choose an appropriate model for estimating posture based on the
specific posture to be estimated. The LiteHrnet models offer more consistent performance
with less variance, while the Hrnet models fluctuate more accurately. The difference
in performance between postures 1001 and 1003 for the same subject also highlights the
models’ varying degrees of adaptability to different postural dynamics. This comprehensive
evaluation is necessary for developing nuanced pose estimation models that can adapt to
the subtleties of individual subject postures.

Tables 9–12 present a comprehensive analysis of the performance of four distinct
neural network backbones when applied to subject S5 across four different postures (1001,
1002, 1003, and 1004). This analysis aims to gain a granular understanding of how well these
models capture the nuanced differences in human movements. For posture 1001, as shown
in Table 9, the LiteHrnet-30 model outperforms the other models with the lowest mean
error of 29.52 mm and a reasonable variance of 2.24 mm, indicating its robust performance.
Additionally, this model has the lowest maximum error, demonstrating its effectiveness in
dealing with posture 1001. However, the LiteHrnet-18 model shows the highest minimum
error among all the models at 7.66 mm.

Table 9. Overall evaluation of the performance of S5 1001 of the HPSUR dataset (unit: mm).

Backbone Mean Variance Maximum Minimum

Hrnet-w32 32.47 2.93 37.35 6.92
Hrnet-w64 31.93 2.60 37.07 7.12

LiteHrnet-18 30.14 2.04 33.73 7.66
LiteHrnet-30 29.52 2.24 34.02 6.61

Table 10. Overall evaluation of the performance of S5 1002 of the HPSUR dataset (unit: mm).

Backbone Mean Variance Maximum Minimum

Hrnet-w32 26.84 2.26 33.52 5.62
Hrnet-w64 26.91 2.20 33.74 5.66

LiteHrnet-18 26.11 1.82 32.90 6.38
LiteHrnet-30 26.58 2.03 33.04 5.46
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Table 11. Overall evaluation of the performance of S5 1003 of the HPSUR dataset (unit: mm).

Backbone Mean Variance Maximum Minimum

Hrnet-w32 35.57 4.43 42.34 6.07
Hrnet-w64 34.55 3.23 40.89 5.48

LiteHrnet-18 33.43 2.92 36.92 7.26
LiteHrnet-30 36.45 3.96 42.10 5.75

Table 12. Overall evaluation of the performance of S5 1004 of the HPSUR dataset (unit: mm).

Backbone Mean Variance Maximum Minimum

Hrnet-w32 33.31 2.83 38.08 5.92
Hrnet-w64 33.06 2.77 37.34 5.54

LiteHrnet-18 29.23 2.04 32.90 5.62
LiteHrnet-30 32.77 2.61 36.47 5.29

For posture 1002, Table 10 reveals a closer range of mean errors among the models,
with the LiteHrnet-18 model achieving the lowest mean error of 26.11 mm. Furthermore,
it exhibits the lowest variance of 1.82 mm, illustrating its consistent performance across
different instances of posture 1002. Once again, the LiteHrnet-30 model demonstrates a
robust minimum error at 5.46 mm, which is the best among all models.

Table 11 shows that for posture 1003, the LiteHrnet-18 model records the lowest mean
error of 33.43 mm, with a variance of 2.92 mm. This model also has the lowest maximum
error of 36.92 mm, signifying a favorable performance. Although the LiteHrnet-30 model
does not have the lowest mean error, it does maintain a competitive minimum error of
5.75 mm. Lastly, Table 12 shows the most significant difference in performance for posture
1004. Here, the LiteHrnet-18 model achieves a substantially lower mean error of 29.23 mm
and the lowest variance of 2.04 mm, indicating an exceptional ability to predict this posture
accurately. The LiteHrnet-30 model, however, has a slightly higher mean error of 32.77 mm
but maintains a relatively low minimum error of 5.29 mm.

These performance metrics across diverse postures for subject S5 illustrate the distinct
capabilities and limitations of the different models. LiteHrnet models, particularly the
LiteHrnet-18 model, consistently show lower mean and variance errors, implying better
overall performance in diverse posture estimation. These findings are crucial for developing
advanced human pose estimation models that can adapt to various human postures and
movements, ensuring high accuracy and reliability in real-world applications.

Table 13 compares the performance of four neural network backbone models when
tested on two subjects, S4 and S5. The analysis shows how each model performs on different
subjects in the same task domain. The Hrnet-w32 model significantly reduces the mean
error from 38.81 mm for subject S4 to 32.27 mm for subject S5. This reduction in mean
error is coupled with a decrease in variance, suggesting a better fit for subject S5. Similarly,
the Hrnet-w64 model performs better on subject S5 with a decrease in mean error and
variance. The mean errors are 36.96 mm for S4 and 31.76 mm for S5. The LiteHrnet-18
model also shows a decrease in mean error from 36.16 mm for S4 to 30.09 mm for S5,
with a notable reduction in variance, indicating a more stable performance on subject S5.
Although the LiteHrnet-30 model shows an increased mean error for subject S4 at 40.28 mm,
it presents a significantly lower mean error of 31.33 mm for subject S5, again with reduced
variance. Maximum errors are consistently lower for subject S5 across all models, with the
most considerable improvement seen in the Hrnet-w32 model, from 42.86 mm down to
38.06 mm. Minimum errors follow a similar trend, with all models achieving lower errors
on subject S5, indicating that the models are better at capturing the least complex poses of
subject S5 than S4.
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Table 13. Comparison of the performance of S4 and S5 of the HPSUR dataset (unit: mm).

Backbone
Mean Variance Maximum Minimum

S4 S5 S4 S5 S4 S5 S4 S5

Hrnet-w32 38.81 32.27 3.85 3.20 42.86 38.06 9.70 6.26
Hrnet-w64 36.96 31.76 3.10 2.72 41.73 37.49 10.24 6.12

LiteHrnet-18 36.16 30.09 2.73 2.24 39.38 34.34 10.85 6.98
LiteHrnet-30 40.28 31.33 3.73 2.74 41.77 36.47 9.88 5.93

This comparison highlights the significance of evaluating models for specific subjects
in human pose estimation research. Although all models show improved performance
metrics for subject S5, the reduction in variance and error indicates that either the models
are inherently more adaptable or the poses of subject S5 are less challenging for the models
to estimate. These findings are crucial in developing customized pose estimation solutions
accommodating inter-subject variability.

Table 14 uses four neural network backbone models to compare human pose estima-
tion results for four different postures labeled 1001, 1002, 1003, and 1004. The models’
performance is measured in terms of mean error and variance, which gives a compre-
hensive view of each model’s capabilities in handling different human movements. In
postures 1001 and 1002, the LiteHrnet models outperform the Hrnet variant models, with
the LiteHrnet-30 model achieving the lowest mean error at 32.05 mm in posture 1001 and
the LiteHrnet-18 model demonstrating the lowest variance at 2.41 mm in posture 1001. The
LiteHrnet models are better suited to capture posture 1001 and 1002 more consistently.

Table 14. Comparison of the performance for 1001, 1002, 1003, and 1004 of the HPSUR dataset
(unit: mm).

Backbone
1001 1002 1003 1004

Mean Var Mean Var Mean Var Mean Var

Hrnet-w32 35.23 3.31 26.84 2.26 36.76 4.10 33.31 2.83
Hrnet-w64 34.30 2.92 36.91 2.20 35.24 3.03 33.06 2.77

LiteHrnet-18 32.45 2.43 26.11 1.82 34.56 2.69 29.23 2.04
LiteHrnet-30 32.05 2.41 26.58 2.03 39.82 4.23 32.77 2.61

Conversely, in posture 1003, the LiteHrnet-30 model exhibits a considerable increase
in mean error to 39.82 mm, the highest among all models for this posture, which might
indicate a reduced ability to estimate this particular pose accurately. However, the Hrnet-
w64 and LiteHrnet-18 models maintain lower mean errors and variances, with the Hrnet-
w64 model achieving the lowest variance, suggesting it is less sensitive to the variations
within posture 1003. Lastly, posture 1004 showcases LiteHrnet-18’s dominance, with the
lowest mean error and variance across all models, suggesting its strong adaptability and
reliability for this specific posture. Across all postures, the LiteHrnet-18 model consistently
maintains low mean errors and variances, indicating its robustness and efficiency in human
pose estimation tasks. The Hrnet models, while generally exhibiting higher mean errors
and variances, still maintain competitive performance, especially the Hrnet-w64 model,
which has the lowest variance for posture 1003. The comparison of these models provides
critical insights into their posture-specific performance, underlining the importance of
model selection based on the specific requirements of the pose estimation task at hand.
This detailed assessment aids in discerning the strengths and limitations of each model,
facilitating more informed decisions in the development and application of human pose
estimation technologies.

Table 15 compares the performance of four backbone models in estimating poses 1001
and 1003 for subjects S4 and S5. This comparison helps to demonstrate how effectively the
models identify different poses for different subjects. For pose 1001, all models showed a



Remote Sens. 2024, 16, 1572 25 of 31

reduced mean error when evaluating subject S5 compared with S4. The LiteHrnet-30 model
had the most significant reduction, indicating its heightened sensitivity to the subtleties
of subject S5’s posture. The variances for S5 were consistently lower, implying a more
stable estimation across different instances of pose 1001. However, for pose 1003, the mean
errors were generally lower for subject S5 across all models except for the LiteHrnet-30
model, which showed an increase. The variances for S5 were higher in the Hrnet-w32 and
LiteHrnet-30 models, suggesting that pose 1003 presents more complexity or diversity in
this subject’s movements than in S4.

Table 15. Comparison of performance for 1001 and 1003 of S4 and S5 of the HPSUR dataset (unit: mm).

Backbone

1001 1003

S4 S5 S4 S5

Mean Var Mean Var Mean Var Mean Var

Hrnet-w32 39.91 3.96 32.47 2.93 37.97 3.77 35.57 4.43
Hrnet-w64 38.31 3.47 31.93 2.60 35.94 2.83 34.55 3.23

LiteHrnet-18 36.37 3.09 30.14 2.04 35.70 2.46 33.43 2.92
LiteHrnet-30 36.33 2.69 29.52 2.24 43.24 4.51 36.45 3.96

The Hrnet-w64 and LiteHrnet-18 models showed notable consistency across subjects
and poses, with competitive and stable mean errors and variances. The LiteHrnet-18 model
showed the lowest variance in both poses for S5, reinforcing its robustness in pose estima-
tion across different subjects. This comparison demonstrates the importance of considering
subject variability and poses difficulty when developing human pose estimation models.
The results indicate that although LiteHrnet architectures generally offer superior accuracy
and stability, the choice of model may depend on the specific subject and pose combination,
requiring a tailored approach for optimal performance in practical applications.

A boxplot visualization compares the mean per-joint position error (MPJPE) for four
backbone models, Hrnet32, Hrnet64, LiteHrnet18, and LiteHrnet30, as shown in Figure 16.
The bule and red lines of the figure represent the interquartile range (IQR) and mean value,
respectively. The comparison is made across all test data and subsets for subjects S4 and
S5. The boxplot gives an overview of the estimation errors for the models. The horizontal
line within each box shows the median MPJPE, which helps quickly compare the central
tendencies of the models. The LiteHrnet models consistently demonstrate a lower median
error across all datasets, suggesting better pose estimation performance.
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Each model’s interquartile range (IQR) is represented by the height of a box, which
shows the middle 50% of the data with red lines in Figure 16. A smaller IQR indicates less
variability in the model’s performance. The LiteHrnet-18 model consistently displays a
compact IQR, especially for S5 test data, indicating robust performance with fewer outliers
and less dispersion. The whiskers extending from the boxes illustrate the range of the data.
At the same time, outliers, depicted as individual points, represent data points that fall
beyond the whiskers and indicate pose estimates that significantly deviate from the typical
error range. All models have outliers, indicating challenges in estimating certain poses.
Comparing the performance of the S4 and S5 test data shows that the models’ performances
are subject-specific. The LiteHrnet-30 model shows a notable increase in the median MPJPE
for S4 compared with S5. This could mean that the LiteHrnet30 model is more attuned to
the characteristics of subject S5’s data or that subject S4 presents more challenging poses for
this model. The boxplot in Figure 16 succinctly encapsulates the performance distributions
of the tested models, providing insights into their reliability and precision. The LiteHrnet
models, particularly the LiteHrnet-18 model, exhibit consistently high performance across
different subjects, making them promising candidates for real-world applications where
pose estimation accuracy is critical.

A boxplot analysis of the mean per-joint position error (MPJPE) for four human
pose estimation models, Hrnet-32, Hrnet-64, LiteHrnet-18, and LiteHrnet-30, is shown in
Figure 17. The bule and red lines of the figure represent the interquartile range (IQR) and
mean value, respectively. The analysis is conducted over various test datasets, including
a collective test dataset and specific actions (1001 and 1003) for subject S4 and actions
1001, 1002, 1003, and 1004 for subject S5. The dashed line within each box represents
the median MPJPE, which suggests that the LiteHrnet models, especially the LiteHrnet-
18 model, offer a lower median error across most actions and subjects than the Hrnet
models, which indicates higher accuracy in pose estimation for the LiteHrnet models.
The interquartile range (IQR) for each action of both subjects is compact for LiteHrnet-18,
signifying consistent estimation across different poses. The other models exhibit slightly
wider IQRs, indicating more variability in their pose estimations. Whiskers extending
from the boxes demonstrate the range of data, excluding potential outliers, and reflect the
variability in estimation accuracy for more challenging poses. The presence of outliers,
as indicated by points above and below the whiskers, is observed across all models and
actions, highlighting instances where pose estimation deviates from typical error ranges.
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Figure 17. Comparative boxplot analysis of MPJPE across the Hrnet32, Hrnet64, LiteHrnet18, and
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HPSUR dataset.

A comparison of S4 and S5 data for actions 1001 and 1003 reveals that model perfor-
mance is not only model-specific but also action-specific. Some models handle specific
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actions better than others. For instance, the LiteHrnet-30 model tends to have a higher
median error for S4’s action 1003, which suggests a potential model–subject–action in-
teraction effect. Figure 10 effectively illustrates the performance distribution of human
pose estimation models across different subjects and actions, providing valuable insights
into model precision and reliability. The LiteHrnet models, particularly the LiteHrnet-18
model, demonstrate a lower median MPJPE, signifying their potential as robust solutions
for accurate human pose estimation in diverse scenarios. Such detailed analysis is essential
for advancing pose estimation technology and its application in real-world settings where
accuracy and consistency are paramount.

5.4. Qualitative Evaluation of the HPSUR Dataset

Figure 18 visualizes the performance of four models in estimating human poses across
various predefined motions using the mean per-joint position error (MPJPE) metric, which
is commonly used in human pose estimation tasks to measure a model’s accuracy. This
metric measures the accuracy of a model by calculating the average distance between the
predicted and true joint locations across all tested poses. The four models compared are
two versions of the Hrnet models (Hrnet-w32 and Hrnet-w64) and two versions of the
LiteHrnet models (LiteHrnet-18 and LiteHrnet-30) that are designed to capture the spatial
hierarchies in human poses by connecting high-to-low-resolution convolutions in parallel
and exchanging information across resolutions.
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Overall, each model has a distinct MPJPE across all motions, with the LiteHrnet30 and
Hrnet64 models performing better than the other models, suggesting that these models
have a better overall ability to capture and accurately capture human poses. However,
the performance varies across motions when examining individual motions (labeled 1001
to 1004). This could be due to the varying complexity of the poses, where some poses
may be easier or more complicated for the models to estimate accurately. There is a
slight difference in performance between the Hrnet32 and Hrnet64 models, with the
Hrnet64 model usually outperforming the Hrnet32 model, which could be attributed to
the larger capacity and potentially more powerful feature extraction in the Hrnet64 model.
Similarly, the LiteHrnet30 model tends to have a lower MPJPE across most motions than
the LiteHrnet18 model, suggesting that the increased complexity in the LiteHrnet30 model
offers an advantage in capturing the nuances of human poses.

Figure 19 compares different backbone models for human pose estimation using radar-
based technology. The figure displays micro-Doppler radar signatures, the ground truth
pose label, and the estimated poses by four backbone models: Hrnet-w32, Hrnet-w64,
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LiteHrnet-18, and LiteHrnet-30. The data include four motions, numbered 1001 to 1004.
Each row corresponds to a separate motion that was captured by the system.
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Figure 19. Visualization of pose estimation comparisons of the Hrnet and LiteHrnet models based on
SISO UWB radar data for various human motions.

The first column of the figure displays the micro-Doppler signatures, which are radar-
generated representations that capture the dynamic movement of different body parts. The
second column shows the ground truth pose, represented as the “Noitom Label”, against
which the estimated poses are compared. Each model’s estimated poses are represented
by a skeletal diagram, with joints and limbs aligned according to the model’s interpreta-
tion of the radar data. For motion 1001, the estimated poses closely match the ground
truth, indicating effective model performance for this motion. However, for motion 1002,
slight variations exist among the models’ estimations, suggesting differences in model
sensitivities or methodologies. Motion 1003 has significant discrepancies between the
models’ estimations and the ground truth, indicating potential challenges are inherent in
this motion’s complexity. Finally, motion 1004 also exhibits variations in pose estimation,
with some models aligning more closely with the ground truth than others.

6. Conclusions

Our research and experimental analyses demonstrate the effectiveness of SISO UWB
radar technology for human pose estimation (HPE). The innovative SCRP-Radar frame-
work, which uses the Hrnet and LiteHrnet networks as backbone models, utilizes a unique
space-aware coordinate representation and an up-sampling module. Our approach was
extensively evaluated using the HPSUR dataset, which includes a wide range of actions
and subjects, and the results provide robust empirical evidence supporting its accuracy.
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The experimental results from the HPSUR dataset show that our methods are robust
across various indoor scenarios and provide high precision in pose estimation. We quanti-
fied the performance of multiple backbone architectures, including Hrnet and LiteHrnet
variants, and the latter showed impressive adaptability and accuracy, as evidenced by
statistical analysis for subjects S4 and S5. The differences in performance metrics across
the tested models highlight the importance of selecting the appropriate model for specific
environmental contexts and pose estimation tasks. Specifically, the LiteHrnet-30 model
demonstrates an impressive balance between accuracy and processing speed, making it
suitable for real-time applications.

This investigation confirms the SCRP-Radar method is an important advancement
in non-visual HPE and emphasizes the broader applicability of radar-based systems. The
implications of this research are significant and indicate transformative prospects for UWB
radar technology in ambient assisted living environments, interactive systems, and poten-
tially in the burgeoning field of privacy-preserving surveillance. The positive outcomes of
this study provide a strong foundation for subsequent innovation and practical deployment
of radar-based human pose estimation systems.
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