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Abstract: Rheumatoid arthritis (RA) is a chronic autoimmune disease with a global prevalence of
approximately 0.46%, causing significant impairments in patients’ quality of life and an economic
burden. Saussurea involucrata (SI) has long been used in traditional medicine to treat RA, but its
underlying mechanism remains unclear. This study utilized network pharmacology and molecular
docking to explore the potential pharmacological effects of bioactive compounds in SI on RA. A
total of 27 active compounds were identified, along with 665 corresponding targets. Additionally,
593 disease-related targets were obtained from multiple databases, with 119 common targets shared
with SI. The high-ranking targets mainly belong to the MAPK family and NF-κB pathway, including
MAPK14, MAPK1, RELA, TNF, and MAPK8, all of which are associated with inflammation and
joint destruction in RA. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis revealed significant pathways related to IL-17 signaling, Th17 cell differentiation,
and osteoclast differentiation. Molecular docking and dynamic simulations demonstrated strong
interactions between several flavonoids and RA-related targets. Xuelianlactone, Involucratin, and
Flazin exhibit outstanding binding efficacy with targets such as MAPK1, MAPK8, and TNF. These
findings provide valuable insights into the therapeutic potential of SI for RA and offer directions for
further drug development.

Keywords: Saussurea involucrata; rheumatoid arthritis; network pharmacology; molecular docking;
molecular dynamic simulation

1. Introduction

Rheumatoid arthritis (RA), a chronic autoimmune disease, exhibited a global preva-
lence of 0.46% between 1980 and 2018, with significant regional and country-specific
variations [1]. In mainland China, where the prevalence of RA was 0.42%, similar to the
world average [2], the number of RA patients reached 5 million, with an average onset age
of 45 years. Among all patients, 82% experienced moderate to severe disease, and patients
often have complications [3], highlighting an ongoing and concerning situation. With a
female-to-male ratio of about 4:1 in China [4], RA is more prevalent among women, and this
overrepresentation is likely influenced by genetic (X-linked) factors and hormonal aspects,
even though the exact reasons remain unclear [5]. The occurrence of RA is influenced by a
combination of genetic and environmental factors, including smoking, infection, alcohol
intake, gender, and age [6–8]. RA patients may suffer from various symptoms, including
joint destruction, deformity, disability, and even death. In some cases, organs or systems
such as the heart, kidneys, lungs, eyes, skin, digestive system, and nervous system may also
be affected, leading to the development of various syndromes [9]. RA causes physical and
emotional pain to patients and shortens their life expectancy. Additionally, the teratogenic
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and disabling effects of RA contribute to a loss of labor capacity within the population,
resulting in substantial economic losses [10].

There is no cure for RA at present, but there are some pharmacological and non-
pharmacological treatments that can relieve symptoms, delay disease progression, and
improve quality of life [11]. The main purpose of drug treatment is to reduce inflammation,
suppress excessive immune system response, and reduce joint damage. The currently
used drugs include non-steroidal anti-inflammatory drugs (NSAIDs), disease-modifying
anti-rheumatic drugs (DMARDs), glucocorticoids (GC), TNF inhibitors, and polymer col-
loids [12,13]. These drugs may cause gastrointestinal side effects such as nausea, vomiting,
or abdominal pain, and adverse reactions like stomatitis or mouth sores. Moreover, they
can lead to liver toxicity (hepatic dysfunction), hematological disorders, bone density
reduction, insomnia, and depression. In more severe cases, patients may experience infec-
tions, cardiovascular events, cancer, or even death [14,15]. Therefore, the development of
alternative drugs for RA treatment is necessary. Traditional Chinese Medicine and other
ethnic medicines have a long history of clinical application and are considered valuable
sources for natural drug development. These medicines offer higher safety profiles and
have recently garnered significant attention in the field of RA drug research.

Saussurea, a medicinal plant, was first documented in the ancient Tibetan book Sman-
dpyad Zla-ba’i-rgyal-po [16] in China. Among its species, Saussurea involucrata (SI), grown
in Xinjiang, China, is particularly noteworthy and widely used in Uyghur Medicine,
known as “Tage leylishi” [17]. According to the first part of the Chinese Pharmacopoeia
(2020 edition), this herb is utilized in both Traditional Chinese Medicine and Uyghur
Medicine to address conditions such as RA, joint pain, irregular menstruation, and ex-
cessive leucorrhea [18]. According to the current literature, SI is found to contain a va-
riety of compounds, including phenolic acids, flavonoids, lignans, phenylpropanoids,
steroids, coumarins, sesquiterpenes, ceramides, glycosides, and polysaccharides [19,20].
Ongoing studies primarily concentrate on exploring the potential therapeutic effects of its
flavonoids [21,22].

In China, Saussurea has found extensive clinical use in the treatment of RA, available
in various dosage forms such as injections, capsules, and more [23]. However, limited
pharmacological studies have been conducted, with the majority of existing research
focused on clinical efficacy verification. This study aims to employ network pharmacology
methods to analyze the mechanism of SI in treating RA and verify the binding between its
bioactive components and target proteins through molecular modeling. The findings will
serve as a basis for subsequent drug development endeavors.

2. Materials and Methods
2.1. Bioactive Components of SI and Prediction of Target Genes

To ensure a comprehensive collection of the bioactive components of SI, this study
conducted searches across multiple databases. The databases used included the Traditional
Chinese Medicine Systems Pharmacology Database (TCMSP, tcmspw.com/tcmsp.php,
accessed on 27 February 2023) [24], the Chinese Medicine and Bioactive components
Database of the Shanghai Institute of Organic Chemistry (organchem.csdb.cn/scdb/default.
htm, accessed on 5 April 2023) [25], and SymMap (www.symmap.org, accessed on 12
April 2023) [26]. The keyword “Saussurea involucrata” was employed for these searches,
yielding relevant results. Furthermore, additional active ingredients were supplemented by
searching the literature in the China National Knowledge Infrastructure(CNKI) [19,27,28].

The obtained components were screened based on parameters such as oral bioavail-
ability and drug-likeness to ensure their potential for metabolism within the human body.
For the query results from the SymMap database, components with an oral bioavailability
(OB) threshold of ≥30% were selected [26]. These selected components, along with the
components obtained from literature searches, were used to query the PubChem database
(pubchem.ncbi.nlm.nih.gov, accessed on 12 April 2023) using the pubchempy Python
toolkit, acquiring the Simplified Molecular Input Line Entry System (SMILES) notations.

tcmspw.com/tcmsp.php
organchem.csdb.cn/scdb/default.htm
organchem.csdb.cn/scdb/default.htm
www.symmap.org
pubchem.ncbi.nlm.nih.gov
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These notations were then imported into the SwissADME database (www.swissadme.ch,
accessed on 16 April 2023) and subjected to screening based on criteria such as a gastroin-
testinal absorption (GI) rating of “High” and drug-likeness having two or more items
marked as “Yes” [29]. Subsequently, the screened components were combined with the
components directly obtained from the TCMSP database and underwent a further screen-
ing within TCMSP according to the standards of an oral bioavailability (OB) threshold
of ≥30%, a drug-likeness (DL) threshold of ≥0.18, and a Caco-2 permeability threshold
of ≥−0.4 [30,31]. Finally, all the screened components were compiled, and any duplicate
entries were removed.

For the components queried from the TCMSP, their targets were also obtained from this
database, and their gene names were queried from the Uniprot database (www.uniprot.org,
accessed on 27 February 2023). For other components, their SMILES were input into
SwissTargetPrediction (swisstargetprediction.ch, accessed on 16 April 2023) with the
species attribute set to “Homo sapiens” for target prediction, and targets with a prob-
ability greater than 0 were collected [32]. Finally, all component targets were summarized
and deduplicated.

2.2. Target Genes of RA

Disease targets were collected through searches across multiple databases. The
DisGeNet database (www.disgenet.org, accessed on 6 April 2023) was queried using
the keyword “rheumatoid arthritis”, and disease-related target genes were obtained by
applying a screening criterion of Score ≥ 0.3 [33]. Similarly, the GeneCards database
(www.genecards.org, accessed on 27 February 2023) was queried, and data with a Rele-
vance score > 10 were selected [34]. Furthermore, the OMIM database (Online Mendelian
Inheritance in Man, www.omim.org/search/advanced/geneMap, accessed on 13 April
2023) and the TTD database (Therapeutic Target Database, db.idrblab.net/ttd, accessed on
14 April 2023) were employed to query targets associated with RA [35]. Subsequently, all
the retrieved results were compiled, summarized, and deduplicated to create the disease
target library.

2.3. Protein–Protein Interaction (PPI) Network Analysis

Components exert their effects on the disease by targeting specific genes. The target
genes for both the components and the disease were inputted into the Bioinformatics web-
site (www.bioinformatics.com.cn, accessed on 17 May 2023) to generate a Venn diagram [36],
obtaining the intersection of targets.

In order to elucidate the relationships among target proteins and further refine key
targets, the intersecting target genes were inputted into the STRING database (string-db.org,
accessed on 17 May 2023) with a confidence level set at >0.9, and the species selected as H.
sapiens (human) [37]. Based on this, the PPI network was constructed. The results were
then imported into Cytoscape 3.9.1 software, of which, the CytoNCA plugin was utilized
to calculate various centrality metrics for each node, including betweenness centrality (BC),
closeness centrality (CC), degree centrality (DC), eigenvector centrality (EC), local average
connectivity-based method centrality (LAC), and network centrality (NC) [38]. The median
values of each centrality metric were employed as the screening criteria, and target proteins
surpassing or equaling these median values across all indicators were identified as key
targets for this study.

2.4. Gene Ontology and Pathway Analysis

The key targets were uploaded to the Bioinformatics website for Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The results were
subjected to screening based on the criterion of p.adjust < 0.05 [39], and subsequently plotted
using the Count, p.adjust, and GeneRatio values. As for the GO analysis results, they were
sorted and visualized separately for the cellular component (CC), molecular function (MF),
and biological process (BP) categories.

www.swissadme.ch
www.uniprot.org
swisstargetprediction.ch
www.disgenet.org
www.genecards.org
www.omim.org/search/advanced/geneMap
db.idrblab.net/ttd
www.bioinformatics.com.cn
string-db.org
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2.5. Network Visualization

Information such as component–target, disease–target, drug–component, pathway–
target, function–target, etc., were summarized and imported into Cytoscape for network
visualization, to construct their relationship network. Then, network analysis was per-
formed using the network analysis function [37], and according to the obtained degree,
10 components and 10 targets with a higher ranking were selected as core components and
core targets.

2.6. Molecular Docking

The core targets were searched in the RCSB PDB database (RCSB Protein Data Bank,
www.rcsb.org, accessed on 18 May 2023) to retrieve structures with species as H. sapiens
and a resolution of less than or equal to 2.5 Å. The structures were selected based on
parameters such as Gene Name, Resolution (Å), ligand, R-Value, pH, Experimental Method,
Publication Year, etc. [40]. Priority was given to structures containing similar ligands,
with particular attention paid to structures with higher resolution, pH conditions closely
resembling the human body environment, and more recent publication years. For each
target, one structure was chosen and downloaded.

The downloaded protein structure was refined using Swiss-PdbViewer 4.1.0 [41], re-
move water and ligands with Pymol, and then imported into AutoDockTools for receptor
preparation [42], which involved operations such as hydrogen addition and charge assign-
ment. The structures of the core components were obtained from the PubChem database,
and initial conformations for each compound were established by energy minimization
using the MM2 force field in Chem3D 14.0 software [42]. After converting these files into
appropriate formats, they were imported into AutoDockTools for ligand preparation.

To determine the position and size of the Grid Box, priority was given to the original
ligand positions within the structures, taking into account the target position descriptions
from the Uniprot database. In the case of structures without their own ligands, the Deepsite
tool (www.playmolecule.com/deepsite, accessed on 28 May 2023) [43] on the PlayMolecule
website was utilized for docking pocket prediction. The position and size of the grid
box were determined based on the pocket scores and the 3D structure observations. Fi-
nally, AutoDock Vina 1.1.2 [42] was employed to perform molecular docking on a total of
100 receptor–ligand combinations. Each combination yielded 10 conformations along with
binding energy results.

2.7. Molecular Dynamics (MD) Simulation

The well-combined target protein–ligand complex was selected from the molecular
docking results, and MD simulations were performed using Gromacs 2023.2. For protein
molecules, Charmm36 force field and TIP3P water model were chosen for processing [44].
Ligand conformations with good docking affinity were imported into Avogadro 1.2.0 to
add hydrogens and format conversion. Then, the Sobtop tool (Tian Lu, Sobtop, Version
1.0 (dev3.1), http://sobereva.com/soft/Sobtop, accessed on 4 September 2023) was used
to generate topology files with the GAFF force field. The receptor–ligand complex was
subjected to solvation, ion balance and energy minimization. In order to simulate the
human body environment, the ion concentration was set at 0.145 M when adding ions, and
the MD simulation of the system was carried out at a temperature of 310 K and a pressure
of 1 bar for 50 ns. The cut-off value of the non-bonded interaction was set to 1.2 nm,
and the long-distance electrostatic interaction was calculated [45]. Energy calculations
were carried out on complexes that exhibit favorable results in MD simulations using the
gmx_mmpbsa.py [46] and gmx_mmpbsa script of gmxtool (Jicun Li, gmx_mmpbsa.bsh,
DOI 10.5281/zenodo.6408973, accessed 15 September 2023).

www.rcsb.org
www.playmolecule.com/deepsite
http://sobereva.com/soft/Sobtop
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3. Results
3.1. Bioactive Components and Key Targets

After the above component-mining, a total of 27 components of SI were obtained
(Table 1), corresponding to 665 non-redundant targets. For disease targets, a total of
593 disease-related targets were obtained from four databases. By analyzing the Venn
diagram, 119 intersection targets were identified, representing the overlapping targets
between the component targets and the disease targets (Figure 1).

Table 1. Bioactive components of SI.

No. Name Molecular
Formula

Molecular
Weight

PubChem
CID

1 Dinatin C16H12O6 300.26 5281628
2 Alloisoimperatorin C16H14O4 270.28 5317436
3 Beta-Sitosterol C29H50O 414.70 222284
4 Kaempferol C15H10O6 286.24 5280863
5 Luteolin C15H10O6 286.24 5280445
6 Flazin C17H12N2O4 308.29 5377686
7 Quercetin C15H10O7 302.23 5280343
8 Involucratin C20H27NO4 345.40 15628146
9 Guaianolide C14H20O3 236.31 -

10 Eriodictyol C15H12O6 288.25 440735
11 Hispidulin C16H12O6 300.26 5281628
12 Methyl Caffeate Acid C10H10O4 194.18 689075
13 Cinnamic Acid C9H8O2 148.16 444539
14 Hexadecanoic Acid C16H32O2 256.42 985
15 1-Monolinolein C21H38O4 354.50 6256628
16 (2S,3S,4R)-2-Aminoicosane-1,3,4-Triol C20H43NO3 345.60 12302752
17 Moslosooflavone C17H14O5 298.29 188316
18 Mosloflavone C17H14O5 298.29 471722
19 5,6-Dihydroxy-7,8-Dimethoxyflavone C17H14O6 314.29 821356
20 D-3-Phenyllactic Acid C9H10O3 166.17 643327
21 Alisol C C30H46O5 486.70 101306923
22 Alisol C Monoacetate C32H48O6 528.70 14036813
23 (E)-P-Coumaroylagmatine(1+) C14H21N4O2

+ 277.34 25245514
24 Alisol B C30H48O4 472.70 15558620
25 Acacetin C16H12O5 284.26 5280442
26 Oroselol C14H12O4 244.24 160600
27 Xuelianlactone C15H20O3 248.32 147111

3.2. PPI Network Analysis

Figure 2 presents the results of PPI analysis, revealing the interactions between target
proteins. The significance of a target protein is determined by the number of interactions it
has with other proteins. Based on the network analysis conducted in Cytoscape, a total of
33 key targets were identified (Table 2). These key targets play crucial roles in the network
and are considered important in this study.

3.3. KEGG Pathway Enrichment Analysis

The key targets were input into the Bioinformatics website and, after screening, a
total of 131 pathways with p.adjust < 0.05 were obtained. Among these pathways, the top
20 pathways with the smallest p.adjust values were selected and presented in Figure 3. The
color in the plot transitions from green to red, indicating an increasing level of significance.
Furthermore, the size of each circle corresponds to the number of genes enriched within
the respective pathway. Larger circles signify a higher gene enrichment count.



Nutrients 2023, 15, 4294 6 of 20
Nutrients 2023, 15, x FOR PEER REVIEW 6 of 20 
 

 

 
Figure 1. Common targets of SI and RA. 

3.2. PPI Network Analysis 

Figure 2 presents the results of PPI analysis, revealing the interactions between target 
proteins. The significance of a target protein is determined by the number of interactions 
it has with other proteins. Based on the network analysis conducted in Cytoscape, a total 
of 33 key targets were identified (Table 2). These key targets play crucial roles in the net-
work and are considered important in this study. 

 
Figure 2. Protein–Protein Interaction Network. 

Figure 1. Common targets of SI and RA.

Nutrients 2023, 15, x FOR PEER REVIEW 6 of 20 
 

 

 
Figure 1. Common targets of SI and RA. 

3.2. PPI Network Analysis 

Figure 2 presents the results of PPI analysis, revealing the interactions between target 
proteins. The significance of a target protein is determined by the number of interactions 
it has with other proteins. Based on the network analysis conducted in Cytoscape, a total 
of 33 key targets were identified (Table 2). These key targets play crucial roles in the net-
work and are considered important in this study. 

 
Figure 2. Protein–Protein Interaction Network. Figure 2. Protein–Protein Interaction Network.



Nutrients 2023, 15, 4294 7 of 20

Table 2. List of Key Targets.

No. Gene Symbol Gene ID Gene Name

1 TNF 7124 Tumor necrosis factor
2 RELA 5970 Transcription factor p65
3 IL6 3569 Interleukin-6
4 JUN 3725 Proto-oncogene c-JUN
5 MAPK1 5594 Mitogen-activated protein kinase 1
6 MAPK14 1432 MAP kinase p38 alpha
7 IL10 3586 Interleukin-10
8 IL1B 3553 Interleukin-1 beta
9 CCL2 6347 C-C motif chemokine 2
10 IL4 3565 Interleukin-4
11 IL2 3558 Interleukin-2

12 STAT1 6772 Signal transducer and activator of
transcription 1-alpha/beta

13 CXCL8 3576 Interleukin-8
14 IL1A 3552 Interleukin-1 alpha
15 JAK1 3716 Tyrosine-protein kinase JAK1
16 CXCL10 3627 C-X-C motif chemokine 10
17 NFKBIA 4792 NF-kappa-B inhibitor alpha
18 JAK3 3718 Tyrosine-protein kinase JAK3
19 TP53 7157 Cellular tumor antigen p53
20 VEGFA 7422 Vascular endothelial growth factor A
21 MAPK11 5600 MAP kinase p38 beta
22 TYK2 7297 Tyrosine-protein kinase TYK2
23 MAPK8 5599 Mitogen-activated protein kinase 8
24 ITGB3 3690 Integrin alpha-2/beta-3
25 NR3C1 2908 Glucocorticoid receptor

26 PPARA 5465 Peroxisome proliferator-activated
receptor alpha

27 PTK2 5747 Focal adhesion kinase 1

28 CHUK 1147 Inhibitor of nuclear factor kappa-B
kinase subunit alpha

29 IKBKB 3551 Inhibitor of nuclear factor kappa-B
kinase subunit beta

30 MMP3 4314 Stromelysin-1
31 MMP2 4313 72 kDa type IV collagenase
32 CD40LG 959 CD40 ligand
33 SYK 6850 Tyrosine-protein kinase SYK

3.4. GO Enrichment Analysis

Based on the output results from the Bioinformatics website, the findings were catego-
rized into three groups, as shown in Figure 4. In both the MF and BP analyses, multiple
results met the criteria of p.adjust < 0.05. The top 10 results with the smallest p.adjust values
were selected for plotting. As for the CC analysis, only four results met the requirements,
and all of them were included in the plot. The plot exhibits a color gradient shifting from
blue to red, indicating an increasing level of significance. Additionally, the length of each
bar corresponds to the number of genes enriched within the specific category, with longer
bars signifying a higher gene enrichment count.

3.5. Network Constructions and Analysis

Information such as bioactive components, key targets, related pathways, and the
functions obtained above was formatted in a network diagram using Cytoscape software
(Figure 5). In the diagram, green circles represent the bioactive components present in
SI, which intersect with RA-related targets. The intersection results are depicted by blue
squares. Among them, the inner two circles represent the 33 key targets identified through
network analysis, while the innermost circle represents the 10 core targets selected for
molecular docking. Yellow hexagons represent the top 20 pathways obtained from the key
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target analysis. At the bottom of the diagram, three distinct groups illustrate the results of
the GO analysis. Purple, orange, and red represent the BP, CC, and MF analysis results,
respectively. This comprehensive analysis unveils the intrinsic correlation between the
bioactive components of SI and their potential in treating RA.
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3.6. Molecular Docking

According to the network analysis results of Cytoscape, 10 compounds with the
highest degree values, Quercetin, Luteolin, Acacetin, Xuelianlactone, Moslosooflavone,
Hispidulin, Mosloflavone, Involucratin, 5,7-Dihydroxy-6,8-Dimethoxyflavone and Flazin
were selected as molecular docking ligands (core components). Ten targets with the highest
degree values, MAPK14, MAPK1, RELA, TNF, MAPK8, IL6, IL1B, CHUK, IKBKB and
NFKBIA, were selected as the core targets for molecular docking. Nine protein structures
were selected as the receptors, with CHUK and IKBKB targets located in different segments
of the same protein structure (Table 3). The results of the molecular docking were visu-
alized in the form of a heat map (Figure 6), where the color gradient shifting from red
to blue indicates a decrease in affinity. Lower binding energy signifies a better binding
activity between the ligand and receptor protein. In general, affinity values > −5 kcal/mol
indicate no predicted binding, affinity < −5 kcal/mol suggests moderate predicted bind-
ing, and affinity < −7 kcal/mol suggests strong predicted binding [47]. In this section, all
the selected ligands and receptors demonstrated excellent binding activity, as the lowest
binding energy with the best ligand for each receptor was less than −7 kcal/mol. Notably,
Xuelianlactone demonstrates the lowest affinity at −10.01 kcal/mol. In addition, the dock-
ing results of MAPK1, MAPK8, and TNF showed significantly lower binding affinities
compared to the other targets (p < 0.05). However, the binding effect of IL6, ILB, CHUK,
and IKBKB to each ligand is not outstanding.
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Table 3. Core components.

No. Ingredients Degree

1 Quercetin 60
2 Luteolin 43
3 Acacetin 33
4 Xuelianlactone 26
5 Moslosooflavone 25
6 Hispidulin 24
7 Mosloflavone 24
8 Involucratin 23
9 5,6-Dihydroxy-7,8-Dimethoxyflavone 23
10 Flazin 21
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Figure 6. Heat map of lowest binding energy in molecular docking.

For each target protein, the ligand with the lowest affinity was selected from the
molecular docking results. Visualization was achieved using Biovia Discovery Studio 2021
software, and the docking results are presented in Table 4 and Figure 7.

3.7. Molecular Dynamics Simulation

Based on the degree values obtained in network analysis and molecular docking
results, the following study primarily focuses on the MAPK1 and TNF. For both targets, the
top four compounds with the best docking results, as well as the original ligands (38Z and
VGY) of the target proteins, were selected for MD simulations. In addition, for MAPK8,
two compounds and the original ligand (38Z) were chosen for simulations. Considering
the certainty of the target position, the simulation was conducted with NFKIBA as the
representative target for the NF-κB pathway, focusing on the top two best-performing
compounds based on the docking results. Table 5 and Figure 8 present the Root Mean
Square Deviation (RMSD) values for each of these simulation combinations.
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Table 4. Best protein–ligand complexes and their binding energies.

No. Receptor Degree of
Receptor Structure Target

Chain
Target

Position Ligand Affinity
(kcal/mol)

1 MAPK14 38 5WJJ A 1–360 Luteolin −8.194
2 MAPK1 37 4QTA A 1–360 Involucratin −9.624
3 RELA 35 6NV2 P 39–51 Involucratin −8.904
4 TNF 33 7JRA A/B/C 77–233 Xuelianlactone −10.01
5 MAPK8 33 4QTD A 1–363 Involucratin −9.794
6 IL6 33 7NXZ A 30–212 Quercetin −7.562
7 IL1B 31 5R8Q A 117–269 Flazin −7.475
8 CHUK 31 3BRT A/C 732–745 Flazin −7.266
9 IKBKB 30 3BRT A/C 701–730 Quercetin −7.174
10 NFKBIA 28 1IKN D 67–302 Luteolin −8.604
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Figure 7. Molecular docking results in each target with the bioactive compound of SI: (a) Luteolin
and MAPK14; (b) Involucratin and MAPK1; (c) Involucratin and RELA; (d) Xuelianlactone and
TNF; (e) Involucratin and MAPK8; (f) Quercetin and IL6; (g) Flazin and IL1B; (h) Flazin and CHUK;
(i) Quercetin and IKBKB; (j) Luteolin and NFKBIA. The images depict the binding positions of
ligands within the protein, along with the surrounding residues, showcasing the interactions between
the ligands and the residues. In this figure, pink, magenta, and purple dashed lines represent
hydrophobic interactions, while the green dashed lines represent hydrogen bonds.

In MD simulations, RMSD measures the average deviation or fluctuations in atomic
positions in a molecular system from their initial positions, providing insight into the stabil-
ity of a target protein–ligand complex. Generally, it is considered that once the RMSD value
stabilizes and the fluctuation range is less than 0.2 nm, the system can be deemed stable [48].
It can be observed that, for MAPK1, Involucratin and Luteolin reach equilibrium after about
13 ns, with smaller fluctuations than the protein’s original ligand 38Z. The stabilized RMSD
value for Involucratin is less than 0.4 nm, and both compounds exhibit fluctuations below
0.2 nm after stabilization. For TNF, the RMSD values for all analyzed compounds remain
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below 0.4 nm, with fluctuations below 0.2 nm for all except Mosloflavone. Among them,
Xuelianlactone and Acacetin demonstrate the highest stability. Regarding MAPK8, the
original ligand 38Z exhibits a low RMSD value, but shows significant fluctuations towards
the end of the simulation. On the other hand, Flazin maintains an RMSD of 0.39, with
fluctuations also within the 0.2 nm range. As for NFKIBA, both selected ligand Luteolin
and Acacetin display higher overall fluctuations. In the last 5 ns, their RMSDs tend to
stabilize, with fluctuations smaller than 0.2 nm. However, compared to other complexes,
their stability remains poor, and thus, they cannot be considered to have achieved stable
binding. Based on this, further analysis will be conducted of the following compounds:
Involucratin and Luteolin for MAPK1, Xuelianlactone and Acacetin for TNF, and Flazin for
MAPK8.

Table 5. The Average RMSD values for each target protein–ligand complex.

Target MAPK1

Compounds 38Z Acacetin Flazin Involucratin Luteolin
RMSD Average (nm) 0.567 ± 0.162 0.940 ± 0.290 0.455 ± 0.139 0.346 ± 0.048 0.650 ± 0.112

Target TNF

Compounds VGY Xuelianlactone 5,6-Dihydroxy-7,8-
Dimethoxyflavone Mosloflavone Acacetin

RMSD Average (nm) 0.235 ± 0.049 0.295 ± 0.022 0.205 ± 0.040 0.155 ± 0.060 0.175 ± 0.034

Target MAPK8 NFKIBA

Compounds 38Z Involucratin Flazin Luteolin Acacetin
RMSD Average (nm) 0.251 ± 0.091 0.862 ± 0.160 0.390 ± 0.049 0.698 ± 0.199 0.686 ± 0.132
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Solvent-Accessible Surface Area (SASA) quantifies the surface area of a molecule that
is accessible to solvent molecules and can indicate changes in a molecule’s conformation or
exposure during simulation, aiding in the assessment of binding interactions in a target
protein–ligand complex. The average SASA values for complexes XT (black), AT (red), IM
(blue), LM (green), and FM (purple) during MD simulation are as follows: 202.49 ± 3.72,
201.65 ± 3.17, 179.03 ± 3.25, 175.97 ± 2.59, and 179.9 ± 2.9 nm2. Throughout the entire sim-
ulation process, the SASA values of these compounds show small fluctuations, indicating
their stable interaction with the protein complexes (Figure 9).
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Figure 9. The fluctuation plot of the target protein–ligand complexes SASA. Note: XT: Xuelianlactone-
TNF(7JRA), AT: Acacetin-TNF(7JRA), IM: Involucratin-MAPK1(4QTA), LM: Luteolin-MAPK1(4QTA),
FM: Flazin-MAPK8(4QTD).

Molecular Mechanics–Poisson Boltzmann Surface Area (MMPBSA) is a method used
to estimate the binding energy of a target protein–ligand complex by post-processing the
MD trajectory. MMPBSA can characterize the strength and stability of the protein–ligand
interaction by calculating the difference between the free energy of the bound state and the
free energy of the unbound state. For the five complexes mentioned above, we selected
segments with stable RMSD values and extracted 10 ns trajectories for MMPBSA energy
analysis. The total binding energy (∆G) is the sum of the change in enthalpy (∆H) and the
change in entropy (–T∆S) [49]. Using gmx_mmpbsa.py with a time interval of 10 ps, the
total energy difference (∆Gtotal) between the ligand, receptor and their respective complexes
in the stable phase of MD simulation was calculated, as shown in Figure 10. It can be seen
from the figure that the ∆Gtotal curves of each compound have small fluctuations, and the
average is below −10 kcal/mol. Furthermore, by utilizing the gmx_mmpbsa.bsh script, the
entropy change in each complex is calculated at a time interval of 1000 ps, allowing for the
calculation of the total binding energy (∆G). Table 6 presents the contributions of the Van
der Waals force (VDW), coulomb interaction energy (COU), molecular mechanics (MM),
polar solvation energy (PB) and nonpolar solvation energy (SA). The ∆H calculated by
gmx_mmpbsa.bsh closely aligns with the ∆Gtotal computed using gmx_mmpbsa.py. The
results from both methods exhibit a close resemblance, which enhances the credibility of
the computed free energy values. It can be observed from the figure and the table that ∆G
and ∆H for XT are significantly lower than that of the other ligands, consistent with the
results observed in molecular docking.
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Table 6. The ∆G of each complex and the contributions of individual energy components(kcal/mol).

Complex
Contribution

∆G −T∆S ∆H MM PB SA COU VDW

XT −30.03 5.35 −35.38 −45.34 14.48 −4.53 −3.20 −42.13
AT −23.42 1.73 −25.15 −41.16 21.43 −5.42 −5.74 −35.42
IM −11.96 3.69 −15.65 −45.88 35.93 −5.71 −9.88 −35.99
LM −10.99 3.74 −14.73 −43.06 33.36 −5.03 −10.11 −32.95
FM −22.00 2.89 −24.89 −43.49 23.80 −5.20 −5.47 −38.02

Note: In this table, MM is the sum of VDW and COU, while ∆H is the sum of MM, PB, and SA.

This study investigated the binding free energy and residue contributions of active
components of SI to the RA target using methods such as MD simulations and MMPBSA
energy calculations. As shown in Figure 11, among the four complexes, Van der Waals forces
have the most significant impact in promoting protein–ligand binding, while nonpolar
solvation energy has a relatively weaker influence on binding affinity. On the other hand,
polar solvation energy strongly impedes the formation of the complexes. Specifically,
for the MAPK1 target, we compared the results of MD simulations for the IM and LM
complexes and identified four residues (36, 39, 156, and 166) that played important roles
in both complexes. In the LM complex, the sum of the ∆H values for these four residues
accounted for 42.9% of the total ∆H. The maximum resistance to binding was observed
from residues such as 54, 151, 153, and 167, but it was insufficient to offset the binding
energy. For the TNF target, in both the XT and AT complexes, four residues (133, 135, 231,
and 233) made significant contributions to the binding free energy. In the AT complex, the
sum of the ∆H values for these four residues accounted for 43.0% of the total ∆H, while
the maximum resistance to binding came from residues 174 and 195, although their impact
was relatively small, with residue 174 contributing only 0.687 kJ/mol to ∆H. Compared to
complexes IM and LM, complexes AT and XT exhibit higher binding energy contributions
from residues and a lower binding resistance. This observation aligns with what is reflected
in the RMSD curves.
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The analysis of residue interactions with different ligands targeting the same receptor
reveals crucial regions that facilitate complex binding. In future drug design efforts, it is
essential to pay attention to the contributions of these residues. This can be achieved by
introducing functional groups or optimizing their molecular spatial structures, aiming to
retain residues with strong binding forces and reduce the impact of residues with significant
resistance [50].

4. Discussion

In this study, we employed network pharmacology to analyze SI, resulting in the
identification of 27 bioactive components and 119 targets that intersect with RA. Among
these targets, 33 were identified as key targets. Additionally, we conducted KEGG and
GO analyses to investigate the pathways and biological processes involved. The findings
suggest a potential correlation between the components present in SI and the treatment
of RA.

Among the core targets, ERK (MAPK1), JNK (MAPK8), and p38 MAPK (MAPK14) are
well-defined families of MAPKs, activated by phosphorylation, and play significant roles in
the inflammatory and destructive mechanisms observed in rheumatoid arthritis, including
regulating pro-inflammatory cytokine production and mediating downstream signaling
from IL-1, IL-17, and TNF-α receptors. These properties make them attractive therapeutic
targets for rheumatic diseases [51,52]. RELA, NFKBIA, CHUK, and IKBKB are associated
with the NF-κB pathway. CHUK and IKBKB serve as different catalytic subunits of the
IκB kinase (IKK) complex [53,54]. Highly activated NF-κB induces the production of pro-
inflammatory cytokines, including TNF-α, IL-1β, and IL-6, accelerating RA progression.
The upregulation of these cytokines also triggers positive feedback, regulating NF-κB
activation, and forming a vicious cycle that worsens RA development [52]. Among these
targets, MAPK targets exhibit a higher degree of centrality in network analysis. According
to molecular docking results, both MAPK1 and MAPK8 demonstrate prominent binding
efficiency with all core components. Therefore, MAPK targets play a crucial role in the
process of treating RA with IS. Regarding NF-κB-related targets, their network analysis
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shows lower degree centrality rankings, and taking NFKIBA as an example, the results
of molecular dynamics simulations fail to confirm its stable binding. Therefore, it can be
inferred that the active components of SI have a weaker effect on these targets.

From a pathway perspective, the pathways exhibiting high gene enrichment and
confidence levels include IL-17, TNF, TLR (Toll-like receptor), NLR (NOD-like receptor),
and CLR (C-type lectin receptor) signaling pathways, as well as Th17, Th1, and Th2 cell
differentiation pathways, among which the IL-17 and Th17 pathways are the most confi-
dent. Interactions between RA, Fibroblast-Like Synoviocytes (FLSs), and Th17 cells further
contribute to tumorous FLS growth and joint pannus formation [55]. Previous research
has identified IL-17 as a potential therapeutic target for RA, leading to several trials being
conducted [56,57]. There is also considerable confidence in the osteoclast (OC) differentia-
tion pathway, which plays a key role in the pathological bone destruction observed in RA.
Pro-inflammatory cytokines, including TNF, IL-1 and IL-17, induce OC maturation and
differentiation through different signaling pathways such as NF-κB [58]. This highlights
the dual therapeutic role of SI, not only targeting the inflammatory symptoms of RA but
also reducing bone destruction.

The GO analysis primarily centers on responses to biotic stimuli, specifically lipopolys-
accharides and other molecules of bacterial origin, known to trigger immune and inflamma-
tory responses. Previous research has indicated that bacterial infection plays a significant
role in contributing to RA pathogenesis [59]. The pathways showing the highest enrich-
ment, such as Coronavirus disease, Chagas disease, and Yersinia infection, further reinforce
this notion, as they are involved in immune responses to viruses, parasites, and bacteria. In
terms of molecular function analysis, the active components primarily influence functions
related to binding activities, such as cytokine receptor binding, growth factor receptor bind-
ing, and phosphatase binding, while also affecting cytokine activity and receptor ligand
activity. This suggests that these components may modulate processes like phosphorylation
within the pathways by binding to specific targets, thereby inhibiting excessive immune
responses and achieving therapeutic effects. Additionally, in the biological process anal-
ysis, certain processes are associated with the regulation of cell–cell adhesion. Adhesion
molecules are important regulators of leukocyte recruitment into the synovial tissue [60],
while Leukocytes, which are aberrantly recruited and activated, are characteristic features
of rheumatoid arthritis (RA), as they migrate out of the blood, cross the endothelium, and
infiltrate inflamed tissues, triggering a cascade of pathological processes, particularly in
the early stages of the disease [61].

Based on the above analysis results, components Luteolin, Involucratin, Xuelianlac-
tone, Flazin, Quercetin, and Acacetin, all belonging to the flavonoid class, exhibit favorable
binding effects with the targets. Quercetin exerted a bone-protective effect by reducing
MMPs, RANKL production, and osteoclast formation via the MAPKs and NF-κB path-
ways [62]. Current animal model studies have demonstrated the effectiveness of quercetin
in treating RA [63]. Some studies suggest that Luteolin can inhibit the proliferation and
affect the function of stimulated rat synovial fibroblasts [64]. Furthermore, it has the ability
to suppress the IL-1β-induced production of cytokines and MMPs, which are crucial in
tissue degradation in rheumatoid synovium, through the activation of p38 MAPK, JNK,
NF-κB, and AP-1 [65]. Acacetin inhibits p38 and JNK phosphorylation and reduces MMP-1,
MMP-3, and MMP-13 expression in IL-1β-induced FLSs, suggesting that Acacetin has
antiarthritic effects in FLSs [66]. In addition, it has been shown to inhibit the activation of
NF-κB by stimulation with TNF-α [67]. Moreover, this study reveals the significant roles
of Involucratin, Xuelianlactone, and Flazin in the process of treating RA with SI. Among
all complexes, Xuelianlactone exhibits the best binding efficiency with the TNF target, dis-
playing the lowest binding energy in both molecular docking and MD simulations, along
with good binding stability. Involucratin, on the other hand, stands out in the molecular
docking results, showing the lowest binding energy among ligands binding to MAPK1,
MAPK8, and RELA. Flazin also demonstrates strong binding abilities with MAPK8 in
MD simulations. Considering the limited number of related studies conducted on these
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compounds to date, they represent potential new research avenues for the development of
RA treatment drugs in the future.

5. Conclusions

In summary, the network pharmacology analysis suggests that the mechanism of SI in
treating RA mainly involves its flavonoids, which target key proteins through MAPK and
NF-κB-related pathways. By doing so, they effectively inhibit inflammation and mitigate
bone destruction, leading to therapeutic effects. The binding efficiency of complexes like
XT, AT, and FM has been confirmed through MD simulations. This suggests that the action
of SI in treating RA is achieved through multiple components acting on various targets.
However, it is essential to note that network pharmacology is primarily a data-driven and
network-based research method. Therefore, these findings should be further validated and
supported by experimental studies to establish their clinical relevance and potential as RA
treatment options.
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