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Abstract: Recently, intermittent fasting has gained relevance as a strategy to lose weight and improve
health as an alternative to continuous caloric restriction. However, the metabolic impact and the
sex-related differences are not fully understood. The study aimed to compare the response to a
continuous or intermittent caloric restriction in male and female rats following a previous induction
of obesity through a cafeteria diet by assessing changes in body weight, energy intake, metabolic
parameters, and gene expression in liver hepatic and adipose tissue. The continuous restriction
reduced the energy available by 30% and the intermittent restriction consisted of a 75% energy
reduction on two non-consecutive days per week. The interventions reduced body weight and body
fat in both sexes, but the loss of WAT in females was more marked in both models of caloric restriction,
continuous and intermittent. Both caloric restrictions improved insulin sensitivity, but more markedly
in females, which showed a more pronounced decrease in HOMA-IR score and an upregulation of
hepatic IRS2 and Sirt1 gene expression that was not observed in males. These findings suggest the
fact that females are more sensitive than males to reduced caloric content in the diet.

Keywords: caloric restriction; intermittent fasting; cafeteria diet; insulin resistance

1. Introduction

The development of obesity-associated metabolic disorders such as insulin resistance
and dyslipidemia increase the risk of developing type 2 diabetes mellitus and cardiovas-
cular disease [1]. Evidence suggests that modest body weight loss is among the most
important factors for improving glucose and lipid homeostasis [2]. One of the most com-
mon current treatments to tackle obesity is caloric restriction (CR). However, low-calorie
diets (LCD) maintained over time often result in low adherence and promote physiological
changes that reduce energy expenditure and thus prevent further weight loss [3]. In recent
years, intermittent fasting (IF) variants have received considerable interest as an alterna-
tive approach to losing body weight and improving metabolic health [4]. IF consists of
alternating periods of fasting with little or no energy intake with periods of unrestricted
feeding [5]. Unlike CR, the molecular regulation involved in the benefits of IF is poorly
understood. It has been proposed that abrupt changes in energy status led to changes in
fuel utilization that persist during the next refeeding phase. Thus, the repeated periods of
mobilization and recovery of energy substrates triggered by IF may favor the reduction of
ectopic fat accumulation and promote insulin sensitivity [6].
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The impact of IF depends on the age, sex, and nutritional and health status of the
individual, as well as the selected protocol, its duration, and the proper adherence to
the food intake schedule [6,7]. Different approaches have been used for IF interventions:
alternate-day fasting [8], the 5:2 diet, in which severe energy restriction is limited to
two days a week [9], and daily time-restricted feeding in which food intake is limited to a
window of 8–10 h per day [10], usually by extending the daily overnight fasting period.
Most rodent studies using IF protocols employ alternate-day total fasting of 24 h; however,
the sustainability of this model is questionable in humans as it appears to be one of the
most extreme dietary interventions [11].

Time-restricted feeding combined with an obesogenic diet for three months avoided
fatty liver accrual and improved glucose regulation in mice of both sexes, showing the
potential of IF as a preventive of metabolic disturbances approach [12]. In another recent
study with a therapeutic strategy, previously fattened male mice with a high-fat diet (HFD)
subjected to an alternate-day fasting schedule for 10 weeks lost weight and improved
glucose utilization but IF failed to reverse impaired cognitive performance [13]. Interest-
ingly, in such experiments obesogenic diets that have previously fattened the animals are
maintained during the IF period. In the therapeutic approach to human obesity treatment,
the focus is often on changing not only the caloric intake of the diet but also its composition
to a healthier one.

The main drawback of IF studies in humans is that they are inconclusive about how
much of the observed benefit is due to the weight loss elicited by total energy restriction (if
any) and how much is due to the pattern of intake. Most clinical studies do not allow us
to distinguish exactly the metabolic differences triggered by continuous and intermittent
energy restriction due to the difficulty in monitoring compliance with the experimental
pattern [7]. Therefore, controlled animal studies are still needed to establish the mechanisms
and differences between the two strategies. Furthermore, although males and females
respond differently to food abundance and scarcity, most rodent studies on intermittent
energy restriction only consider the male sex [13–15]

This study attempts, on the one hand, to determine whether intermittent energy restric-
tion activates different metabolic mechanisms to those of continuous energy restriction, and
on the other hand, to establish sex-specific differences that could contribute to improving
dietary treatments to be more effective and personalized.

These objectives are intended to be examined through a therapeutic procedure in a
well-controlled animal model of diet-induced obese male and female rats. To achieve these
objectives, rats had free access to a cafeteria diet for 12 weeks, to induce hedonic feeding
and hyperphagia that increase body fat. Then, the cafeteria diet was switched to a standard
chow under continuous or intermittent restriction for the next 3 weeks.

2. Materials and Methods
2.1. Animals and Experimental Design

Male and female Wistar rats (Janvier, Le Genest-Saint Isle, France), 5 weeks old, were
used. The animals were kept in pairs (fattening period) or individually (intervention
period) in transparent wall cages, enabling them to see each other, with wood shards as
bedding material and a piece of paper, at 21–22 ◦C, and 50–60% relative humidity; lights
were on from 08:00 to 20:00. All animal handling procedures were approved by the Ethics
and Animal Care Committee of the University of Barcelona, following the standards and
procedures established by the European, Spanish, and Catalan administrations.

The experiment was divided into two time periods: a fattening period with free access
to a cafeteria diet and an intervention period in which the rats were fed standard chow ad
libitum and under continuous or intermittent restriction (Figure 1). During the fattening
period, 6 rats were fed a standard chow diet (#2014, Teklad Diets, Madison, WI, USA) (C
group) and 24 rats were fed a cafeteria diet (CAF group) for each sex. After 12 weeks, 6 rats
from groups C and CAF were sacrificed to control the changes due to the cafeteria diet and
to refer to the effects of further interventions. The remaining cafeteria rats were maintained
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for 1 week exclusively on a standard chow diet ad libitum to allow habituation to the new
diet (stabilization period). Then, during the intervention period, the rats were divided into
three experimental groups: a first group was fed ad libitum (AL group), a second group
was subjected to a 30% daily energy restriction (continuous restriction or CR30 group), and
a third group was subjected to a 75% energy restriction two non-consecutive days per week
(intermittent restriction or IR75 group).
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Figure 1. Experimental protocol scheme. The cafeteria diet was composed of biscuits, bacon, carrots,
pâté, and milk mixed with 22.5% white sugar and 15% cacao. For the explanation, see the text.

The standard chow diet contained 20% of digestible energy derived from protein, 13%
from lipids, and 67% from carbohydrates. The cafeteria diet consisted of an oversupply
of standard chow pellets, plain cookies spread with liver pâté, bacon, carrot, and milk
containing 22.5 g/L sucrose and 10 g/L soluble sweetened cocoa [16,17]. The energy
distribution of the cafeteria diet offered was 11% proteins, 55% carbohydrates, and 34%
lipids. All components of the cafeteria diet were kept fresh and renewed daily. In all cases,
food was supplied in the afternoon to avoid disturbing the circadian rhythm of the rats.
During the fattening period, the food consumption of 6 random cages and the body weight
of all rats were recorded once a week.

During the stabilization period, food intake and body weight were recorded every
day. The average of the last four days food intake was taken as a reference to calculate the
restriction to be applied for each rat belonging to the CR30 and IR75 groups. During the
intervention period, food and body weight were recorded daily.

Rats were sacrificed between 11:00 am and 1:00 pm, after at least 3 h since food was
removed from the cages. In the case of IR75, rats were sacrificed two days after the last
fasting day. Rats were killed under isoflurane anesthesia, by exsanguination from the
exposed cava. Serum was obtained, and different tissues were extracted and stored at
−80 ◦C until processed.

2.2. Estimation of Energy Efficiency and Adiposity Index

Energy efficiency (g/MJ) was calculated for each rat as the mean change in body
weight per day in grams during each period (fattening or intervention) divided by the
mean energy intake in the same period. This provides a measure of grams of weight gained
for each MJ ingested.

The adiposity index for each rat was calculated from the sum of the weight of the main
white adipose tissue depots (perigonadal, retroperitoneal, mesenteric, and subcutaneous
inguinal) and was expressed as a percentage of body weight.
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2.3. Serum Metabolites, Liver Lipid and Glycogen Determinations

Blood serum was used for the measurement of glucose (Biosystems, Barcelona, Spain),
non-esterified fatty acids (Wako Chemicals, Neuss, Germany), total triacylglycerols (Biosys-
tems, Barcelona, Spain), lactate (Spinreact, Sant Esteve d’en Bas, Girona, Spain), glycerol
(Sigma-Aldrich, St. Louis, MO, USA), and insulin (Ultra Sensitive Rat Insulin ELISA Kit, Crys-
tal Chem’s, Zaandam, The Netherlands). Liver lipids were extracted with trichloromethane:
methanol (2:1), dried and weighed [18]. Liver glycogen was quantified as glycosyl residues
using anthrone reagent [19].

2.4. Gene Expression Analysis

Total tissue RNA from liver and perigonadal adipose tissue was extracted using
the Tripure reagent (Roche Applied Science, Indianapolis, IN, USA). RNA content was
quantified in an ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE,
USA). RNA samples were reverse transcribed using oligo-dT primers (Gene Link, Westch-
ester, NY, USA) and the MMLV reverse transcriptase (Promega, Madison, WI, USA) sys-
tem. Real-time PCR amplification was carried out using 10 µL amplification mixtures
containing Power SYBR Green PCR Master Mix (Applied Biosystems, Foster City, CA,
USA), 4 ng of reverse-transcribed RNA, and 150 nM of corresponding primers. Reac-
tions were run on an ABI PRISM 7900 HT detection system (Applied Biosystems). Arbp
was the charge control gene. The genes analyzed and the primers used were as fol-
lows: ATP Citrate Liasa (Acly) forward: 5′-TGTGCTGGGAAGGAGTATGG-3′ reverse:
5′-GCTGCTGGCTCGGTTACAT-3′; Acetyl-coenzyme A carboxylase alpha (Acaca) for-
ward: 5′-TCTACATCCGCTTGGCTGAG-3′ reverse: 5′-ACTCCTCCCGCTCCTTCAAC-
3′; Fatty acid synthase (Fasn) forward: 5′-CCCGTTGGAGGTGTCTTCA-3′ reverse: 5′-
AAGGTTCAGGGTGCCATTGT-3′; Glycerol-3-phosphate acyltransferase, mitochondrial
(Gpam) forward: 5′-GGTGAGGAGCAGCGTGATT-3′ reverse: 5′-GTGGACAAAGATGGC
AGCAG-3′; Carnitine Palmitoyltransferase 1a (Cpt1a) forward: 5′-CCGCTCATGGTC
AACAGCA-3′ reverse: 5′-CAGCAGTATGGCGTGGATGG-3′; Peroxisome proliferator-
activated receptor alpha (Ppara) forward: 5′-TTCAATGCCCTCGAACTGGA-3′ reverse: 5′-
GCACAATCCCCTCCTGCAAC-3′; Lactate dehydrogenase a (Ldha) forward: 5′-AAAGGC
TGGGAGTTCATCCA-3′ reverse: 5′-CGGCGACATTCACACCACT-3′; Monocarboxylate
transporter 1(Mct1) forward: 5′-CCCAGAGGTTCTCCAGTGCT-3′ reverse: 5′-ACGCCACA
AGCCCAGTATGT-3′; Sirtuin 1 (Sirt1) forward: 5′-AGAACCACCAAAGCGGAAA-3′ re-
verse: 5′-TCCCACAGGAAACAGAAACC-3′; Insulin receptor substrate 2 (Irs2) forward: 5′-
CATCCACATCCCCAGGACAG-3′ reverse: 5′-CCAGGACAGCCAATCAAAGC-3′; Pyru-
vate dehydrogenase kinase 4 (Pdk4) forward: 5′-CTGCTCCAACGCCTGTGAT-3′ reverse:
5′-GCATCTGTCCCATAGCCTGA-3′; Phosphoenolpyruvate carboxykinase 1 (Pck1) for-
ward: 5′-CGGGTGGAAAGTTGAATGTG-3′ reverse: 5′-AATGGCGTTCGGATTTGTCT-3′;
Solute carrier family 2 member 4 (Scl2a4) forward: 5′-TTCCAGTATGTTGCGGATGC-3′

reverse: 5′-GTGAAGATGAAGAAGCCAAGCA-3; Lipoprotein Lipase (Lpl) forward: 5′-
TGGCGTGGCAGGAAGTCT-3′ reverse: 5′-CCGCATCATCAGGAGAAAGG-3′; Hormone-
sensitive lipase (Hsl) forward: 5′-TCCTCTGCTTCTCCCTCTCG-3′ reverse: 5′-ATGGTCCT
CCGTCTCTGTCC-3′; Aquaporin 7 (Aqp7) forward: 5′-ACAGGTCCCAAATCCACTGC-3′ re-
verse: 5′-CCGTGATGGCGAAGATACAC-3′; Acidic ribosomal phosphoprotein P0 (Arbp) for-
ward: 5′-GAGCCAGCGAAGCCACACT-3′ reverse: 5′-GATCAGCCCGAAGGAGAAGG-3′.

2.5. Statistical Procedures

The Statgraphics Centurion 18© program was used for statistical analysis (Statgraphics
Technologies, Inc., The Plains, VA, USA). Data were verified for normality (ShapiroWilk–
test) and homoscedasticity (Levene’s test). Two statistical analyses were carried out using
two-way ANOVA (sex and diet factors), one to compare C and CAF groups (fattening
period) and the other to compare CAF, AL, CR30, and IR75 groups (intervention period).
Within each sex, differences between groups were determined using a one-way ANOVA
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and a Tuckey post-test. T-tests have been used to assess differences between sexes in
macronutrient intake from cafeteria diet during the fattening period.

3. Results
3.1. Food Intake

Table 1 shows the food intake and body weight of animals throughout the experiment.
In the fattening period, CAF groups increased their energy intake compared with the C
groups by 119% and 164% in males and females, respectively (Table 1 and Figure 2A). The
cafeteria diet offered to the rats was rich in fats and sugars, in contrast to the standard chow
diet, which provides less than half the lipids and scarce sugars (Figure 2B). Analysis of the
composition of the rats’ self-selected food revealed a different sex-dependent behavior. As
expected, rats of both sexes increased lipid and sugar intake; however, males consumed
more lipids while females showed more craving for carbohydrates and sugar (Figure 2B).
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Figure 2. Energy intake. (A) Total daily energy intake in the fattening period. (B) Energy percentage
from macronutrients of cafeteria diet consumed by males and females compared to the standard
diet. (C) Total daily energy intake in males and females through the treatment period. Data are
expressed as mean ± SEM. Statistical differences between males and females were assessed by
t-student, * p < 0.001.
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Table 1. Food intake and body weight of male and female rats during the fattening and the intervention period.

Fattening Period (12 Weeks) Intervention Period (3 Weeks)

Parameter Males Females p-Value (ANOVA) Males Females p-Value (ANOVA)

Control Cafeteria Control Cafeteria Sex Diet Int AL CR30 IR75 AL CR30 IR75 Sex Diet Int

Type of restriction Unrestricted Unrestricted Unrestricted Daily Twice a
week Unrestricted Daily Twice a

week
Food type Standard Cafeteria Standard Cafeteria Standard Standard Standard Standard Standard Standard

Food available - - - - - 70% 25% - 70% 25%
Initial body weight (g) 192 ± 2 161 ± 2 623 ± 75 602 ± 30 608 ± 50 356 ± 30 356 ± 32 342 ± 13
Final body weight (g) 526 ± 7 608 ± 11 + 283 ± 10 368 ± 7 + 0.0000 0.0000 0.8911 615 ± 73 531 ± 25 * 595 ± 54 329 ± 23 * 304 ± 31 * 316 ± 8 * 0.0000 0.0001 0.1999

BW increase (%) 154 ± 5 223 ± 5 + 66 ± 3 133 ± 4 + 0.0000 0.0000 0.8787 −1.3 ± 0.5 * −11.7 ± 1.7 *� −2.0 ± 2.2 *• −7.6 ± 2.3 * −14.7 ± 2.5 *� −7.7 ± 1.5 *• 0.0000 0.0000 0.0000
Food consumption

(KJ/day) 335 ± 6 735 ± 15 + 212 ± 7 558 ± 13 + 0.0000 0.0000 0.0000 261 ± 8 * 176 ± 5 *� 246 ± 10 *• 156 ± 4 * 110 ± 5 *� 149 ± 4 *• 0.0000 0.0000 0.0000

Energy efficiency
(g/MJ) 15.2 ± 0.7 9.1 ± 0.2 + 8.8 ± 0.4 6.0 ± 0.2 + 0.0000 0.0000 0.0001 −1.5 ± 0.3 * −20.3 ± 1.9 *� −2.7 ± 1.4 *• −9.0 ± 1.6 * −24.1 ± 2.5 *� −7.1 ± 1.6 *• 0.0000 0.0000 0.1645

Data are expressed as mean ± SEM. Statistical analysis in the fattening and intervention periods was evaluated through two-way ANOVA (sex and diet factors). Differences between C
and CAF groups were assessed by t-student (+). For the intervention period and each sex, a one-way ANOVA and a Tuckey post-test were performed to identify differences with the
CAF group (*), the AL group (�), and between CR30 and IR75 (•). Significant differences were considered when p < 0.05. Interactions between factors Int are shown.
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Switching from the cafeteria diet to the standard chow diet ceased the hyperphagia
experienced by rats fed a CAF diet. IR75 rats, subjected to intermittent food restriction two
days a week, increased their intake on the days following severe food restriction (Figure 2C),
eating globally the same amount as AL rats (Table 1). Thus, the only groups that decreased
their overall chow consumption were the continuously restricted CR30 groups (Table 1).

3.2. Body Weight

Free access to a cafeteria diet resulted in a significant increase in body weight compared
to the C group in both sexes (Table 1). The cafeteria diet promoted a weight gain of 223%
in males and 133% in females in 12 weeks, whereas the chow standard diet in C groups
increased body weight by 154% and 66% in males and females, respectively. Therefore, the
impact of a cafeteria diet on body weight was heavier in females, growing up to 101%, than
in males, who achieved 44% more weight than the C group.

After 12 weeks of cafeteria diet, changing to the chow standard diet offered ad libitum
(AL groups) decreased the body weight in females by 7.6% and to a lesser extent in males,
by 1.3%. These reductions were comparable to those elicited by intermittent restriction
(IR75 groups) in 7.7% and 2% in males and females, respectively. Continuous standard
chow restriction (CR30 groups) resulted in a deep decrease in body weight in both sexes,
up to 12% in males and 15% in females. These reductions in CR30 groups were statistically
significant compared to those observed in AL and IR75 groups.

3.3. Energy Efficiency

As shown in Table 1, sexual dimorphism was observed in terms of energy efficiency,
with females being less efficient than males in all the experimental groups. Cafeteria diet
decreased energy efficiency in both sexes, but in males the reduction, compared with C
groups, was higher (60%) than in females (32%).

Furthermore, all three dietary interventions following the cafeteria diet significantly
decreased energy efficiency in both sexes, more markedly in the case of CR30 groups. In
these cases, a negative energy efficiency indicated body mass mobilization.

3.4. Fat Depots, Adiposity Index, and Liver Lipid and Glycogen Content

Figure 3A shows several white fat depot weights in each of the experimental groups.
Retroperitoneal and perigonadal depot showed the highest expandability in response to
the nutrient overplus and were the most responsive to the subsequent dietary intervention.
The adiposity index (Figure 3B) was doubled due to the cafeteria diet, while it significantly
decreased after continuous food restriction in both sexes, i.e., CR30 groups, and intermittent
restriction intervention (IR75) only in females. The brown adipose tissue (BAT), expressed
as body weight percentage (Figure 3B), increased in the CAF groups compared to the C
groups. All the dietary interventions decreased BAT weight compared to the CAF group in
both sexes.

The liver weight increased in both sexes because of the cafeteria diet intake (Figure 4).
All the dietary interventions tend to reduce liver weight, and the decrease was significant
in the CR30 groups in both sexes and the AL group only in females. Also in females,
the decrease in liver weight observed in the IR75 group was less pronounced, leading to
differences between CR30 and IR75.

Liver lipid content also increased in response to cafeteria diet in both sexes and
decreased in all the dietary interventions, deeply in males. In females, the reduction of
liver lipids was more marked in the IR75 group (Figure 4). Glycogen liver content did not
change under any condition.
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Figure 3. Adipose tissues’ weight at the end of fattening and intervention periods. (A) Weight of
main white adipose tissue (WAT) depots. (B) Adipose index, calculated as the sum of four WAT
depots expressed as body weight percentage (top graph) and brown adipose tissue (BAT) as a
percentage of body weight (bottom graph). Data are expressed as mean ± SEM. Statistical analysis in
the fattening and intervention periods was evaluated through two-way ANOVA (sex and diet factors).
Differences between C and CAF groups were assessed by t-student (+). For the intervention period
and each sex, a one-way ANOVA and a Tuckey post-test were performed to identify differences
with the CAF group (*). Significant differences were considered when p < 0.05. Only significant
interactions between factors (P(int)) are shown.
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Figure 4. Liver weight, liver lipids, and liver glycogen at the end of the fattening and intervention
periods. Data are expressed as mean ± SEM. Statistical analysis in the fattening and intervention
periods was evaluated through two-way ANOVA (sex and diet factors). Differences between C and
CAF groups were assessed by t-student (+). For the intervention period and each sex, a one-way
ANOVA and a Tuckey post-test were performed to identify differences with the CAF group (*), and
between CR30 and IR75 (•). Significant differences were considered when p < 0.05. Only significant
interactions between factors (P(int)) are shown.

3.5. Serum Parameters

Table 2 shows the serum levels of metabolites in male and female rats after the fattening
and the intervention period. The cafeteria diet increased insulin and HOMA-IR score in
both sexes, but only glucose levels were raised in males. Cafeteria diet also promoted
increased triacylglycerol levels in both sexes, while NEFA and glycerol increased only
in males.
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Table 2. Serum parameters of male and female rats during the fattening and the intervention period.

Fattening Period (12 Weeks) Intervention Period (3 Weeks)

Parameter Units Males Females p-Value (ANOVA) Males Females p-Value (ANOVA)

Control Cafeteria Control Cafeteria Sex Diet Int AL CR30 IR75 AL CR30 IR75 Sex Diet Int

Glucose mM 5.52 ± 0.14 7.07 ± 0.13 + 6.47 ± 0.14 6.99 ± 0.31 0.4006 0.0356 0.4622 5.99 ± 0.28 * 5.77 ± 0.39 * 4.99 ± 0.06 *� 6.56 ± 0.33 5.44 ± 0.22 * 5.08 ± 0.31 *� 0.7421 0.0000 0.4197
Insulin pM 289 ± 38 443 ± 60 173 ± 33 321 ±75 0.0389 0.0113 0.9601 304 ± 35 248 ± 37 * 289 ± 37 263 ± 48 149 ± 26 123 ± 29 * 0.0022 0.0008 0.5974

HOMA-IR score 12.6 ± 1.7 20.3 ± 2.7 + 7.6 ± 1.5 15.5 ± 4.0 + 0.0736 0.0079 0.9984 12.3 ± 1.0 * 9.3 ± 1.1 * 9.7 ± 1.3 * 11.5 ± 2.1 5.3 ± 0.8 * 4.2 ± 1.1 * 0.0123 0.0000 0.6806
Triacylglycerol mM 1.01 ± 0.10 2.74 ± 0.18 + 0.64 ± 0.05 1.10 ± 0.16 0.0000 0.0000 0.0004 1.18 ± 0.18 * 1.13 ± 0.11 * 1.15 ± 0.12 * 0.73 ± 0.14 * 0.47 ± 0.04 * 0.86 ± 0.09 * 0.0000 0.0000 0.0001

NEFA mM 0.24 ± 0.03 0.36 ± 0.04 + 0.27 ± 0.03 0.23 ± 0.03 0.0428 0.0991 0.0286 0.28 ± 0.05 * 0.23 ± 0.01 * 0.24 ± 0.02 * 0.23 ± 0.03 0.25 ± 0.02 0.23 ± 0.02 0.1763 0.5618 0.1872
Glycerol mM 0.16 ± 0.02 0.43 ± 0.08 + 0.19 ± 0.05 0.22 ± 0.02 0.1370 0.0031 0.0297 0.17 ± 0.02 * 0.17 ± 0.02 * 0.18 ± 0.01 * 0.17 ± 0.01 0.18 ± 0.03 0.12 ± 0.01 * 0.0051 0.0000 0.0051
Lactate mM 2.94 ± 0.19 2.98 ± 0.36 1.75 ± 0.11 2.30 ± 0.24 0.0016 0.2608 0.3172 2.51 ± 0.23 2.39 ± 0.37 2.68 ± 0.20 2.05 ± 0.2 1.78 ± 0.09 2.10 ± 0.18 0.0043 0.0340 0.8563

Data are expressed as mean ± SEM. Statistical analysis in the fattening and intervention periods was evaluated through two-way ANOVA (sex and diet factors). Differences between C
and CAF groups were assessed by t-student (+). For the intervention period and each sex, a one-way ANOVA and a Tuckey post-test were performed to identify differences with the
CAF group (*), the AL group (�). Significant differences were considered when p < 0.05. NEFA (Non-Esterified Fatty Acids), HOMA-IR score (Homeostatic Model Assessment for Insulin
Resistance). Interactions between factor Int are shown.
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After the intervention period, glucose levels decreased and were normalized in both
males and females, although it was more pronounced in the IR75 group. Serum insulin
also decreased overall during the intervention period and, comparing within each sex, the
drop in insulin levels was significant in the male CR30 group and the female IR75 group.
The HOMA-IR score decreased after the return to the standard chow diet, more deeply
in the food-restricted groups, but with differences between sexes. Thus, while the male
AL group restored the HOMA-IR score to baseline values, females did not normalize it.
Circulating triacylglycerol levels decreased in all dietary interventions in both sexes. In
males, the plasma levels of NEFA and glycerol reverted to control group values after the
intervention period.

3.6. Liver Gene Expression

The expression of proteins involved in the liver energy metabolism is shown in
Figure 4, calculated as a percentage of those observed in control males. The cafeteria diet
promoted a decrease in the expression of genes involved in hepatic de novo lipogenesis
(DNL) (Acly and Fasn) (Figure 5A) and an increase in Irs2 gene expression (Figure 5C) in
both sexes. The cafeteria diet also produced sex-dependent changes, since only in females
did it increase lactate synthesis and transport (Ldha, Mct1 genes) and Sirt1, and it decreased
the expression of the rate-limiting gene of gluconeogenesis, Pck1 (Figure 5B,C).
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Statistical analysis in the fattening and intervention periods was evaluated through two-way ANOVA
(sex and diet factors). Differences between C and CAF groups were assessed by t-student (+). For
the intervention period and each sex, a one-way ANOVA and a Tuckey post-test were performed
to identify differences with the CAF group (*), the AL group (�), and between CR30 and IR75 (•).
Significant differences were considered when p < 0.05. Only significant interactions between factors
(P(int)) are shown.

In females, the return to the ad libitum standard diet (AL Group) increased the DNL-
gene expression, Sirt1, and Irs2 compared to the CAF group (Figure 5A,C). The only
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change observed in AL male groups was a decrease in the lactate transporter (Mct1) gene
expression compared to the CAF group (Figure 5B). The continuous restriction diet (CR30)
promoted in both sexes a decrease in the genes involved in fatty acid esterification (Gpam)
and an increase in those involved in lipid oxidation (Cpt1a and Ppara genes) versus the
CAF and AL group (Figure 5A,B). In addition, sex differences were observed in CR30
intervention in respect to the cafeteria diet. Only in females were DNL genes, Irs2, and
Sirt1 highly expressed (Figure 5A,C). The intermittent restriction groups, IR75, further
increased the gene expression of DNL and Pdk4 genes, especially in females, pointing to a
metabolic switch to lipogenesis. Continuous caloric restriction (CR30) showed a pattern
consistent with increased lipid oxidation that was not observed in intermittent restriction
(Figure 5A–C). Globally, all dietary interventions seemed to promote DNL, especially in
females and in intermittent fasting restriction. Continuous caloric restriction enhanced lipid
oxidation in both sexes. All dietary interventions pointed to an improvement in insulin
resistance in females, a fact not observed in males.

3.7. Perigonadal Adipose Tissue Gene Expressions

Figure 6 shows the perigonadal adipose tissue gene expression in the fattening and
intervention periods in both sexes, calculated as a percentage of control males. A clearly
increased FA uptake (Lpl) and TAG turnover was observed under the cafeteria diet in both
sexes (esterification, Gpam gene; lipolysis and glycerol synthesis, Hsl, Ldha, Pck1, and
Aqp7 gene) (Figure 6). Sirt1 and Irs2 gene expression increased deeply in females under
the cafeteria diet (Figure 6C).
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fatty acid esterification to triacylglycerols. (C) Proteins related to lipolysis, glycerol output, and insulin
signaling. Data are expressed as mean ± SEM. Statistical analysis in the fattening and intervention
periods was evaluated through two-way ANOVA (sex and diet factors). Differences between C and
CAF groups were assessed by t-student (+). For the intervention period and each sex, a one-way
ANOVA and a Tuckey post-test were performed to identify differences with the CAF group (*), the
AL group (�), and between CR30 and IR75 (•). Significant differences were considered when p < 0.05.
Only significant interactions between factors (P(int)) are shown.

The return to the ad libitum standard diet (AL groups) caused a different response
in male and female rats. Thus, while in females a decrease was observed in the gene
expression of practically all the genes studied compared to the CAF group, in males only
the expression of genes involved in lactate synthesis and transport (Ldha and Mct1) was
significantly decreased (Figure 5). Continuous restriction intervention (CR30 groups) also
showed a sex-related response, since the CR30 group in females showed a pattern of gene
expression very similar to that observed in the AL group. However, in males, the response
of the CR30 group was more marked than in the AL group, decreasing significantly the
expression of genes involved in nutrient uptake (Scl2a4, Lpl), glyceroneogenesis (Pck1),
and lactate transport (Mct1) compared to the AL group. In females, the general pattern of
expression in intermittent fasting (IR75 group) was similar in respect to the CAF group,
whereas in males there was a decreased TAG synthesis and turnover (Fasn, Gpam, Mct1,
and Aqp7 genes). These results indicate that the perigonadal WAT of females would be
more sensitive to the shift to a standard diet (less lipids and sugars) than to an energy
restriction, whereas the WAT of males would require a severe reduction of dietary energy
to respond.

4. Discussion

IF is a weight loss dietary intervention that has recently gained prominence over
continuous CR [4]. However, its metabolic impact is not fully understood [20], nor whether
it is similar in males and females because studies in experimental animals are mostly
carried out in males [13,14]. In the present study, we set out to compare the response to
a dietary intervention with continuous or intermittent caloric restriction in rats of both
sexes, to evaluate changes in energy intake, weight loss, metabolic parameters, and gene
expression of metabolic enzymes in liver and adipose tissue. A pre-fattening period with
a human-like palatable diet (CAF) to induce obesity was followed by an intervention
period (AL, CR, or IR) in which animals were fed a standard diet, thus better simulating a
human dietary intervention. Unlike most intermittent fasting studies, in which during the
intervention period rodents are still fed the diet used for fattening, this study combined
both diet composition changes and feeding pattern interventions [12–14].

The cafeteria diet, as expected, led to a larger amount of intake and body weight
increases [21], resulting in a rise in the weight of the different WAT depots and BAT, as well
as in the hepatic lipid content in both males and females [22]. In addition, the cafeteria diet
promoted lower energy efficiency to counteract the higher caloric intake and to increase
energy expenditure by a larger BAT [21,23,24]. Interestingly, females showed a lower
energetic efficiency than males, in agreement with a previous study [16]. Furthermore, a
higher preference for sugars has been found in females and fats in males under free access
to different foods during the cafeteria diet. In humans, females show more cravings for
sweet foods and males for protein foods, a behavior that combines biology and cultural
patterns [25]. In rats, where only biology is taken into account, few data are available. The
main data have been obtained from conditioned taste aversion studies, showing again in
females a higher preference for the intake of a sweet solution compared with males [25]. A
recent study using a cafeteria diet failed to show differences in food choice between sexes,
but only short-term periods of 8 days were assessed [26].

The expression pattern of genes involved in lipid metabolism observed in liver and
adipose tissue due to the cafeteria diet in both sexes was consistent with a decrease in
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DNL and an increased deposition of dietary lipids [27–29]. Only in the liver of female rats
did glucose metabolism show a switch towards lactate production and lipid oxidation,
indicated by an increase in Ldha, Mct1, and Sirt1 expression. Although the cafeteria diet
increased insulin resistance in both sexes, with an increase in HOMA-IR score, female rats
maintained glucose levels, while glucose raised significantly in males, consistent with the
protective role of estrogens on insulin action [30]. Impaired circulating levels of TAG and
NEFA were also observed due to the cafeteria diet only in males, in agreement with a
previous study [16].

The increase in perigonadal WAT expression of Pck1, Gpam, and Aqp7 genes agreed
with an increase in glyceroneogenesis to support increased TAG turnover, also in line with
the increase of Hsl expression. Although increased Pck1 and glyceroneogenesis in WAT
have been generally associated with fasting [31], other studies show that Pck1 is primarily
responsible for the generation of glycerol-3P for fatty acid esterification in the WAT [32].
Even though not all studies are in the same direction, it has been described that increased
fatty acid re-esterification by Pck1 overexpression at the adipose tissue leads to obesity [33].

Returning to a standard chow pellet after a period of cafeteria diet elicited a decrease
in intake, probably due to the loss of the hedonic component of eating [34,35], which was
reflected in a drop in body weight and accordingly in a negative energy efficiency. A
different response in energetic efficiency was found between males and females, so females
showed a more pronounced decrease. In addition, females also displayed a decrease in
perigonadal and retroperitoneal WAT depots consistent with a gene expression profile of
fatty acid depletion and limited glucose uptake and DNL. The increasing DNL in the liver
of females was supported by the increased hepatic gene expression of Acly and Fasn in
response to the lower amount of fat in the standard pellet diet, as previously found [27,28].

As expected, continuous restriction (CR30) elicited a decrease in body weight and a
negative energy efficiency and adiposity index in both males and females [36]. Perigonadal
WAT incorporated less glucose and fatty acids and decreased TAG turnover according to
the low insulin signaling [31]. In addition, Pck1 expression was diminished, a response in
accordance with a reduction of WAT size and lipid content [37]. Interestingly, in the liver, an
increased gene expression of lipolytic enzymes (Ppara and Cpt1) was observed in both sexes,
but only in females did it coexist with an elevated DNL (Agly and Fasn). CR also promoted
an improvement in insulin resistance, with a significant reduction in HOMA-IR score. The
effects of CR have been extensively studied in terms of longevity, describing a species- and
even a strain-dependent sexual dimorphism in rodents [38,39]. The mechanisms by which
CR promotes longevity are the same as those that promote weight loss and increased insulin
sensitivity, i.e., improved health [40–42]. In this regulation, sirtuins and AMPK play a
relevant role as nutrient sensors that increase insulin sensitivity and lipid oxidation [42–45].
Accordingly, the CR30 group showed increased hepatic expression of Sirt1 and Irs2, but
only in females, with no change in males. Furthermore, it has been described that GH and
IGF1 also play a key role in the response to CR. These hormones display a marked sexual
dimorphism that could help to understand the different response in males and females to
CR [43].

A variety of scheduling approaches have been studied in order to ascertain IF conse-
quences in energy metabolism [5,11]. Here, we applied a 75% energy restriction on two
non-consecutive days per week (IR75 groups). Despite rats of both sexes showing the
same body weight and food intake as ad libitum rats, only female mice subjected to IR75
achieved a reduction in fat mass comparable to that observed in the continuous restriction
group (CR30). In addition, females exhibited an increased gene expression of DNL-related
proteins in both liver and perigonadal WAT compared to CR30 treatment. These differences
in DNL-related expressions between CR30 and IR75 could be partially attributed to the fact
that the IR75 mice group was sacrificed two days after restriction when they were eating
ad libitum. In addition, increased adipocyte DNL seems to be a specific female strategy
to cope with metabolic insults in order to maintain insulin sensitivity [46], a metabolic
response that we have observed in the female group under intermittent fasting.
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IR75 intervention showed an increase in Pdk4 hepatic gene expression in males and
females in concordance with the reduced liver lipid content and the improved HOMA-
IR score.

The term metabolic flexibility refers to the ability of the organism to switch rapidly
between glucose and fatty acid oxidation during the transition between feeding and fasting
states [47]. Some pathological conditions, such as diabetes, non-alcoholic fatty liver disease,
and consumption of high-calorie diets, lead to a loss of metabolic flexibility, whereas calorie
restriction and IF increase it [43,47].

In our study, switching to a balanced diet and spontaneous reduction of energy intake
was able to restore hepatic lipid content and HOMA-IR score in both sexes. The decrease in
WAT weight, together with a lower expression of genes involved in DNL and TAG turnover,
support a deeper sensitivity and metabolic flexibility in WAT of females, even when facing
only the change from a cafeteria diet to a standard diet. The loss of WAT in females is more
marked in both models of caloric restriction, continuous and intermittent, regardless of
changes in body weight, whereas in males only continuous energy restriction was able to
reduce WAT stores.

5. Conclusions

After a period of fattening on a high-fat, high-sugar diet (CAF), the transition to a
balanced diet feeding ad libitum (AL) or intermittent restriction (IR75) promoted a similar
overall intake, weight loss, and energy efficiency, while continuous caloric restriction (CR30)
resulted in greater weight loss but also much lower energy efficiency. Considering white
adipose tissue, IF elicited the same loss as CR in females but not in males, where CR was the
more effective intervention. The return to the standard diet normalized the HOMA-IR score,
and both caloric restrictions further improved insulin sensitivity. The results presented
here point to the fact that females are more sensitive to the quality and quantity of the
caloric content of the intake. Sex is a mandatory factor to consider in dietary interventions
to improve metabolic disturbances associated with diet-induced obesity.
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