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Abstract: Obesity’s variability is significantly influenced by the interplay between genetic and envi-
ronmental factors. We aimed to integrate the combined impact of genetic risk score (GRSBMI) with
physical activity (PA), sugar-sweetened beverages (SSB), wine intake, and eating habits score (EHS)
on obesity predisposition risk. Adults’ (n = 5824) data were analyzed for common obesity-related
single nucleotide polymorphisms and lifestyle habits. The weighted GRSBMI was constructed and
categorized into quartiles (Qs), and the adjusted multivariate logistic regression models examined
the association of GRSBMI with obesity (BMI ≥ 30) and lifestyle factors. GRSBMI was significantly
associated with obesity risk. Each GRSBMI unit was associated with an increase of 3.06 BMI units
(p ≤ 0.0001). PA markedly reduced obesity risk across GRSBMI Qs. Inactive participants’
(≥90 min/week) mean BMI was higher in GRSBMI Q3–Q4 compared to Q1 (p = 0.003 and p < 0.001,
respectively). Scoring EHS ≥ median, SSBs (≥1 cup/day), and non-wine drinking were associated
with higher BMI within all GRSBMI Qs compared to EHS < median, non-SSBs, and non-wine drinkers.
Mean BMI was higher in GRSBMI Q4 compared to other quartiles (p < 0.0001) in non-wine drinkers
and compared to Q1 for SSB’s consumers (p = 0.07). A higher GRSBMI augmented the impact of
lifestyle factors on obesity. The interplay between GRSBMI and modifiable lifestyle factors provides a
tailored personalized prevention and treatment for obesity management.

Keywords: polygenic risk score; obesity; single nucleotide polymorphisms; physical activity; sugar-
sweetened beverages; eating habits

1. Introduction

The 21st century, the obesity epidemic presents a paramount challenge within the
healthcare sector. This global epidemic transcends age and geography, impacting adults,
adolescents, and children worldwide [1]. Obesity is not merely a condition of excess weight;
it is a critical risk factor for a myriad of health complications, including but not limited to
diabetes, cardiovascular diseases, hypertension, and certain cancer types, in both pediatric
and adult populations [2]. The etiology of obesity is complex, with a substantial interplay
between genetic predispositions and environmental factors [3]. Recently, the link between
genetics and obesity has garnered considerable attention in scientific research. Central
to this exploration are single-nucleotide polymorphisms (SNPs), which are variations in
the DNA sequence that have been [4] linked to an increased propensity for obesity [5].
While each SNP individually exerts a modest effect on obesity risk, their collective impact
is substantially more pronounced [6]. Modern genomic technologies have unveiled that the
complexity of the human genome interplay in relation to obesity is greater than previously
recognized, highlighting that sequence variations, including those in non-protein coding
regions of DNA, and they are reshaping our comprehension of the genome’s role in obe-
sity [7]. While certain genetic variants have been identified as predictors of susceptibility to
obesity, it is becoming increasingly clear that obesity, like many other complex conditions,
is characterized by a multifaceted genetic signature. The identification of genetic regions
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associated with obesity is predominantly conducted through Genome-Wide Association
Studies (GWASs), which involve comparing the genetic sequences of individuals with obe-
sity to non-obese, thereby pinpointing specific genetic variations linked to the condition [8].
To date, a multitude of SNPs associated with obesity have been identified [8,9]. Given the
limited impact of each allele on obesity risk, a comprehensive scoring system known as the
genetic risk score (GRS) has been developed, aggregating the cumulative effect of several
obesity-related SNPs present in an individual, offering valuable insights for personalized
prevention and treatment strategies [10]. Notably, the majority of GWAS studies have been
conducted in Western populations, primarily focusing on European demographics [11].
However, there is a notable paucity of GWAS research encompassing other populations.
This research aims to develop and validate a genetic model for obesity tailored to the
Israeli population, thereby filling a critical gap in the current understanding of obesity
genetics in this demographic. Obesity etiology involves genetic predisposition with an
estimated 40–75% heritability combined with strong environmental factors [12]. Thus, ge-
netic predisposition is exacerbated by an environment favorable to weight gain, marked by
factors such as high-calorie foods, rapid eating, oversized food portions, sugar-sweetened
beverages intake, excessive consumption of simple carbohydrates and sugars, physical
inactivity, and sedentary behavior [13]. The interplay between GRS and lifestyle factors
predisposing to obesity was scarcely studied. In our research, we delved into the intricate
relationship between a multi-locus GRS, derived from a pre-analysis of individual SNPs,
and key lifestyle factors such as PA, eating habits, and beverage consumption to illuminate
the complex gene–lifestyle interactions and their influence on individual obesity predis-
position. The current literature offers limited insights into the combined effects of GRS
when considering lifestyle variables. Utilizing data from our comprehensive cohort, this
research seeks to unravel the interplay between genetic predisposition and lifestyle choices,
thereby contributing to the evolving field of personalized nutrition and interventions for
obesity management.

2. Materials and Methods
2.1. Participants

The study is a cross-sectional analysis utilizing data from registry database (Lev-Hai
Genetics LTD—MyGenes (Tel Aviv, Israel) listed in the registry database (#700068969)).
Israeli adults (n = 5824) with a mean age of 55.78 ± 15.3 years were genotyped and
completed an online lifestyle questionnaire (December 2021 to May 2023). The database
was anonymous. Ethical approval for this study was obtained from the Ethics Committee
of Ariel University (#AU-HEA-RB-20220214), and informed consent was obtained from all
individual participants included in the study. Exclusion criteria included <18 years age;
occurrence of a genetic disorder; or missing genetic, lifestyle, or anthropometric indices
value (n = 100).

2.2. Anthropometric and Lifestyle Variables

Participants filled in an online questionnaire regarding their lifestyle and eating habits.
Anthropometric measurements included height and weight. Height was reported in
centimeters and weight in kilograms. BMI was calculated as the weight/(height)2 ratio
(kg/m2). PA was computed by summing the weekly duration (minutes) of any PA the
participants were engaging. The physically active group was defined as engaging in
PA ≥ 90 min/week. Eating habits score (EHS) was calculated as the sum of Likert scale
responses for a validated online eating habits questionnaire. The median (med) value of the
EHS score served as the cutoff point; participants with an EHS score ≥ med were grouped
as EHS ≥ med, while those who scored below the med were grouped as EHS < med. SSBs
consumption was defined as consuming ≥ 1 cup/day. Wine consumption was categorized
into non-drinkers and moderate wine consumers (≥1–3 drinks per week).
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2.3. Genetic Risk Score (GRSBMI)

The candidate gene approach was employed to select relevant genes associated with
obesity (BMI ≥ 30), with an emphasis on genes SNPs that demonstrated a significant
association with obesity in previous GWAS studies [14]. To construct a comprehensive
‘weighted GRSBMI’, each SNP was weighted by its effect size (beta coefficient), on obesity
risk, enhancing the predictive accuracy of the GRSBMI. SNPs were prioritized based on
their minor allele frequency (MAF) (>0.01) in our population and their inclusion in the
validated catalog of published GWASs. To ensure independent selection and tagging
of SNPs, the HapMap database was utilized. SNPs with MAF exceeding 0.01 and tag
SNPs with a pairwise linkage disequilibrium (r2) under 0.8 were chosen. In total, 86 SNPs
associated with obesity were incorporated into the dataset. A stringent quality control
was implemented. Additionally, SNPs with significant missing data were excluded to
prevent biases. Further SNP selection was performed using a multivariate logistic model
for obesity (BMI > 30 kg/m2) to identify each SNP under a significance threshold of p < 0.05,
adjusted to sex, age, and type 2 diabetes mellitus (T2DM). The GRSBMI was defined as the
sum of the products of the number of risk alleles (0, 1, 2) of each SNP multiplied by its
corresponding beta weight. The best-fit GRS model was constructed using eight SNPs:
TMEM rs18939583, ADRB3 rs4994, FTO rs9939609, MC4R rs2331841, ADCY3 rs10182181,
BDNF rs925946, GIPR rs11672660, and BDNF rs6265. For the analyses, participants were
stratified into quartiles (Q1–Q4) based on their personal GRSBMI. Quartiles were defined
by the 25th, 50th, and 75th of the GRSBMI distribution. All analyses were conducted using
the R-4.3.1 statistical software.

2.4. Statistical Analysis

The descriptive characteristics of the study participants were summarized using mean
values and standard deviations for continuous variables, and median and interquartile
range (IQR = 25th–75th percentile) for continuous variables not following a normal dis-
tribution. Frequencies and percentages were presented for the categorical variables. For
continuous variables not following a normal distribution, the Mann–Whitney test was
used to compare differences between participants with obesity and non-obesity groups.
In the case of normally distributed continuous variables, an independent samples t-test
was applied. For categorical variables, a Chi-square test was applied to determine the
relation between obesity status and each categorical variable. To analyze the obesity risk
across GRSBMI quartiles and interactions with lifestyle, we conducted logistic regression
models. Additionally, to understand the direct effect of genetic predisposition on BMI, we
performed a linear regression analysis with BMI as the dependent variable and GRSBMI as
the independent variable.

3. Results
3.1. Participants

The study included a total of 5824 participants, with a mean age of 55.79 ± 15.3.
Participants with obesity (BMI ≥ 30) had higher weight (p < 0.001), BMI (p < 0.001),
and T2DM prevalence (p < 0.0001) compared to participants without obesity (BMI < 30).
Concerning lifestyle factors, the BMI ≥ 30 group was less physically active with 14.9%
meeting the PA ≥ 90 criteria compared to 26% in the BMI < 30 group (p < 0.0001), with
a higher percent of SSB consumers (p < 0.0001) and lower percent of wine consumers
(p < 0.0001) compared to participants with BMI < 30. Sex distribution varied significantly,
with 72.39% of the BMI ≥30 group and 67.16% of the BMI < 30 group being females
(p < 0.001; Table 1).
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Table 1. Descriptive characteristics of study participants.

Character All (n = 5824) BMI ≥ 30
(n = 3173)

BMI < 30
(n = 2651) p-Value

Age (years) 55.78 ± 15.3 55.91 ± 15.4 55.63 ± 15.2 0.3
Height (cm) 166.42 ± 9.15 166.52 ± 9.4 166.29 ± 8.84 0.55
Weight (kg) 86.83 ± 19.6 98.13 ± 17.9 73.31 ± 11.2 <0.0001

BMI (kg/m2) 31.24 ± 6.06 35.28 ± 5.06 26.41 ± 2.66 <0.0001
Sex (female) 4050 (69.54) 1919 (72.39) 2131 (67.16) <0.001
T2DM (n, %) 449 (7.7) 285 (8.98) 164 (6.19) <0.0001

EHS score 11.60 ± 7.55 12.33 ± 7.68 10.73 ± 7.3 <0.0001
PA ≥ 90 (n, %) 1162 (19.95) 473 (14.9) 689 (26) <0.0001

SSB consumers (n, %) 684 (11.74) 439 (13.84) 245 (9.24) <0.0001
Wine consumers * (n, %) 1398 (24) 669 (21.08) 729 (27.5) <0.0001

EHS, eating habits score; PA, physical activity; SSB, sugar-sweetened beverage (≥1 cup/day); wine consumers
(≥1–3 drinks per week). * n = 146 missing data for wine.

3.2. GRSBMI and Obesity

The GRSBMI was significantly associated with obesity risk (OR = 2.72; 95% CI,
2.07–3.58; p < 0.001). Each additional GRSBMI unit was associated with a 3.067 kg/m2

increase in BMI (R-squared = 0.02, p < 0.0001). As shown in Figure 1, higher GRSBMI
quartiles were significantly associated with obesity. Individuals in higher GRSBMI quartiles
exhibited higher BMIs, with a higher mean of 0.5, 0.8, and 1.6 BMI units for GRSBMI Q2,
Q3, and Q4, respectively, than GRSBMI Q1 (p = 0.049, p < 0.001, and p < 0.001, respectively).
The GRSBMI Q4 mean BMI was significantly elevated by 1.1 and 0.8 BMI units compared to
the mean BMI of Q2 and Q3, respectively (p < 0.001) (Figure 1).
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3.3. GRSBMI and Lifestyle Variables
3.3.1. Physical Activity

Almost 20% of participants were physically active (≥90 min/week), while 80.05%
were inactive or less active (<90 min/week; Table 2). Physically active participants had a
lower obesity risk compared to physically inactive participants across all GRSBMI quartiles
(OR = 0.56, 95% CI = 0.43–0.72, and p < 0.0001; OR = 0.44, 95% CI = 0.34–0.57, and p < 0.0001;
OR = 0.51, 95% CI = 0.4–0.67, and p < 0.0001; and OR = 0.48, 95% CI = 0.37–0.63, and
p < 0.0001 for Q1, Q2, Q3, and Q4, respectively). Specifically, the GRSBMI Q1 mean BMI
for active participants was 29.0 ± 5.23, significantly lower by 1.9 BMI units than the mean
BMI for inactive participants, i.e., 30.9 ± 5.85 (p < 0.0001). Active participants in Q2 had
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2.6 units-lower mean BMI of 28.9 ± 4.73 compared to inactive participants (31.5 ± 6.17,
p < 0.0001). The GRSBMI Q3 mean BMI for active participants was 2.5 BMI units lower
(29.3 ± 5.06) than the mean BMI for inactive participants (31.8 ± 6.09, p < 0.0001). Lastly, the
GRSBMI Q4 mean BMI for active participants was lower by 2.4 units (30.2 ± 5.66) compared
to inactive participants (32.6 ± 6.43, p < 0.0001). For physically inactive participants,
the results showed a significantly higher mean BMI in GRSBMI Q4 compared to all other
quartiles (p < 0.001, p < 0.0001, and p < 0.005 for Q1, Q2, and Q3, respectively), and in
GRSBMI Q3 compared to Q1 (p = 0.003; Table 2). This demonstrates a gradational increase in
BMI from the lowest to the highest genetic risk-score quartiles among inactive participants.

Table 2. Obesity risk (BMI) among physically active ≥90 min/week and inactive (<90 min/week)
participants across GRSBMI quartiles *.

GRSBMI Quartile
Mean

BMI—Active
(±SD)

Mean
BMI—Inactive

(±SD)

BMI Difference
(Active vs. Inactive)

(95% CI)

Obesity OR
(Active vs. Inactive within Q)

(95% CI)

Mean BMI between
GRSBMI

Quartiles (Inactive) **

Q1
(n = 1465) 29.0 ± 5.23 30.9 ± 5.85 −1.9 (−2.56–(−1.2)) 0.56

(0.43–0.72) -

Q2
(n = 1456) 28.9 ± 4.73 31.5 ± 6.17 −2.6 (−3.25–(−1.95)) 0.44

(0.34–0.57) NS

Q3
(n = 1455) 29.3 ± 5.06 31.8 ± 6.09 −2.5 (−3.15–(−1.78)) 0.51

(0.40–0.67) 0.003 a

Q4
(n = 1448) 30.2 ± 5.66 32.6 ± 6.43 −2.4 (−3.14–(−1.64)) 0.48

(0.37–0.63)

<0.001 a

<0.0001 b

<0.005 c

GRS = genetic risk score; Q = quartile. * Adjusted for age, sex, and T2DM. a Compared to Q1; b compared to Q2; c

compared to Q3. ** All p-values are Bonferroni-adjusted to control for multiple comparisons across quartiles.

3.3.2. Eating Habits Score

An elevated EHS was associated with increased obesity risk across all GRSBMI quar-
tiles, adjusted for age, sex, and T2DM. Participants with EHS≥ med had a significantly
higher obesity risk compared to those with EHS < med within GRSBMI Q1, Q3, and Q4
(OR = 1.42, 95% CI = 1.15–1.75, and p = 0.001; OR = 1.51, 95% CI = 1.21–1.86, and p = 0.0002;
and OR = 1.36, 95% CI = 1.09–1.69, and p = 0.006). The effect of EHS on BMI across all
GRSBMI quartiles analyses demonstrated notable differences. GRSBMI Q1–Q4 participants
with EHS ≥ med exhibited a 0.88–1.45-higher mean BMI units than those within the same
GRSBMI quartile with EHS < med (p = p < 0.001, p < 0.001, p < 0.0001, and p = 0.006, respec-
tively). When comparing the mean BMI among individuals with EHS ≥ med, a higher BMI
was noted in GRSBMI Q4 and Q3 compared to Q1 (p < 0.0001 and p = 0.008, respectively),
and for GRSBMI Q4 compared to GRSBMI Q2 (p = 0.02; Table 3).

Table 3. Obesity risk and BMI among EHS≥ and <median across GRSBMI quartiles.

GRSBMI
Quartile

(Q)

Mean BMI—EHS
≥ Median (±SD)

Mean BMI—EHS
< Median (±SD)

BMI Difference
(EHS ≥ Median vs.

EHS < Median)
(95% CI)

EHS ≥ Median vs.
EHS < Median within

Q OR (95% CI) *

BMI EHS ≥ between
across GRSBMI

Quartiles **

Q1
(n = 1465) 31.02 ± 5.78 30.05 ± 5.74 +0.97 (0.38–1.56) 1.42

(1.15–1.75) NS

Q2
(n = 1456) 31.56 ± 6.11 30.44 ± 5.83 +1.12 (0.51–1.73) 1.20

(0.97–1.48) 0.02 b
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Table 3. Cont.

GRSBMI
Quartile

(Q)

Mean BMI—EHS
≥ Median (±SD)

Mean BMI—EHS
< Median (±SD)

BMI Difference
(EHS ≥ Median vs.

EHS < Median)
(95% CI)

EHS ≥ Median vs.
EHS < Median within

Q OR (95% CI) *

BMI EHS ≥ between
across GRSBMI

Quartiles **

Q3
(n = 1455) 32.02 ± 6.02 30.57 ± 5.86 +1.45 (0.84–2.06) 1.51

(1.21–1.86) 0.008 a

Q4
(n = 1448) 32.51 ± 6.37 31.63 ± 6.31 +0.88 (0.23–1.55) 1.36

(1.09–1.69) <0.0001 a

EHS = eating habits score; GRS = genetic risk score; Q = quartile; NS = non-significant compared to other quartiles.
* Adjusted for age, sex, and T2DM. a Compared to Q1; b compared to Q4. ** All p-values are Bonferroni-adjusted
to control for multiple comparisons across quartiles.

3.3.3. Sugar-Sweetened Beverages

Across each GRSBMI quartile, SSB consumption was associated with an increased
risk of obesity versus non-consumers (OR = 1.46, 1.48, 1.88, and 1.49 for Q1, Q2, Q3, and
Q4, respectively). The mean BMI for SSB consumers was higher by 1.94, 1.55, 1.69, and
1.92 units within Q1, Q2, Q3, and Q4 than non-SSBs consumers (p = 0.0001, p = 0.002,
p = 0.00001, and 0.0006, respectively). The GRSBMI Q4 mean BMI was higher by 1.51 kg/m2

than GRSBMI Q1 (p = 0.007), indicating an interaction between high GRSBMI score and SSB
consumption (Table 4).

Table 4. Obesity risk among SSBs consumers and non-consumers across GRSBMI quartiles.

GRSBMI
Quartile

(Q)

Mean BMI—SSB
Consumers (±SD)

Mean
BMI-Non-SSB

Consumers (±SD)

BMI Difference
(SSB vs. Non-SSB)

(95% CI)

(SSB vs. Non-SSB
within Q)

OR (95% CI) *

Mean BMI between
GRS Quartiles (SSB

Consumer) **

Q1
(n = 1465) 32.30 ± 5.66 30.36 ± 5.77 +1.63 (0.69–2.57) 1.46

(1.05–2.04) NS

Q2
(n = 1456) 32.4 ± 6.63 30.85 ± 5.89 +1.55 (0.49–2.58) 1.48

(1.07–2.05) NS

Q3
(n = 1455) 32.78 ± 5.92 31.09 ± 5.97 +1.69 (0.77–2.64) 1.88

(1.36–2.63) NS

Q4
(n = 1448) 33.87 ± 6.91 31.88 ± 6.25 +1.92 (0.78–2.98) 1.49

(1.05–2.1) 0.007 a

GRS = genetic risk score; Q = quartile; SSB = sugar-sweetened beverage; NS = non-significant compared to other
quartiles. * Adjusted for age, sex, and T2DM. a Compared to Q1. ** All p-values are Bonferroni-adjusted to control
for multiple comparisons across quartiles.

3.3.4. Wine

Moderate wine consumption showed a protective effect against obesity across all
GRSBMI quartiles adjusted for age, sex, and T2DM (Table 5). Specifically, GRSBMI Q1, Q2,
Q3, and Q4 moderate wine consumers had a 39%, 33%, 29%, and 35% lower obesity risk
(OR = 0.61, 95% CI = 0.48–0.78, and p < 0.0001; OR = 0.67, 95% CI = 0.53–0.86, and p = 0.0013;
OR = 0.71, 95% CI = 0.55–0.91, and p = 0.006; and OR = 0.65, 95% CI = 0.51–0.83, and
p = 0.0006, respectively) compared to non-wine drinkers. GRSBMI Q4 non-wine consumers’
mean BMI was higher compared to that of GRSBMI Q1, Q2, and Q3 (p < 0.0001, p < 0.0001,
and p = 0.005, respectively) non-wine consumers, and GRSBMI Q3 was significantly higher
than Q1 (p = 0.03).
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Table 5. Obesity risk among moderate wine drinkers and non-drinkers across GRSbmi quartiles.

GRSBMI
Quartile

(Q)

Mean BMI—Wine
Drinkers (±SD)

Mean BMI—Non-
Drinkers (±SD)

BMI Difference
(Drinkers vs.

Non-Drinkers)
(95% CI)

(Drinkers vs.
Non-Drinkers
within Q) OR

(95% CI) *

Mean BMI between
GRSBMI Quartiles
(Non-Drinkers) **

Q1
(n = 1424) 29.85 ± 5.79 30.86 ± 5.77 −1.01

(−1.7–(−0.31))
0.61

(0.48–0.78) -

Q2
(n = 1423) 30.18 ± 4.85 31.46 ± 6.32 −1.28

(−1.91–(−0.66))
0.67

(0.53–0.86) NS

Q3
(n = 1416) 30.58 ± 5.32 31.62 ± 6.16 −1.04

(−1.73–(−0.36))
0.71

(0.55–0.91) 0.03 a

Q4
(n = 1415) 31.05 ± 5.35 32.56 ± 6.62 −1.51

(−2.2–(−0.83))
0.65

(0.51–0.83)

<0.0001 a

<0.0001 b

0.005 c

* Adjusted for age, sex, and T2DM. Physically active = PA ≥ 90 min/week. a Compared to Q1; b compared to Q2;
c compared to Q3; NS = non-significant compared to other quartiles. ** All p-values are Bonferroni-adjusted to
control for multiple comparisons across quartiles.

4. Discussion

We developed a weighted GRSBMI incorporating key SNPs to evaluate to evaluate
obesity risk in the Israeli adult population. Our holistic approach was further enhanced
by our unique integration of environmental factors, incorporating the important obesity
etiology elements, underscoring the importance of population-customized genetic risk
assessments in understanding and managing obesity. Our optimally calibrated GRS demon-
strated a significant association with obesity (OR = 2.72; 95% CI, 2.07–3.58; p < 0.001) with
a 3.067 kg/m2 higher BMI for each unit increase in GRSBMI (p < 0.0001). Stratification
into quartiles revealed significant average BMI escalation corresponding to the ascending
GRSBMI quartiles. Specifically, individuals in higher GRSBMI quartiles exhibited higher
BMIs, with a higher mean of 0.5, 0.8, and 1.6 BMI units than GRSBMI Q1 for GRSBMI Q2,
GRSBMI Q3, and GRSBMI Q4, respectively. This combined pattern underscores the hy-
pothesis that a higher number of risk alleles contribute to greater obesity predisposition.
Consideration of both complex genetic predisposition and lifestyle factors highlights the
potential of personalized treatment approaches to effectively target interventions with
specific lifestyle-factor adjustments, thereby maximizing personalized health. The GRSBMI
included the SNPs TMEM rs18939583, ADRB3 rs4994, FTO rs9939609, MC4R rs2331841,
ADCY3 rs10182181, BDNF rs925946, GIPR rs11672660, and BDNF rs6265, each of which has
been previously linked to obesity [15] and was included in different GRS studies related to
obesity predisposition in other populations, but in different SNPs composing the GRS. The
FTO rs9939609 SNP was previously incorporated in GRS models predicting BMI and obesity
across diverse populations, including African American and Caucasian populations [16],
European adolescents [17], and the Iranian population [18]. Additionally, BDNF rs6265 and
rs925946 have been incorporated into GRS association studies with obesity in European
origin [6,19], and BDNF rs6265 among the Pakistani population [20]. TMEM18 rs939583
was included in another GRS associated with BMI in individuals with extreme obesity
compared to lean controls [21]. This inclusion of several SNPs in GRSs across diverse ethnic
backgrounds highlights the versatility and global relevance of our GRS model in assessing
obesity risk.

Our results indicate an interplay between GRSBMI and environmental factors playing a
significant role in the unexplained variability of obesity predisposition. Physical inactivity,
consumption of SSBs, wine drinking, and disturbed eating behaviors increased obesity risk
within all GRSBMI quartiles, compared to PA, non-SSBs, or wine consumption and better
eating behaviors. Combining a high GRSBMI quartile with inactive lifestyle led to a signifi-
cantly higher BMI. Moreover, participants who were physically less active (<90 min/week)
or inactive had a significantly higher mean BMI compared to physically active participants
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independent of GRSBMI. In each GRSBMI quartile being physically active had a significant
protective effect for predisposition to higher BMI. Similarly, previous studies demonstrated
that PA (different categorical levels) can significantly reduce the impact of GRS (different
GRS composition) on BMI in subjects of European [22,23] and Han Chinese [24] ancestry.
By setting a PA threshold of 90 min per week, our study acknowledges the dose–response
relationship between PA and health outcomes, emphasizing that even a relatively low ad-
herence to PA can mitigate the genetic predisposition to obesity. These results are inclusive
for individuals with varying levels of PA, reflecting a broader spectrum of the population.
It recognizes the challenges many individuals face in meeting the recommended levels
of PA (e.g., 150 min of moderate-intensity activity per week) [25] and seeks to provide
insights into the benefits of more achievable activity levels. This could be particularly
important for sedentary individuals or those who find it difficult to allocate time for ex-
ercise due to busy schedules or other barriers, encouraging public health strategies that
promote accessible changes. Across all GRSBMI quartiles, individuals with favorable eating
behavior score (EHS < med) exhibited a significantly lower BMI compared to those with
less favorable eating behavior score (EHS ≥ med). Additionally, among participants with
EHS ≥ med, those in the higher GRSBMI quartiles (Q4 and Q3) were associated with higher
BMIs compared to those in the lowest quartile (Q1). Early twin studies have shown a strong
genetic influence on eating behaviors across all age groups, contributing to the increase in
BMI [26]. However, only a few studies have investigated the role of eating behaviors in
arbitrating the association between genetic predisposition to obesity. Using a unique EHS
that encompassed a broad spectrum of common eating behaviors, we showed that, as the
genetic risk for obesity increases, the impact of eating behaviors on BMI becomes more
pronounced, highlighting the importance of favorable eating habits in individuals with a
higher obesity genetic predisposition. This approach aligns with, yet distinctively differs
from, the methodologies and findings of recent studies in this domain. A study involving
adult participants from the Quebec Family Study indicated that genetic susceptibility to
obesity (unweighted GRS) is partly mediated through undesirable eating-habit traits such
as disinhibition and susceptibility to hunger [27]. Another study, one encompassing data
from the GATE and the ALSPAC, found that the association between GRSBMI and various
eating behavior traits in relation to BMI was partially mediated by habitual, emotional, and
situational disinhibition, as well as external and internal hunger [28]. Our results indicate
that, with an escalating GRSBMI, the impact of these widely prevalent eating behaviors on
BMI intensifies, underscoring the significance of considering everyday eating habits such
as eating rate, portion size, and fast food, as well as emotional eating and late-night eating,
in the broader population when assessing the interplay between genetic predisposition
and obesity.

We demonstrated that the consumption of SSBs (≥1 cup/day) is associated with a
significantly higher BMI compared to non-consumption within all GRSBMI quartiles, and
between SSBs consumers in the highest GRSBMI quartile compared to the lowest (p = 0.007),
amplifying obesity risk. SSBs are significant dietary source of added sugars and are a known
contributor to obesity [29]. These results align with findings from other studies, such as
those conducted on Swedish and US cohorts, which also reported a significant relationship
between SSBs intake and BMI in individuals genetically predisposed to obesity [30,31].
Our study quantified a minimum of one serving of daily SSBs threshold consumption as a
measurable variable, showing that, at this threshold, SSB consumption significantly affects
BMI, especially in individuals with a higher GRSBMI, providing a practical framework for
dietary recommendations and public health interventions.

To the best of our knowledge, this is the first study to incorporate the combined effect of
GRSBMI with wine consumption on obesity predisposition. Studies have shown an inverse
association between wine and BMI [32–34]. We explored the relationship between moderate
wine consumption across GRSBMI quartiles and revealed a consistent pattern by which
moderate wine drinkers exhibited a significantly lower risk of obesity compared to non-
drinkers across all Q1-Q4 GRSBMI quartiles (p < 0.0001, p = 0.0013, p = 0.006, and p = 0.006,
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respectively), with reduced BMI compared to non-drinkers (lower by 1.01, 1.28, 1.04, and
1.51 BMI units for Q1, Q2, Q3, and Q4, respectively). GRSBMI Q4 non-wine drinkers’ BMI
was significantly higher compared to that of GRSBMI Q1, Q2, and Q3 (p < 0.0001, p < 0.0001,
and p < 0.05, respectively, suggesting that moderate wine consumption might mitigate the
impact of genetic risk on BMI, particularly in those with a higher genetic predisposition.
The exact mechanisms by which alcohol intake affects body weight remain unclear and con-
troversial. Moderate alcohol consumption has been shown to increase energy expenditure,
with a more pronounced effect observed in women compared to men [35]. In addition, the
role of resveratrol, a key wine polyphenol, has garnered attention for its potential effects on
obesity [36,37]. Research has shown that resveratrol supplementation can mimic the effects
of calorie restriction in humans with obesity, potentially improving metabolic profiles
and insulin sensitivity. Resveratrol was also found to suppress postprandial glucagon
in subjects with obesity, which could contribute to reduced glucose levels. Furthermore,
resveratrol has demonstrated the ability to alleviate obesity-induced up-regulation of in-
flammatory cytokines and improve insulin signaling in adipose tissue [38–40]. Although
moderate wine consumption was associated with a lower obesity risk in our cohort, this
should not be interpreted as a causal relationship. Further studies are necessary to explore
the underlying mechanisms, which may involve factors beyond the direct effect of wine
consumption itself, and to determine whether these findings can be generalized to different
populations or if they hold true under randomized controls conditions. The findings from
this study underscore the importance of early identification of individuals at high genetic
risk for obesity which enables targeted intervention. Public health initiatives can leverage
these insights by integrating genetic risk assessments into existing health programs to tailor
lifestyle modification and community-based activities designed to promote PA and healthy
eating behavior among high-risk populations. Future research should focus on developing
and refining specific implications and examining their effectiveness in diverse populations.
While our findings advocate for the inclusion of genetic risk scores in developing personal-
ized obesity interventions, they also underscore the necessity for further research to refine
these tools and ensure their relevance across different populations.

Our study has its limitations, such as its cross-sectional design, which primarily allows
for observational associations rather than causal inferences, coupled with the reliance on
self-reported data obtained through a self-administered questionnaire. While self-reporting
is a common methodological approach in large-scale epidemiological studies due to its cost-
effectiveness and convenience, it is susceptible to various biases, including recall bias and
social-desirability bias. While this method of data collection may not be as precise as other
objective tools, it is important to note that the questionnaire employed in our study has
undergone validation and demonstrated reliable performance in prior research [41,42]. This
lends a degree of credibility to our findings, despite the inherent limitations of self-reported
data. Consequently, our results may not be directly applicable to other demographic groups,
such as younger individuals, rural populations, or those from different ethnic backgrounds.
This limitation is crucial when considering the genetic components of obesity, as gene–
environment interactions can vary significantly across different populations. Additionally,
some potential confounding variables, such as socioeconomic status and dietary quality,
were not available to us. Our study has several strengths, including a large population-
based sample size. Additionally, a thorough assessment of genetic predisposition to
heightened obesity risk was conducted, considering multiple variants known to increase
susceptibility to obesity.

5. Conclusions

Our population-based study provides valuable insights into the interplay between
genetic and environmental factors in the development of obesity. Our results emphasize
the critical role of environmental factors to the general population and in particular to
genetically predisposed to obesity sub-population with specific adjusted implications to
manage and treat obesity, including engagement of ≥90 min/week in PA, avoidance of
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SSB consumption, pursuing recommended eating habits, and, if relevant, incorporating
moderate wine consumption. Ideally, through genetic analysis, the identification of risk-
predisposed obesity sub-populations will enable us to use specific environmental factors
early to prevent the development of obesity and obesity co-morbidities. This study is
essential for enhancing the applicability and relevance of genetic studies in clinical settings,
ensuring that the benefits of genetic research are accessible and beneficial to a broader
range of populations.
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