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Abstract: This study introduces a novel method for producing Ag nanoclusters (NCs) within GeO2-
PbO glasses doped with Tm3+ ions. Sample preparation involved the melt-quenching method,
employing adequate heat treatment to facilitate Ag NC formation. Absorption spectroscopy con-
firmed trivalent rare-earth ion incorporation. Ag NC identification and the amorphous structure
were observed using transmission electron microscopy. A tunable visible emission from blue to
the yellow region was observed. The energy transfer mechanism from Ag NCs to Tm3+ ions was
demonstrated by enhanced 800 nm emission under 380 and 400 nm excitations, mainly for samples
with a higher concentration of Ag NCs; moreover, the long lifetime decrease of Ag NCs at 600 nm
(excited at 380 and 400 nm) and the lifetime increase of Tm3+ ions at 800 nm (excitation of 405 nm)
corroborated the energy transfer between those species. Therefore, we attribute this energy transfer
mechanism to the decay processes from S1→T1 and T1→S0 levels of Ag NCs to the 3H4 level of Tm3+

ions serving as the primary path of energy transfer in this system. GeO2-PbO glasses demonstrated
potential as materials to host Ag NCs with applications for photonics as solar cell coatings, wideband
light sources, and continuous-wave tunable lasers in the visible spectrum, among others.

Keywords: germanate glasses; silver nanoclusters; rare-earth ions; Thulium ions; tunable luminescence;
melt-quenching technique

1. Introduction

Glasses play a pivotal role in photonic device development and optical components
due to their ease of manipulation and their ability to take on various shapes and sizes.
Additionally, glasses offer unique characteristics, including exceptional transparency and
the convenience of doping with active ions. Within this context, silver-containing amor-
phous materials have emerged as promising candidates for light-emitting devices. Silver
(Ag) nanoclusters (NCs) embedded within glass matrices have demonstrated significant
potential for photonic applications, including both undoped and rare-earth (RE)-doped
configurations, all produced using the melt-quenching technique [1].

Initially, research efforts primarily focused on investigating Ag NCs within liquid,
polymer, or organic matrices [2,3]. However, recent developments have shifted attention
towards oxyfluoride glasses as the preferred host materials for Ag NCs [4–12]. This shift
is primarily attributed to the advantageous properties of oxyfluoride glasses, particularly
for fibers, thin films, and various manufacturing techniques with respect to alternative
materials [5]. Consequently, the scientific literature has witnessed a surge in exploration in-
volving diverse glass compositions as potential hosts for Ag NCs. These compositions span
zinc borate CABAl [13], fluorophosphate [14–19], borates [20], and borosilicates [21,22],
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among other glass matrices [23–27], thereby broadening the possibilities of Ag NC-based
photonic applications. The applications of this technology span a wide array of photonic
advancements, including photovoltaic devices, flexible screens, sources for white light [28],
fiber [29,30], including wavelength tuning [31,32]. It is important to note that Ag NCs stand
apart from metallic nanoparticles (NPs) due to their unique composition, consisting of only
small agglomerates of silver atoms, resulting in an amorphous structural arrangement [16].
This distinctiveness sets them apart from metallic NPs, which are characterized by their
crystalline nature, larger physical dimensions, and the presence of an absorption plasmon
band [33,34]. The discrete energy level of Ag NCs contributes to their exceptional photolu-
minescent (PL) properties, which are sensitive to various factors, including the excitation
wavelength, glass composition, Ag dopant concentration, and the localized density of Ag
NCs. It is worth noting that higher concentrations of Ag NCs can lead to agglomeration,
potentially culminating in the formation of metallic NPs that can result in the coexistence
of NCs and NPs simultaneously in the material.

Ag NCs exhibit distinctive optical properties that differentiate them from bulk silver
and individual silver atoms. While bulk silver typically does not display luminescence,
isolated silver atoms generate PL bands that normally cover the UV-blue region. In contrast,
Ag NCs characteristically produce a broad PL band that encompasses the visible portion
of the electromagnetic spectrum [2,7]. Furthermore, the PL characteristics of Ag NCs are
intricately tied to their size and provide tuning across the UV to visible and near-infrared
(NIR) regions by carefully selecting the appropriate excitation wavelength [31]. Both Ag
NCs and Ag NPs have shown the ability to enhance the PL intensity of lanthanide ions.
In the case of Ag NPs, this enhancement is due to the generation of an amplified local
electromagnetic field in the neighborhood of the RE ions [35,36]. Conversely, in the case
of Ag NCs, mechanisms involving direct energy transfer (ET) [9–13,18–22,27] and Förster
resonance ET [15] have been reported as the means of achieving this enhancement. In
certain instances, the overlap of the PL bands related to Ag NCs and the ones corresponding
to RE ions can result in the production of white light and also the tuning of the visible
emission as a function of the excitation wavelength.

Exploration into GeO2-based glasses containing Ag NCs has been limited, prompting
the current investigation. These glasses possess noteworthy photonic-related characteristics,
including a low cut-off phonon energy (between 500 and 800 cm−1) that is significant for
reducing non-radiative losses, high refractive index when compared with silicate glasses,
adequate properties for ultrafast devices, and a transmission region ranging from 400 to
5000 nm. Applications for these glasses have been reported, such as frequency upcon-
version [35], RE photoluminescence intensity enhancement with and without NPs [36],
white light generation [35], pedestal waveguides for optical amplifier applications, and
recently, nuclear shielding applications. The viscosity of these materials is influenced
by the temperature used to anneal them, and the production of Ag NCs is facilitated in
environments whose viscosity is higher. This aforementioned viscosity can be achieved by
subjecting the material to annealing temperatures below the glass transition temperature,
as demonstrated in previous reports [14,31]. Motivated by these findings, we have devised
a method for cultivating Ag NCs within GeO2-PbO glasses by employing temperatures
of 400 ◦C to anneal the material, which are situated below the temperature of the glass
transition. Additionally, our research has revealed that elevated annealing temperatures,
specifically at 470 ◦C, diminish the material’s viscosity, promoting the aggregation of Ag
NCs and consequently facilitating the formation of Ag NPs [31]. The present study delves
into the optical properties of GeO2-PbO glasses doped with Tm3+ ions containing Ag NCs.
The investigation encompasses an analysis of absorbance, PL, and transmission electron
microscopy (TEM) results. Furthermore, the study provides insights into the photolumines-
cence lifetime decay, elucidating the behavior of Ag NCs in the VIS region and Tm3+ ions
in both the VIS and NIR regions, thereby shedding light on the ET mechanisms between
these species. The research also explores the phenomenon of visible tunable light emission
of Ag NCs under the influence of Tm3+ ions, which themselves emit in the visible range.
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The ET mechanisms among Ag NCs and Tm3+ ions have been previously documented
in oxyfluoride glass systems. It is important to highlight that lead–germanate glasses
exhibit distinct behavior compared to oxyfluoride glasses in the formation of silver nan-
oclusters. In oxyfluoride glasses, color centers form around F− charges in the system [4–6].
In contrast, in lead–germanate glasses, these color centers exclusively originate around
non-bridging oxygen sites through matrix-assisted reduction, which is the sole source of
available negative charges [37].

The current investigation highlights the properties of GeO2-PbO glasses to serve as
hosts for both Tm3+ ions and Ag NCs, while also elucidating the intricate ET processes
among these entities. This work is also motivated by recent results of Yb3+-doped GeO2-
PbO glasses that corroborated the ET mechanism between these species [32]. It also showed
the possibility of hosting Ag NCs and Yb3+ ions in GeO2-PbO glasses. Upon optical
excitation in the UV-blue region, the present study observed PL emissions in both the VIS
and NIR regions, attributable to the combined emissions of Ag NCs and Tm3+ ions. These
findings underscore the potential of such systems for applications in the development of
exceptionally broad-band light sources, lasers, and solar cell coatings, among others.

2. Materials and Methods

Glass samples were composed of 40 wt.% GeO2 and 60 wt.% PbO (GP), with additions
of Tm2O3 (1.5 wt.%) and AgNO3 (2.25/4.5 wt.%). Comparative samples containing only
AgNO3 (4.5 wt.%) were also prepared. The glasses were labeled as: GP Tm, GP Tm 2.25%
Ag, GP Tm 4.5% Ag, and GP 4.5% Ag. An alumina crucible was used to melt the reagents
at 1200 ◦C for 1 h with mechanical stirring, which were swiftly cooled in ambient air using
a preheated brass mold. Annealing at 400 ◦C (below the glass transition temperature)
was performed for 1 h to reduce internal stresses. The annealed sample remained in the
furnace, gradually cooling at a rate of approximately 1 ◦C per minute until it reached room
temperature. This deliberate choice of annealing below the glass transition temperature
was made to minimize the nucleation rate of Ag atoms dispersed within the glass matrix to
favor Ag NC formation, as reported before [14,31].

Following this, the samples underwent precise polishing and cutting for character-
ization purposes. Absorption spectra were recorded using an OceanOptics QE65 PRO
spectrometer, covering wavelengths from 400 to 800 nm, and an OceanOptics NIRQuest512
spectrometer, spanning the range of 900–1700 nm. PL measurements in different wave-
lengths (360, 380, and 400 nm) were used as excitation to perform PL measurements with a
Varian Cary Eclipse fluorescence spectrophotometer in combination with the previously
mentioned QE65 PRO spectrometer and a 3D printed adapter. This approach allows the
collection of a higher-fidelity signal and solves some of the Varian Cary Eclipse limitations
due to damage for detection above 700 nm. The chromaticity diagram (CIE-1931) was
obtained from the PL spectra and used to evaluate the different emissions in the visible
range. Additionally, correlated color temperature (CCT) was performed using McCamy
isotherm equations [38], represented by Equations (1) and (2), as follows:

n =
(x− xe)

(y− ye)
(1)

T = an3 + bn2 + cn + d (2)

The color temperature (T) is calculated with a polynomial function with the x and y
coordinates derived from the CIE diagram (obtained from PL spectra) and correlates the
color of the emission to the blackbody radiation (Tc). The resulting CCT is then employed
to describe various shades of white, with reference to daylight. Lower temperatures corre-
spond to colors closer to the red region of the visible spectrum, while higher temperatures
are associated with the blue region.

To investigate the ET from Ag NCs to Tm3+ ions, we measured the PL decay lifetimes
of Ag NCs using the fluorescence spectrophotometer. The PL decay lifetime for Ag NCs
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was obtained using a fit based on a double exponential decay function, as represented by
Equation (3).

I(t) = A1·exp

(
−t

τf ast

)
+ A2·exp

(
−t

τslow

)
(3)

The photoluminescence (PL) intensity, denoted as “I” in this equation, is expressed in
terms of constants A1 and A2, where “t” represents the lifetime. The PL decay lifetimes,
represented as τfast and τslow, correspond to the decay processes associated with spin-
allowed (singlet–singlet and triplet–triplet) and spin-forbidden (singlet–triplet and triplet–
singlet) electronic transitions, respectively. PL measurements in the NIR region were
conducted with a CW diode laser that operates at 405 nm. The PL signal was collected
in a direction perpendicular to the incident excitation beam and analyzed by a Newport
Cornerstone 260 monochromator equipped with a photomultiplier tube and a connected
lock-in amplifier. To perform the PL decay lifetime analysis of Tm3+ ions at 800 nm,
we used the previously mentioned setup with a CW diode laser operating at 405 nm,
complemented by a Keysight DSO1024A oscilloscope. The PL decay lifetimes were obtained
by using a fit based on a single exponential decay function. We highlight that the CW laser
operating at 405 nm had to be used due to the limitations of the fluorescence spectrometer
and QE65 PRO spectrometer setup to determine the photoluminescence decay curves
and obtain the short (τfast) and long (τslow) decay times with enough resolution. For the
characterization of the Ag NCs, we employed TEM operating at both 200 and 300 kV, along
with electron diffraction measurements of the samples. TEM sample preparation involved
a series of steps, including milling, mixing with distilled water, and partial decantation.
The suspended particles located at the mid-height of the reservoir were isolated and
subsequently deposited onto ultra-thin carbon film-coated copper grids for analysis. It
is important to note that all measurements were conducted under ambient conditions at
room temperature.

3. Results

The results of the GP glass absorption containing AgNO3 and Tm2O3 are depicted in
Figure 1. Within these spectra, distinct absorption bands corresponding to electronic transi-
tions of Tm3+ ions from the ground state, namely (3H6→1G4), (3H6→3F2.3), (3H6→3H4),
(3H6→3H5), and (3H6→3F4), are readily discerned. Notably, the absence of a plasmon
absorption band in these samples suggests that the Ag species predominantly exist in the
form of NCs, which represents the early step in the evolution towards the growth of Ag
NPs. It is important to highlight that Ag NCs are characterized by the absence of the typical
plasmon absorption band normally associated with well-defined crystalline structures of
Ag NPs. Nonetheless, it should be noted that the possibility of metallic NP formation can-
not be entirely dismissed, although it potentially occurs at a lower concentration compared
to that of the prevailing NCs.

A broad PL band and tunable visible light emission can be observed for the GP 4.5%
Ag sample reported in a previous work [39], which is attributed to NCs of varying sizes.
As the Ag NC emission peak wavelength is size-dependent, the PL in the blue region
corresponds to the emission by smaller-sized Ag NCs. On the other hand, the PL of
the green and red regions is associated with the emission of larger Ag NCs [6,7,15]. For
this sample, under different excitations in the UV spectrum, a redshift is observed, from
greenish yellow at smaller wavelengths to orange at larger ones. This phenomenon serves
as evidence for the existence of a substantial distribution of NCs with varying dimensions
within the sample, offering the potential for a tailored selection of PL by manipulating the
excitation wavelength.
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For the GP Tm 2.25% Ag sample, the PL emissions within the visible spectrum be-
came evident upon excitation at 360, 380, and 400 nm, as presented in Figure 3a. Specifi-
cally, under excitation at 360 nm, the pronounced peak corresponding to Tm3+ ion emis-
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Figure 1. Absorption spectra of GP Tm, GP Tm 2.25% Ag, and GP Tm 4.5% Ag glass samples.

The PL characteristics of Tm3+ ions, when excited at 360 nm via the (3H6→1D2)
transition [40], are illustrated in Figure 2. Notably, the emission spectra reveal a prominent
presence in the blue region of the electromagnetic spectrum, as demonstrated in the CIE
chromaticity diagram as inset in Figure 2, predominantly attributed to the (1D2→3F4)
transition that corresponds to the large emission at 455 nm.
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Figure 2. PL spectra of GP Tm sample at 360 nm excitation. The inset shows the sample chromaticity
diagram (CIE-1931).

For the GP Tm 2.25% Ag sample, the PL emissions within the visible spectrum became
evident upon excitation at 360, 380, and 400 nm, as presented in Figure 3a. Specifically,
under excitation at 360 nm, the pronounced peak corresponding to Tm3+ ion emission at
455 nm was observed. Notably, this emission retained its preeminence in the spectrum, sim-
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ilar to the sample without AgNO3. Moreover, for excitations at 380 and 400 nm, we noticed
a broad PL band within the range of 480–700 nm, due to the addition of Ag NCs, and a shift
to the yellow region with a CCT around 3500 K, obtained through Equations (1) and (2),
as presented in Figure 3b. Additionally, the emission at 800 nm corresponding to the
3H4→3H6 transition of Tm3+ ions was noticed, a phenomenon resulting from ET from
larger-sized NCs, indicating their efficiency in mediating ET processes. Notably, these
emissions solely originate from such transfers, as there is no significant absorption by Tm3+

ions at 380 and 400 nm [40].
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excitation at 360, 380, and 400 nm.

Comparing the results of the GP Tm 2.25% Ag sample with those of the GP Tm 4.5%
Ag sample (Figure 4a), we observe that the PL at 455 nm (1D2→3F4) decreased under
excitation of 360 nm, as illustrated in Figure 4a. This suggests that, owing to the abundance
of Ag NCs surrounding Tm3+ ions, a significant portion of the excitation at 360 nm was
absorbed for the emission in the 480–700 nm range from Ag NCs, resulting in the decrease
of the one at 455 nm and consequently resulting in a warm white emission with a CCT of
3730 K, as presented in Figure 4b. Simultaneously, the peak at 800 nm nearly matched the
intensity of the one at 455 nm.

For excitations at 380 and 400 nm, situated outside the Tm3+ ions absorption band of
357.7 nm, due to the 3H6→1D2 transition [40], we notice a considerable intensity increase of
Ag NCs PL (Figure 4a) and also an ET to Tm3+ ions at 800 nm (3H4→3H6 transition); more-
over, a shift from warm white to yellow (CCT of 3300 K) took place, as shown in Figure 4b.
This outcome corroborates data regarding the capacity of larger-sized NCs to promote ET
to the lower energy levels of Tm3+. It is expected that the increased doping, leads to a
higher population of Ag NCs that emit in the red spectral region, and consequently, ET to
the 3H4 level will become more pronounced.

The influence of Ag NC doping is illustrated in Figure 5, which shows the chromaticity
diagram (CIE-1931) for fixed excitation at 360 nm, for GP Tm, GP Tm 2.25% Ag, and
GP Tm 4.5% Ag. The coordinates of the diagram were obtained by using the results of
Figures 2, 3a and 4a for 360 nm excitation. When exposed to the same excitation wave-
length at 360 nm, the GP Tm sample exhibited a strong blue emission. In contrast, the GP
Tm 2.25% Ag sample shifted towards a lighter blue emission, whereas the GP Tm 4.5%
Ag sample presented a redshift with a warm white emission at 3730 K. This alteration in
PL was associated with the increase in the larger Ag NC concentration emitting in the red
region. It is crucial to note that the emission observed at 360 nm excitation resulted from the
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combined contributions of both Tm3+ ions and Ag NCs emission. This occurred because,
at this wavelength, there is simultaneous excitation of Ag NCs and Tm3+ ions (3H6→1D2
transition), as mentioned previously.
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Ag, and GP Tm 4.5% Ag.

Regarding the emission at 800 nm (under 405 nm excitation) for samples with Tm3+

ions, we notice a PL intensity increase with AgNO3 concentration, as illustrated in Figure 6.
This phenomenon indicates a larger ET in the GP Tm 4.5% Ag sample with respect to the
GP Tm 2.25% Ag one. Then, the larger concentration of Ag NCs results in species with
increased average size [15] that enable a more efficient ET to Tm3+ ions at 800 nm. Lastly, it
is noteworthy that the AgNO3 concentration growth gave rise to Ag NCs that exhibited
adequate sizes for excitation at 380 and 400 nm, leading to a more effective transfer energy
to Tm3+ ions, as can also be seen when comparing Figures 3a and 4a.
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Studies have unveiled a clear correlation in the PL spectrum of Ag NCs where shorter-
wavelength emissions are attributed to smaller-sized NCs, whereas longer wavelengths
are associated with larger NCs. Consequently, Ag NCs emitting in the blue region exhibit
the smallest dimensions, and a systematic increase in their size results in a pronounced
redshift of the PL [7,14].

In Figure 7, we present a simplified energy diagram that elucidates the Tm3+ ion
transitions upon excitation at 360 nm, as well as the Ag NCs excitation wavelengths at
varying UV wavelengths. These insights are derived from the previously discussed PL
findings presented in Figures 3 and 4. The energy levels of Ag NCs depicted herein draw
upon Velázquez’s model [7]. In this model, S0 represents the ground state, S1 the excited
singlet state, and T1 the excited triplet state. Electronic transitions span various regions of
the electromagnetic spectrum: blue (S1→S0), green–yellow (T2→S0), yellow–red (T1→S0),
near-infrared (S1→T1), and far-infrared (T2→T1, omitted from illustration). Spin-allowed
electronic transitions involve singlet–singlet (S1→S0) and triplet–triplet (T2→T1) states,
characterized by relatively short decay lifetimes. In contrast, transitions encompassing
singlet–triplet (S1→T1) and triplet–singlet (T2→S0 and T1→S0) states are classified as spin-
forbidden, exhibiting non-spontaneous behavior and long decay lifetimes. Ag NCs PL
in the UV-blue region is attributed to short decay times (τfast) governed by spin-allowed
transitions between energy states. Conversely, PL emissions of Ag NCs in the green,
yellow, red, and IR regions correspond to long decay times (τslow) that are associated with
spin-forbidden transitions.
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Figure 7. Simplified energy diagram of Ag NCs with ET to Tm3+ ions.

The PL decay curves of Ag NCs were measured for excitation at 380 nm, and the
signal detection wavelength was set to 600 nm due to the broad emission profile of Ag NCs
(Figures 3a and 4a). The time decay curve was fitted using Equation (3) (Figure 8a), and the
resulting short (τfast) and long (τslow) decay times are presented in Table 1.
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Table 1. PL decay lifetimes (fast and slow components) of GP 4.5% Ag and GP Tm 4.5% Ag samples
under 380 and 400 nm excitations and detection at 600 nm.

Sample Excitation
Wavelength (nm) τfast (µs) τslow (µs)

GP 4.5% Ag 380 11.7 ± 0.3 85 ± 2
400 3.7 ± 0.4 72 ± 8

GP Tm 4.5% Ag 380 3.3 ± 0.1 26.2 ± 0.3
400 5.8 ± 0.2 38 ± 2
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Table 1 highlights a similar reduction in both short and long lifetimes with the intro-
duction of Tm3+ ions. This observation corroborates the ET among the Ag NCs and the
Tm3+ ions, consistent with the PL results discussed previously. As shown before, samples
containing Tm3+ ions and Ag NCs exhibit emission at 800 nm when excited at wavelengths
that do not correspond to the Tm3+ ion’s excitation range.

Figure 8b and Table 1 show the results for excitation at 400 nm and detection at 600 nm.
In this case, the slight increase in short lifetimes in the GP Tm 4.5% Ag sample could
possibly be due to the small dimension of Ag NCs. These smaller NCs may not efficiently
absorb excitation at 400 nm, potentially resulting in the reception of energy from the larger-
sized ones. Conversely, a reduction in Ag NC lifetime within the sample containing Tm3+

ions was observed for the long lifetime, associated with spin-forbidden transitions (T2→S0,
T1→S0, and S1→T1). This decrease is a clear indicator of ET to the surrounding Tm3+ ions.
This effect, observed for excitation at 380 nm, aligns with the phenomenon of ET to the
ions, stemming from the larger-sized Ag NCs.

The results of Tm3+ ion decay lifetime measurements under excitation at a 405 nm
diode laser are presented in Figure 9 and Table 2. Regarding the 800 nm emission (3H4→3H6
transition), as previously illustrated in Figure 6, a noticeable enhancement can be seen
with the growth of AgNO3 concentration from 2.25 to 4.5 wt.%. This observed trend is
further supported by the increase in the lifetime of Tm3+ ions, as evidenced in Table 2, as
it changed from 220 µs to 239 µs, indicating a higher ET from the Ag NCs in the sample
containing 4.5 wt.% AgNO3. A similar behavior was observed for Yb3+ ions due to Ag NCs
in oxyfluoride glasses [8] and for Pr3+ in oxyfluoro tellurite glasses [41]. We attribute the
mentioned ET mechanism to the decay processes from S1→T1 and T1→S0 levels of Ag NCs
to the 3H4 level of Tm3+ ions serving as the primary path of ET in this system.
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Figure 9. Tm3+ ions PL decay curves of GP Tm 2.25% Ag and GP Tm 4.5% Ag, with excitation at
405 nm and signal collected at 800 nm.

Table 2. PL decay lifetimes of Tm3+ ions for of GP Tm 2.25% Ag and GP Tm 4.5% Ag samples with
excitation at 405 nm and detection at 800 nm.

Sample Time (µs)

GP Tm 2.25% Ag 220 ± 4
GP Tm 4.5% Ag 239 ± 9
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TEM analyses were carried out on the GP 4.5% Ag and GP Tm 4.5% Ag samples, as
illustrated in Figure 10. We highlight that the TEM results for the GP 4.5% Ag sample,
used as a reference in the present study, were already reported [39], and further analysis is
provided in this work.
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In the case of the GP Tm 4.5% Ag sample, the histogram presented in Figure 10c
demonstrates that the highest density of Ag NCs was centered around 3.5–4.0 nm in size.
The diffraction patterns were conspicuously absent, as evidenced by the inset in Figure 10c,
validating the amorphous state of Ag NCs. It is worth noting that both histograms were
performed based on several TEM images for each sample.

In the GP 4.5% Ag sample, there was also clear evidence of Ag NCs and a lack of
diffraction patterns, as shown in the inset in Figure 10d. However, these Ag NCs exhibited
a size distribution primarily concentrated between 2.5 and 3.0 nm, as delineated in the
accompanying histogram. The notable Ag NC size enhancement of the previous sample,
with respect to this one, indicates a potential involvement of Tm3+ ions in a mechanism that
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favors the nucleation of Ag species, as already reported for Eu3+-doped glasses [42]. It is
noteworthy to emphasize that the presence of these amorphous Ag NCs does not preclude
the possibility of Ag NPs forming within the glass matrix.

4. Conclusions

This study presents a novel technology for the fabrication of Ag NCs within GeO2-
PbO glasses doped with Tm3+ ions. The glasses were prepared using the melt-quenching
method, employing an annealing temperature below the glass transition point to facili-
tate the growth of Ag NCs. Characterization of these samples encompassed absorption,
luminescence, lifetime, and transmission electron microscopy. The absorption spectroscopy
results confirmed the successful integration of trivalent RE ions into the glass matrix. Trans-
mission electron microscopy and electron diffraction techniques were employed to discern
the presence of Ag NCs and their amorphous structure. The fact that the Ag NCs were
amorphous was further confirmed through electron diffraction measurements. Visible light
emission from the blue to the yellow region was observed for samples containing both
Tm2O3 and Ag NCs; an increase in Ag doping led to a redshift in the PL spectra. This shift
was attributed to the growth of larger Ag NCs and to the local concentration enhancement
of emitting species, favoring emission in the red region. This investigation delved into ET
mechanisms, which were scrutinized through luminescence and lifetime measurements.
These mechanisms were linked to the proximity of energy levels among Ag NCs and RE
ions. The experimental results corroborated ET from Ag NCs to Tm3+ ions, demonstrated
by the increased emission of the 3H4→3H6 transition of Tm3+ ions at 800 nm (under exci-
tation at 380 and 400 nm), mainly for the sample with a higher concentration of Ag NCs,
which can be due to the presence of larger Ag NCs. These larger Ag NCs are more suitable
for excitation at 380 nm and 400 nm, and they demonstrate higher efficiency for transferring
energy to Tm3+ ions. Concurrently, the reduced long lifetimes of Ag NCs with the addition
of Tm3+ ions at 600 nm (excitations at 380 and 400 nm) and the prolonged lifetimes of Tm3+

ions at 800 nm (excitation at 405 nm) corroborated the ET processes. Therefore, we attribute
the ET of the present work to the decay processes from the S1→T1 and T1→S0 levels of
Ag NCs to the 3H4 level of Tm3+ ions serving as the primary path of ET in this system.
These findings unveil the potential of GeO2-PbO glasses as a promising host medium for
Ag NCs, affirming their viability for photonic applications. The implications extend to
diverse technological domains, including coatings for solar cells, broad-band visible light
sources, and devices featuring adjustable light emission. Additionally, the potential for
CW-tunable lasers operating in the visible region of the electromagnetic spectrum holds
promise, paving the way for further exploration involving different RE ions. To the best of
our knowledge, there are few studies that have investigated this mechanism in other hosts.
Moreover, the GeO2-PbO glasses were not studied to demonstrate the possibility to host
Ag NCs with Tm3+ ions or to show the ET mechanism between them. The present work
represents a contribution for those who are interested in hosting Ag NCs in oxide glasses
and fills a lack in the literature, as mainly fluorophosphate and oxyfluoride glasses have
been exploited up to now.
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