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Abstract: Zr-based bulk metallic glasses (BMGs) possess unique mechanical and biochemical prop-
erties, which have been widely noticed. Jet electrochemical machining (jet-ECM), characterized by
a high-speed jet, is a non-contact subtractive method with a high resolution and a high material
removal rate (MRR). Past work on the electropolishing of Zr-based BMGs has indicated the feasibility
of the NaCl-Ethylene Glycol (EG) electrolyte. In this research, the jet-ECM of Zr-based BMGs in
the NaCl-EG electrolyte was studied to explore the dissolving mechanisms and surface integrity
according to the voltage, pulse-on time and effective voltage time. The diameter, depth and surface
morphologies of dimples were evaluated. The results showed that using this alcohol-based electrolyte
led to a desirable surface morphology. The diameter and depth of the dimples varied with the voltage
and the effective voltage time in a significantly positive proportional manner. Additionally, cases
based on multiple parameter sets exhibited different stray corrosion severity. Afterward, machining
performance can be enhanced in the next stage by tuning machining parameters to obtain microscale
dimples with better quality.

Keywords: jet electrochemical machining (jet-ECM); Zr-based bulk metallic glasses (BMGs);
NaCl-Ethylene Glycol electrolyte; surface integrity

1. Introduction

Zr-based bulk metallic glasses (BGMs) are an amorphous alloy fabricated under an
ultra-cold solidification condition, and they possess a high glass-forming ability. Due to
their distinctive microstructure, Zr-based BMGs exhibit superior characteristics compared
to traditional materials, including excellent magnetic properties, corrosion resistance, wear
resistance, hardness and toughness [1]. Moreover, the adjustment and control of the surface
properties of BMGs to enhance their practical applications have been a subject of ongoing
attention [2]. Currently, Zr-based BMGs can meet requirements for many high-performance
components, such as fuel cell electrodes [3], sports facilities [4], medical devices [5–7] and
micro transmission components [8,9]. To achieve high-precision dimensions and superior
surface quality, the common approach for processing BMGs involves methods such as
cutting, electrical discharge machining (EDM) and laser processing. In the course of the
cutting process, the elevated hardness and toughness exhibited by Zr-based BMGs may
result in tool wear, and achieving a mirror-like finish on the machined surface can be
difficult [10].

EDM and laser processing, originating from thermal-physical mechanisms, result in a
recrystallized layer on the surface of the processed BMGs due to melting and subsequent so-
lidification [11–13]. This type of machining method would destroy the original amorphous
state and worsen the usability of the Zr-based BMGs.
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Electrochemical machining (ECM) is a precision subtractive manufacturing technique
based on the effective and controllable electrochemical dissolution of the anode. This
special mechanisms of ECM bring multiple advantages [14], including a high machining
rate irrespective of the workpiece hardness, high surface integrity and the avoidance of tool
wear, heat-affected zones and residual stresses. In contrast to the aforementioned subtrac-
tive manufacturing methods, electrochemical machining can overcome these problems [15]
because electrochemical dissolution is immune to the physical properties of Zr-based BMGs
and maintains its original amorphous state. Jet electrochemical machining (jet-ECM) is a
significant ECM variation. Differently, there is no cathode tool for the production of a nega-
tive imprint on the workpiece in jet-ECM [16]. During the process, the electrolyte is ejected
from the cathode nozzle in a positive flow manner, and an electrical potential is applied
between the workpiece and the nozzle. The high-flow-rate electrolyte can remove the scum
produced by processing, and there is no concomitant effect on the processing surface [17].
Many researchers have already used this technology to create various microstructures,
such as dimples and channels, which have been applied in aerospace, medical devices,
biomedical applications and microelectronics. Liu et al. [18] investigated the machining
performance of high-volume fraction SiCp/Al using an electrochemical jet with an NaCl
electrolyte. They found that under the sustained impact of high-speed jets, the entrance
diameter of the machined hole was approximately 3–4 times the size of the jet. Lu et al. [19]
introduced a plasma in the electrochemical jet system to apply a sufficiently high voltage to
tackle the issue of oxide layer formation in the electrochemical machining of chemically
inert or passivating materials. This research augmented the range of materials that could be
processed using jet electrochemical machining. Cheng et al. employed jet-ECM to remove
the surface defects of the selective laser melting (SLM) formed parts, and the results were
compared with the traditional sandblasting and sandpaper grinding surface treatment
methods. After jet-ECM, the SLM surface defects were almost completely removed, forming
a uniform microporous structure that interlocked with the nickel coating [20].

Due to the diverse electrochemical properties of the constituents in Zr-based BMGs, the
selection of a suitable process for jet-ECM is highly complicated. Current research predomi-
nantly employs water-based salt electrolytes and alcohol-based salt electrolytes. However,
water-based salt electrolytes lead to the formation of densely adhered passive films on the sur-
face, hindering the electrochemical dissolution of Zr-based BMGs in water-based electrolytes.
Many research findings have indicated that water-based salt electrolytes are unsuitable for
achieving the uniform electrochemical dissolution of Zr-based BMGs [21–23]. In recent years,
many researchers have begun to utilize NaCl-EG electrolytes for the electrochemical machin-
ing of Ti and its alloys [24,25]. Liu et al. introduced a kind of NaCl electrolyte into the ECM
process of titanium alloy to enhance its machining performance. Comparative experiments on
groove machining indicate that NaCl-EG electrolyte has better shaping accuracy compared to
NaCl water-based electrolyte. In addition, experiments indicate that elevating the electrolyte
temperature to some degree contributes to the miniaturization of geometric shapes in jet-ECM
using NaCl-EG electrolyte [12]. Therefore, alcohol-based electrolytes can be employed for the
electrochemical machining of Zr-based BMGs. Moreover, in alcohol-based electrolyte, Cl− can
actively electrochemically dissolve most metals due to its minuscule ionic radius, assimilating
the different dissolution mechanisms between passivating and active components present in
water-based electrolytes [26].

In this research work, jet-ECM was utilized to investigate the electroerosion of Zr-based
BMGs in an NaCl-EG electrolyte. The study primarily delves into the impact of varying
voltage, dwell time and pulse-on time on the dissolution mechanisms and surface integrity
of Zr-based BMGs, in terms of diameter, depth and surface morphology. The experimental
results demonstrated that voltage and effective voltage time have a significant impact on
the sample morphology, especially on the diameter and depth of the dimples. In order to
obtain better machining efficiency and machining quality, the reasonable selection of jet-
ECM parameters is increasingly important. Moreover, alcohol-based solutions containing
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NaCl have proven to be highly effective in manufacturing multi-component alloys like
Zr-based BMGs.

2. Materials and Methods

Figure 1a illustrates the schematics of the jet-ECM system. The basic principle is
that the electrolyte ejects from the nozzle with the inner diameter of 200 µm. The flow
rate is lower in high-viscosity electrolytes, making the formation of hydraulic jump more
challenging. The selection of an appropriate electrolyte viscosity should be based on the
safety pressure (2.0 MPa) of various components. A HPLC pump is used to push the
electrolyte with the flow rate of 52 mL/min. The viscosity effect hinders the electrolyte flow
rate from reaching the set value, and measurements indicate that the actual flow rate of
the electrolyte is 52 mL/min, so the electrolyte speed of the electrolyte can be calculated as
27.5 m/s. Under the impact of a high-flow electrolyte, the exposed surface area is 3.2 mm2.
The electrolyte impacts the workpiece surface and a circular hydraulic jump form, within
which a thin film of the electrolyte spreads on the surface. Jet-ECM confines the electrolyte
column beneath the nozzle, where the current density is far greater than other regions with
power on.
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Figure 1. Experimental device schematic and physical drawings: (a) illustration of the jet-EJM
principle; (b) physical device; (c) workpiece process.

The experimental setup in Figure 1c depicts the nozzle configuration. The nozzle
was amounted on a three-axis motorized stage from PI. The moving precision of the stage
along each axis was 0.1 µm. The workpiece was fixed in an electrolyte tank with a bottom
export. The gap between the workpiece and the nozzle was set to 200 µm to maintain
enough current densities. The electrolyte was 1 mol/L NaCl-ethylene glycol solution. The
workpiece material was a kind of amorphous alloy, Vit1 (Zr41.2Ti13.8Cu12.5Ni10.0Be22.5). The
workpiece surfaces to be processed were ground by waterproof abrasive paper up to #5000
and cleaned ultrasonically with deionized water and ethanol.

The power supply system for experiments was a combination of a high-voltage am-
plifier and a signal generator. The current and voltage signals were samples by isolation
probes. The effects of the dwell time and the applied voltage were investigated by altering
the power supply. The direct current and pulse current (5 kHz) were used in the experi-
ments to clarify the effects of waveforms. In order to evaluate the effects of pulse width
(ton) on the machining performance, the effective voltage time (teffv) was calculated as the
summation of ton over tdwell, in which case teffv could be set to a constant with ton varying.

The cross-sectional profiles and geometric parameters of the machined dimples were
obtained from the laser scanning confocal microscope (LSCM), KEYENCE VK-X2000. The
LSCM employed to measure surface roughness (Sa) and waviness (Wa) was the VKX2000
supplied by KEYENCE. The dimple morphology was observed by the scanning electron
microscope (SEM), Quanta FEG 450. The elemental analysis was conducted by energy-
dispersive spectrometry (EDS), Supra 55 Sapphire.



Micromachines 2023, 14, 2196 4 of 12

3. Results and Discussions

In this section, the impact of the voltage, effective voltage time and duty cycle on the
machining performance is evaluated by comparing the morphology, the diameter and the
depth of dimples. The scale bar of the pictures below is 50 µm.

3.1. The Effect of Voltage
3.1.1. Morphologies

In order to assess the impact of voltage on the machining effectiveness while keeping
other parameters constant, a 200 µm diameter nozzle was used The voltage was sequentially
adjusted from 60 V to 140 V, as shown in Table 1. The SEM pictures corresponding to various
processing parameters are shown in Figure 2. With the increase in voltage, the area of
edge scatter corrosion expanded. With an applied voltage of 140 V, the stray corrosion
area approached approximately 40 µm. Under the voltage of 60 V, the edge exhibited
minimal stray corrosion and virtually no occurrence of pitting, but surface irregularities
were present. As the voltage increased to 100 V, the machining surface quality significantly
improved. Under an applied voltage of 60 V, the surface roughness was 1.064 µm. When
the voltage increased to 80 V or 100 V, the surface roughness approached 0.55 µm. Raising
the voltage further increased the surface roughness. When the voltage was set to 140 V, the
surface roughness was 0.83 µm, which was still lower than the surface roughness at 60 V.
The most likely reason for this trend is the change of current density. When the applied
voltage was 60 V, the current density was only 21.3 A/cm2. With an increase in the voltage
to 100 V, the current density reached 33.7 A/cm2, allowing for the removal of materials,
causing surface irregularities and achieving a smooth surface finish. As for the pitting
appearing at the edges of the machined dimples, the most likely cause is the influence
of machining depth. With the increase in applied voltage, the depth of the dimples also
increased. When the electrolyte is injected into the dimples, the greater depth of the dimples
makes it challenging for the liquid to be expelled, which can lead to splashing and the
formation of pitting.

Table 1. Experimental parameters of the voltage group.

Voltage (V) tcyc (µs) Duty Ratio (%) teffv (s) Gap (µm) Flow Rate
(mL/min)

60, 80, 100,
120,140 200 50 15 200 52

3.1.2. Geometric Characterization

The diameter and depth of the dimples are shown in Figure 3. It is evident that as
the applied voltage increased, both the depth and diameter of the dimples also increased.
This indicates that the material removal rate increased with the rising applied voltage. The
shaded areas in the pictures are the measurement errors caused by the steepness of the
dimples’ wall. As the applied voltage increased, the dimples also became larger, indicating
that the taper angle of the machined dimples was also increasing. At the applied voltage
of 60 V, the diameter of the dimple approached approximately 365 µm, which was about
1.8 times the diameter of the nozzle (200 µm). This phenomenon can be explained by the
fact that as the applied voltage increased, the current density at the edge of the liquid
column also increased. Consequently, anodic dissolution occurred at the edge location.
When increasing the applied voltage from 60 V to 140 V, the dimple diameter expanded
from 360 µm to 405 µm, resulting in a 45 µm increase. Therefore, adjusting the applied
voltage unilaterally to achieve deeper dimples is not advisable, as it may lead to more severe
stray corrosion or undesirable shapes. It is essential to coordinate with other machining
parameters for better results.
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Figure 3. Diameters and depths at different voltages.

3.2. The Effect of Duty Cycles
3.2.1. Morphologies

Under the condition (Table 2) that teffv is consistent, the dimples obtained by changing
the duty cycle are shown in Figure 4. The roundness of the dimples produced under
various machining conditions appeared to be consistent with no significant differences.
In Figure 4a, it can be observed that loose material features appear at the dimple edges
when ton = 20 µs. This phenomenon can be explained by the fact that under very low-
pulse-width machining conditions, the voltage between the cathode and anode could
not be sustained for a sufficient duration to enable anodic dissolution. Additionally, the
low current density at dimple edges during the machining process was insufficient for
complete electrolysis within a short timeframe. When ton = 40 µs and ton = 80 µs, this
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situation showed significant improvement with minimal stray corrosion and sporadic
pitting. However, when ton increased to 120 µs, noticeable stray corrosion began to appear,
as shown in Figure 4d, and it became most pronounced at ton = 160 µs, reaching a maximum
of nearly 30 µm. When ton = 200 µs, there was some improvement in the aspect of stray
corrosion. The most likely explanation for this phenomenon is the extended electrolytic
processing region, causing the solution to affect the stray corrosion area closer to the center,
while the stray corrosion area farther from the center remained unaffected. Additionally, it
can be observed that under the consistent teffv, varying the pulse width time did not lead
to significant differences in terms of the dimple surface. The dimples under varying duty
cycles displayed a flat appearance with regular profiles.

Table 2. Experimental parameters of the duty cycle group.

Voltage (V) tcyc (µs) Duty Cycle
(%) teffv (s) Gap (µm) Flow Rate

(mL/min)

100 200 10, 20, 40
60, 80, 100 15 200 52
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3.2.2. Geometric Characterization

It can be observed in Figure 5 that, under the condition of the consistent teffv, the depth
and diameter of the dimple were not directly proportional to the pulse width. Under the
condition of ton = 20 µs, the diameter of the dimple was approximately 375 µm, and it had
the greatest depth among all the experimental groups. This phenomenon can be explained
by the fact that with the minimum duty cycle, the electrode remains energized for the
longest duration, allowing the center of the jet column to maintain a voltage that enabled
anodic dissolution for an extended period. As a result, the change in current density was
relatively slow, allowing for the attainment of deeper dimples. With an increase in the duty
cycle, there was a general decrease in the dimple depth. When ton = 200µs, the depth of
the dimple was minimal. One possible reason is that the continuous electrolysis resulted
in the untimely removal of dissolved products, hindering further reactions. Therefore, to
achieve a greater depth while maintaining the desired external contour, it is necessary to
modify both voltage and duty cycle. Subsequent research will focus on comparing these
two parameters. Moreover, it can be observed that the maximum surface roughness at
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the center of the dimples occurred at ton = 20 µs, reaching 1.07 µm. When ton = 200 µs,
the surface roughness was 0.55 µm. The surface quality improved with the increase of ton.
This trend highlights the influence of ton on the surface quality. Therefore, it is possible to
achieve a lower surface roughness by increasing the duty cycle.
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3.3. The Effect of Effective Voltage Time
3.3.1. Morphologies

By analyzing the impact of the duty cycle on the machining results (Table 3), it is
evident that there was less stray corrosion with duty cycles of 20% and 40%. Therefore,
the duty cycle of 40% was used in the subsequent experiments. When maintaining other
parameters at a consistent level, the effective voltage time increased with the space of
5 s, starting from the duration of 5 s. As shown in Figure 6, when teffv = 5 s, the stray
corrosion was not prominent, and relatively regular shapes could be maintained. As the
teffv increased, the stray corrosion became more apparent. When the teffv extended to 25 s,
the stray corrosion started to decrease, but it re-emerged as a more severe issue when
the teffv increased to 30 s. The surface quality at the center showed no evident difference.
This phenomenon can be attributed to the higher current density and strong electrolyte
flushing, resulting in a more uniform dissolution at the center. Additionally, at teffv = 15 s,
surface irregularities appeared in regions extending from the center to the edges. With the
further increase in teffv, the aforementioned phenomenon showed improvement. This can
be explained by the fact that farther from the center, the current density was lower, and it
took sufficiently long time to achieve partial anodic dissolution. Therefore, the use of an
inappropriate teffv could lead to irregularities in the transition area.

Table 3. Experimental parameters of the effective voltage time group.

Voltage (V) tcyc (µs) Duty Cycle
(%) teffv (s) Gap (µm) Flow Rate

(mL/min)

100 200 40 5, 10, 15,
20, 25, 30 200 52
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3.3.2. Geometric Characterization

In Figure 7, a noticeable increase in both the dimple diameter and depth can be
observed as the teffv increased. When teffv = 5 s, the diameter of dimple was 350 µm, which
was 1.75 times the nozzle diameter, with the central depth ranging from 15 µm to 20 µm.
With an increase in effective voltage time to teffv = 30 s, the diameter of dimple approached
410 µm, which was 2.05 times the nozzle diameter, and the central dimple depth increased
from 80 µm to 83 µm. Furthermore, at teffv = 5 s, the dimples displayed a relatively bright
surface when subjected to LSCM scanning, with clearly visible transition areas at the
edges. With an increase of teffv, black-shadowed regions emerged at the dimple edges,
primarily due to image capture inaccuracies, signifying an intensified dimple conicity.
Surface roughness measurements at the dimple center, conducted with LSCM, showed that
when the teffv ranged from 5 s to 25 s, the center surface roughness remained stable, ranging
from 0.8 µm to 0.85 µm. However, when teffv = 30 s, a significant surface irregularity became
apparent at the dimple center, with the surface roughness of 1.08 µm. This phenomenon can
be explained by the fact that, after a certain duration of electrolytic processing, the depth
of the dimple increased considerably. In regions with reduced current density, achieving
uniform further reactions becomes challenging. Additionally, the presence of persistent
bubbles in deeper regions makes it difficult to maintain a smooth surface, resulting in the
observed irregularities.

Figure 8 displays the cross-sectional profiles of two sets of machining parameters.
It can be observed that as the teffv increased from 5 s to 10 s, the depth of the dimples
increased from 15 µm to 35 µm, and both maintained a consistent and regular profile.
However, when teffv = 10 s, the surface became rough. Additionally, it can be observed that
with the increase in teffv, the greatest change in depth occurred at the center of the dimples.
This indicates that during the machining process, the current density at the center of the jet
column was the highest and gradually decreased toward the edges. Another possibility is
that the intense jetting at the center accelerated the dissolution of the material at the center.

3.3.3. Element Content Analysis Results

Quantitative characterization of the surface composition was performed as shown
in Table 4 and Figure 9. The machining parameters included a pulse cycle of 200 µs,
a duty cycle of 50%, an applied voltage of 100 V, an initial gap of 200 µm and a flow
rate of 52 mL/min. Results were obtained by varying teffv for numerical comparisons.
According to the results, the surface elemental ratios after jet-ECM were very similar to the
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original surface, with all samples containing less O and C than the original surface. This
suggests that using a NaCl-EG electrolyte is effective in removing the amorphous layer,
achieving uniform electrochemical dissolution and maintaining an unchanged surface
element composition.
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Table 4. Comparison of the main element content.

Jet-ECM Conditions Be (%) C (%) O (%) Ti (%) Ni (%) Cu (%) Zr (%)

Initial surface 2.02 18.32 5.53 13.45 7.76 11.32 41.45
teffv = 5 s 1.04 15.08 1.6 16.29 9.83 11.09 45.36

teffv = 10 s 4.12 16.43 0.4 14.58 8.98 11.34 44.29
teffv = 15 s 4.41 14.67 1.96 15.28 948 11.34 42.89
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4. Conclusions

This research employed jet electrochemical machining to perform material removal and
create dimples on Zr- BMGs. In order to reduce the formation of dense and adherent oxide
layers caused by the use of water-based salt electrolytes, alcohol-based electrolytes were
employed. The feasibility of this approach was explored through the characterization of the
machined dimples. The research primarily compared and analyzed the effects of voltage,
effective voltage time and duty cycle. The main conclusions are summarized as follows:

(1) The experimental results showed that Zr-based BMGs can be processed effectively
by high-flow-rate electrochemical processing. Because the current density of the
machining center was larger than that of the edge, it was evident from the cross-
section profiles that the center of the dimple had the greatest depth. Compared with
the original surface, the changes of each component after processing were not obvious.
In addition, using the NaCl-EG electrolyte and spraying the electrolyte at a high flow
rate could reduce the generation of a passivation film.

(2) The experimental results demonstrated that increasing the applied voltage and ex-
tending the effective voltage time both contributed to enlarging the diameter and
depth of the dimples to some extent. However, there was also a notable increase
in the stray corrosion. However, the increase in the duty cycle did not exhibit such
a consistent pattern. It is crucial to select the appropriate machining parameters to
achieve optimal results. Micro dimples with less stray corrosion can be fabricated
using jet-ECM with a cycle of 200 µs and a duty cycle of 20% and 40%. Increasing the
voltage properly can obtain deeper and wider dimples and make the surface flatter,
but it is necessary to pay attention to the stray corrosion caused by this.

(3) Under appropriate parameters, it is possible to achieve a relatively smooth surface
and significantly reduce stray corrosion. Subsequent research will focus on the impact
of the initial gap and nozzle diameter on machining outcomes. In addition, different
nozzle shapes will be designed to obtain more diverse processing effects.
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