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Abstract: This paper proposes a system-in-package combination navigation chip. We used wire
bonding, chip stacking, surface mount, and other processes to integrate satellite navigation chips,
inertial navigation chips, microprocessor chips, and separation devices. Finally, we realized the
hardware requirements for combined navigation in a 20 mm × 20 mm chip. Further, we performed a
multi-physics simulation analysis of the package design. For antenna signals, the insertion loss was
greater than −1 dB@1 GHz and the return loss was less than −10 dB@1 GHz. The amplitude of these
noises of the signal between the MCU and the IMU was approximately 20%, and the maximum value
of the coupling coefficient between signal lines on the top surface was 13.4174%. The ninth mode
of the power plane yielded a maximum voltage of 55 mV, and all power delivery networks had a
DC voltage drop of less than 2%. The highest temperature in the microsystem was approximately
42 ◦C. These results show that our design performed well in terms of signal, power, and thermal
performance.

Keywords: system-in-package; combined navigation; signal integrity; power integrity;
electrical-thermal-mechanical analysis

1. Introduction

As the cost of advanced process nodes becomes more and more expensive, the eco-
nomic benefits of Moore’s Law have become invalid. Compared with the design complexity
and low yield caused by integrating all functions on a single big silicon chip, system-in-
package (SiP) provides a more flexible, efficient, and low-cost development direction that
integrates multiple components, such as a CPU, digital logic, analog/mixed signals, mem-
ory, sensors, and passive and discrete components, within a single package and a single
system. SiP has attracted much research in recent years, which promotes its application
in the fields of high-performance computing (HPC), multi-sensor fusion, radio frequency,
power electronics, and other fields [1–5]. With the continuous development of integrated
circuit technology, electronic products are increasingly developing in the directions of
miniaturization, intelligence, high performance, and high reliability. In this process, SiP
plays an important role and is widely used [6–8].

System-in-package often faces multi-physics and multi-scale problems, which are key
issues in their design and simulation [9–12]. When finite element analysis is performed on
components with large size differences, such as chips, packages, and circuit boards, a large
number of meshes are generated, which cause difficulty and usually require simplified
and reduced-order processing; this problem, however, was not the focus of this study. In
order to ensure that microsystems can operate well and be highly reliable, researchers
have chronically paid attention to and analyzed their electrical, thermal, mechanical and
other properties, as well as the coupling characteristics existing in them [13–16]. To achieve
system-level performance, signal integrity and power integrity are inescapable issues and
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challenges [17–19]. The signal path between chips needs to be high-speed and low-noise,
while the power plane needs to provide stable voltage and sufficient current. In addition,
microsystems need good heat dissipation to avoid performance degradation and failures
caused by high temperatures [20–23]. Temperature causes thermal stress, and temperature
mismatch is the main cause of the warping of microsystem structures [24]. Warpage and
stress are the main causes of microsystem failure which affects reliability and yield, so it
has become a research hotspot and attracted countless scholars [25–30]. However, most of
the above studies discuss only the single-physics problem, and fail to obtain the results of
multi-physics coupling, which are obviously deviated from the actual situation.

In order to further study the multi-physical coupling characteristics of system-in-
package, a SiP chip for integrated navigation was designed in this study. Combined
navigation systems include satellite navigation chips, inertial navigation chips, micropro-
cessor chips, flash chips, and discrete devices [31,32]. This system-in-package allows a
combined navigation system to be packaged into a single chip, resulting in reduced system
size, lower power consumption, and ease of application; we named it a system-in-package
combined navigation chip microsystem. This paper is organized as follows. In Section 2,
the design of the microsystem is introduced, including signal transmission, packaging
process, and substrate layout. Section 3 focuses on the simulation analysis of the designed
microsystem. The performance of the microsystem was evaluated in terms of signal in-
tegrity, power integrity, and electrical-thermal-mechanical analysis. In Section 4, we fully
analyze the coupling effects between the multi-physics. Finally, we summarize relevant
data and propose a more comprehensive system-in-package design and simulation method.

2. Design of the Combined Navigation Chip

In the scheme design, we wanted to integrate the core functionality of combined nav-
igation in one package. Using SiP technology to integrate multiple silicon chips and their
peripheral circuits can reduce the size of the system. The combined navigation mentioned here
refers to the technology applied to assisted driving and autonomous driving, which achieves
high-precision and reliable navigation through the fusion of satellite navigation and inertial
navigation. The main data transmission flow diagram of the microsystem is shown below in
Figure 1: two satellite navigation chips receive satellite signals from external antennas and
transmit data to the microprocessor chip. The inertial navigation chip collects acceleration and
angular acceleration data and also transmits it to the microprocessor chip, the microprocessor
chip receives differential data from the outside to realize a satellite RTK solution and runs the
combined navigation coupling algorithm, the final navigation result is output to other devices,
and the flash chip is used to store data and programs.
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The rectangular box in Figure 1 (above) shows the components we needed to integrate
into the microsystem, and also includes some peripheral circuits that are not shown in
the figure. The next step was to determine the package design. The capacitors, resistors,
inductors, and crystal oscillators required for peripheral circuits were mounted on the
surface of the substrate using surface mount technology. Microprocessor chip bare die,
flash chip bare die, and satellite navigation chip bare die are all suitable for wire bonding
package designs. The flash required for satellite navigation chips increased integration
through chip stacking. The overall packaging process diagram is shown below in Figure 2.
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After determining the microsystem integration components and packaging technical
solutions, we preliminarily designed the layout of the microsystem according to the size
and number of components, as well as the corresponding connection relationship. First,
the two satellite navigation chips needed to share a set of crystal oscillators to ensure that
their clocks are synchronized. We also needed to design an antenna signal path with 50 Ω
impedance, so the two satellite navigation naked dies were placed side by side in the upper
part of the substrate, and the required crystal oscillators were placed in the middle of the
two satellite navigation chips. The microprocessor chip was relatively large in size and had
the largest number of pins, so it was placed in the lower part of the middle of the substrate,
and the smaller flash size connected to the microprocessor chip was placed on its left. The
inertial navigation chip connection line was simple and was placed in the lower right corner
of the substrate to maintain an appropriate distance from the microprocessor chip. The
crystal oscillator required by the microprocessor chip was placed in its corresponding pin
position, which was in the upper right corner of the microprocessor chip. Other required
discrete components, such as capacitors, resistors, and inductors, were arranged around
these main components. All devices were integrated on the surface of the substrate, which
adopted a square design and was set to 20 mm × 20 mm in size; the corresponding layout
diagram is shown below in Figure 3.

The parameters of each material layer of the four-layer organic substrate recommended
by the packaging manufacturer follow in Table 1.

Table 1. Four-layer substrates’ stack information.

MYER NAME THICKNESS (µm) MYER NAME

Top solder mask 20 ±10 AUS308 1

M1 (Top) 15 (Min) 15 (Min) Copper
PP 45 ±15 GHPL-830NX(A) 2

M2 20 ±5 Copper
CORE 60 ±15 HL832NX(A) 2

M3 20 ±5 Copper
PP 45 ±15 GHPL-830NX(A)

M4 (Bottom) 15 (Min) 15 (Min) Copper
Bottom solder mask 20 ±10 AUS308

Finish 260 ±40
1 Taiyo Ink MFG, Hirasawa, Japan. 2 Mitsubishi Gas Chemical (MGC), Tokyo, Japan.
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3. Multi-Physics Simulation Analysis of the System-in-Package

After completing the package design, we imported the design file into the simu-
lation software, which allowed us to perform electrical and thermal simulations of the
designed package structure. Detailed simulation analyses are described below, and relevant
simulation data are provided in the data file.

3.1. Signal Integrity

In this section, we analyze the signal integrity of the package design from multiple
perspectives. In the entire design, the MCU section occupies the largest number of signals.
Its maximum operating frequency is 1 GHz, and we focused on analyzing the insertion
loss of its signal path within 2 GHz. As shown below in Figure 4a, we simulated that
the insertion loss of all signal lines of the MCU was greater than −2 dB within 2 GHz.
In Figure 4b, the return loss of all signal lines of the MCU was less than −20 dB within
500 MHz. These data mean that the MCU’s signal quality was guaranteed such that its
signal speed was less than 10 MHz.

In addition, regarding the satellite navigation chip, there are two special RF signal inputs.
We analyzed its S-parameters within 30 GHz. It was observed that above 5 GHz its return loss
significantly deteriorated. Fortunately, however, the input signal operated at 1–2 GHz, and
the S-parameters in this part performed well, as shown below in Figure 5. The insertion loss
was greater than −1 dB@1 GHz and the return loss was less than −10 dB@1 GHz. It can be
seen that the quality of the RF signal was significantly better than that of the MCU, because
we added a ring of ground holes around the RF signal line to provide a close reflow loop, and
also isolate interference, as shown in Figure 5. At the same time, the RF signal line was also
designed to be as short as possible to obtain good S parameters.
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Figure 4. The S-parameter of MCU signals. (a) Insertion loss. (b) Return loss. The different colored
lines represent different signal channels.
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Figure 5. S-parameters of antenna signals. The red and blue lines represent the return loss, and the
green and yellow lines represent the insertion loss.

We further analyzed the time domain characteristics of the signal between the MCU
and the IMU, and saw that the quality of the signal transmission was good. At the same
time, we observed signal overshoot, as well as near-end and far-end signal noise. However,
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the amplitude of these noises was approximately 20% and did not produce logic errors, as
shown below in Figure 6.
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Figure 6. Time domain transient simulation results of the signals between MCU and IMU. The green
line represents the TX signal, the red line represents the RX signal, the blue line represents the FEXT
signal, and the orange line represents the NEXT signal.

Figure 7, below, shows the coupling coefficient between the signal lines on the top
surface, with a maximum value of 13.4174%. In the middle part of the layout, large
coupling was caused by the small spacing of the signal lines. On the whole, such coupling
is acceptable.
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We conducted frequency domain or time domain analysis on multiple sets of data
lines in the microsystem and they all met the working requirements, so it can be seen that
the design meets signal integrity. The power supply performance of the microsystem is
analyzed below.

3.2. Power Integrity

The good signal characteristics of SiP are shown above, and we further discuss its
power integrity here. First, we analyzed the resonant characteristics of its power supply
plane. Simulation results are shown below in Table 2, and we obtained nine resonant
modes. The first three and last planar resonance diagrams are shown in Figure 8. The last
five resonant modes all corresponded to the 3.3 V plane. The 9th mode yielded a maximum
voltage value of 55 mV.

Table 2. Resonant modes of the power plane.

No. Resonance Freq (MHz) Q Factor

1 0.275921 +0.703371i 0.196142
2 1.100444 +1.408909i 0.390531
3 1.636053 +1.851072i 0.44192
4 1.896135 +2.526094i 0.37531
5 1.911442 +2.527866i 0.378074
6 2.068185 +2.535850i 0.407789
7 2.076808 +2.443693i 0.424932
8 2.139904 +2.188735i 0.488845
9 3.528381 +3.044923i 0.579387

Further, we analyzed the impedance characteristics of a 1.8 V power supply at the
MCU side. As can be seen below in Figure 9, before 500 MHz, its impedance was less than
1 Ω. There was a resonant front at high frequencies that could be further optimized using
decoupling capacitors.

As shown above, the resonant noise of the power delivery network was small, and
impedance characteristics were satisfied in the operating frequency. We also simulated
the DC voltage drop characteristics of the power supply network, as shown in Table 3.
All power delivery networks had a DC voltage drop of less than 2%, which met the
requirements of the package design. In summary, the design of this microsystem is in line
with power integrity requirements. In the following section, we discuss the electro-thermal-
mechanical coupling analysis of the microsystem.

Table 3. DC voltage drop characteristics of the power supply network.

Power Net DC Voltage Drop Percent (<2%)

1.8 V-MCU 17.6 mV Pass
1 V-MCU 19.2 mV Pass

3.3 V-MCU 17.5 mV Pass

3.3 V-WD_A 7.1 mV Pass

3.3 V-WD_B 6.1 mV Pass

3.3 V-IMU 7.6 mV Pass

3.3 V-FLASH 20.7 mV Pass



Micromachines 2024, 15, 167 8 of 13Micromachines 2024, 15, x FOR PEER REVIEW 8 of 14 
 

 

 

 

 

Figure 8. Cont.



Micromachines 2024, 15, 167 9 of 13Micromachines 2024, 15, x FOR PEER REVIEW 9 of 14 
 

 

 

Figure 8. Resonance mode plots of the power plane. (a) First resonance. (b) Second resonance. (c) 

Third resonant. (d) Ninth resonance. 

Further, we analyzed the impedance characteristics of a 1.8 V power supply at the 

MCU side. As can be seen below in Figure 9, before 500 MHz, its impedance was less than 

1 Ω. There was a resonant front at high frequencies that could be further optimized using 

decoupling capacitors. 

 

Figure 9. The 1.8 V impedance curve of the MCU. 

As shown above, the resonant noise of the power delivery network was small, and 

impedance characteristics were satisfied in the operating frequency. We also simulated 

the DC voltage drop characteristics of the power supply network, as shown in Table 3. All 

power delivery networks had a DC voltage drop of less than 2%, which met the require-

ments of the package design. In summary, the design of this microsystem is in line with 

power integrity requirements. In the following section, we discuss the electro-thermal-

mechanical coupling analysis of the microsystem. 

Table 3. DC voltage drop characteristics of the power supply network. 

Power Net DC Voltage Drop Percent (<2%) 

1.8 V-MCU 17.6 mV Pass 

1 V-MCU 19.2 mV Pass 

3.3 V-MCU 17.5 mV Pass 

        

Figure 8. Resonance mode plots of the power plane. (a) First resonance. (b) Second resonance.
(c) Third resonant. (d) Ninth resonance.

Micromachines 2024, 15, x FOR PEER REVIEW 9 of 14 
 

 

 

Figure 8. Resonance mode plots of the power plane. (a) First resonance. (b) Second resonance. (c) 

Third resonant. (d) Ninth resonance. 

Further, we analyzed the impedance characteristics of a 1.8 V power supply at the 

MCU side. As can be seen below in Figure 9, before 500 MHz, its impedance was less than 

1 Ω. There was a resonant front at high frequencies that could be further optimized using 

decoupling capacitors. 

 

Figure 9. The 1.8 V impedance curve of the MCU. 

As shown above, the resonant noise of the power delivery network was small, and 

impedance characteristics were satisfied in the operating frequency. We also simulated 

the DC voltage drop characteristics of the power supply network, as shown in Table 3. All 

power delivery networks had a DC voltage drop of less than 2%, which met the require-

ments of the package design. In summary, the design of this microsystem is in line with 

power integrity requirements. In the following section, we discuss the electro-thermal-

mechanical coupling analysis of the microsystem. 

Table 3. DC voltage drop characteristics of the power supply network. 

Power Net DC Voltage Drop Percent (<2%) 

1.8 V-MCU 17.6 mV Pass 

1 V-MCU 19.2 mV Pass 

3.3 V-MCU 17.5 mV Pass 

        

Figure 9. The 1.8 V impedance curve of the MCU.

3.3. Electrical-Thermal-Mechanical Analysis

For system-in-package, the influence of temperature characteristics is important, so
we performed an electro-thermal co-simulation, taking into account the effects of thermal
stress, and at the same time were able to obtain results for three physics at once. We set
up an analysis scenario, shown below in Figure 10, in which the SiP chip was mounted
on a PCB test board with a heat dissipation structure at the bottom. The material and size
parameters of the main components are shown in Table 4.
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Table 4. Material and size parameters of key components.

Name Main Material Key Parameter

Heat sink Copper Height: 10 mm; Fin Width: 1 mm; Fin Pitch: 2 mm
SiP chip Molding Height: 1.76 mm; Width: 20 mm; Length: 20 mm
Test PCB Copper, FR4 Height: 19.6 mm; Width: 114.5 mm; Length: 101.5 mm

According to the actual chip power, the temperature distribution of this microsystem
is shown below in Figure 11, and the highest temperature was in the MCU area because it
has the highest power level. Due to mismatch in the coefficient of thermal expansion, the
temperature caused warpage and thermal stress of the substrate. Therefore, we observed
the largest displacement of pins (about 74 microns) in the four corners, as shown in the
figure below. This was also the stress concentration area, which is prone to failure and was
the focus area of design optimization, as shown below in Figure 12. At the same time, we
obtained the current density results of the microsystem, as shown in Figure 13, in which it
can be observed that the current density was higher in the narrower power plane.
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4. Discussion

In this paper, we systematically discuss our microsystem design and simulation meth-
ods. Simulation results show that shortening the length of the signal line and increasing the
ground hole wraparound significantly increased the transmission quality of the signal lines.
Widening the connecting lines of the power supply network reduced the DC voltage drop,
and the division of the power supply plane affected its resonant mode. The temperature
distribution was mainly caused by the chip power; therefore, temperature-sensitive devices
should be kept away from high-power devices. Stress warpage results show that solder
joints at the corners of the microsystem were subjected to the most severe deformation, and
that signal lines should be avoided and used as redundant grounding.

5. Conclusions

This article describes how to design and simulate a system-in-package microsystem.
We obtained adequate results during simulation analysis of signal integrity, power integrity,
and thermal analysis. Critical signals, such as MCU signals, antennas’ RF signals, and
signals between MCUs and IMUs, are required for microsystem operation. Analysis of the
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resonance characteristics and impedance characteristics of the power supply plane also
showed satisfactory results. Thermal analysis showed that the reliability of the system
is guaranteed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mi15020167/s1, Table S1: Data of figures.
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manuscript; or in the decision to publish results.
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