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Simple Summary: Novel therapeutics are urgently needed for high-risk and refractory solid tumors.
Clinical studies have demonstrated the safety and efficacy of PV-10 (10% rose bengal sodium) by
intralesional injection in skin cancer. However, this agent has not yet been evaluated for the treatment
of various adult solid tumors. The aim of our study was to test PV-10 in breast, colorectal, head and
neck, and testicular cancers. Using a combination of in vitro and in vivo experiments, we found that
PV-10 exhibits anti-cancer activity against a panel of human cell lines derived from these tumors. Our
results support further clinical development of PV-10 for the treatment of solid tumors in adults.

Abstract: PV-10 is a 10% formulation of rose bengal sodium that has potent immunotherapeutic and
anti-cancer activity against various tumors, including metastatic melanoma and refractory neuroblas-
toma. Currently, PV-10 is undergoing clinical testing for refractory metastatic neuroendocrine cancer
and melanomas. However, preclinical investigation of PV-10 activity and its mechanisms against phe-
notypically and molecularly diverse adult solid tumors had not been conducted. In a panel of human
cell lines derived from breast, colorectal, head and neck, and testicular cancers, we demonstrated that
PV-10 induces cytotoxicity by apoptotic and autophagic pathways involving caspase-mediated PARP
cleavage, downregulation of SQSTM1/p62, and upregulation of beclin-1. Treatment with PV-10 also
consistently reduced phosphorylation of WNK1, which has been implicated in cancer cell migration
and autophagy inhibition. By wound healing assay, PV-10 treatment inhibited the migration of
cancer cells. Finally, significant inhibition of tumor growth was also noted in tumor-bearing mice
treated with PV-10 by intralesional or systemic administration. In addition to known PV-10-mediated
tumor-specific cytotoxic effects, we identified the mechanisms of PV-10 and provide new insights
into its effect on autophagy and metastasis. Our data provide essential mechanism-based evidence
and biomarkers of activity to formulate clinical studies of PV-10 in the future.

Keywords: PV-10; rose bengal sodium; solid tumors; novel therapeutics; intralesional; systemic

1. Introduction

PV-10, a 10% weight/volume (w/v) formulation of rose bengal sodium (RBS; 4,5,6,7-
tetrachloro-2′,4′,5′,7′-tetraiodofluorescein disodium), is a water-soluble, halogenated xan-
thene dye with photochemical properties that has been studied for uses in ophthalmology,
dermatology, and oncology [1]. Developments of various derivatives [2] and drug delivery
systems [3] have aimed to improve its physicochemical properties, such as its bioavail-
ability and cell membrane permeability that have limited RBS to intralesional utility [4].
Accordingly, rose bengal lactone (RBL) is a derivative of RBS with reduced photosensitivity
and increased lipophilicity [5].

Remarkably, early phase clinical testing has demonstrated efficacy and tolerability
by intralesional injection of PV-10 in patients with refractory metastatic melanoma [6–11].
In a phase II clinical trial, greater efficacy was observed when patients were treated with
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PV-10 in combination with radiotherapy, with complete response and overall response
rates of 42% and 87%, respectively [8]. Consistent with its known safety profile, clinical
studies of PV-10 have reported minimal systemic and severe adverse events. Notably,
transient phototoxicity has been reported following intralesional administration of PV-10 in
melanoma, possibly due to synergistic effects in combination with another known photo-
sensitizing agent, thiazide diuretics [12]. Thus, photoprotection from sunlight and artificial
light may be warranted.

Clinical trials are currently testing intralesional PV-10 as a monotherapy and in combina-
tion with immune checkpoint inhibitors for refractory neuroendocrine tumors metastatic to the
liver (ClinicalTrials.gov ID: NCT02693067), metastatic cutaneous melanoma (ID: NCT02557321),
and primary or metastatic liver cancer (ID: NCT00986661). In addition to skin cancers,
intralesional PV-10 has also demonstrated tumor regression in xenograft mouse models
with breast [13], colon [14], and pediatric neuroblastoma [15] tumors. Given the established
clinical efficacy of PV-10 in melanoma and preclinical data in other cancers via intralesional
injection, there is a need to evaluate the therapeutic potential of PV-10 in high-risk and
refractory solid tumors via systemic administration.

In the present study, we conducted a preclinical investigation of PV-10 activity against
a subset of diverse tumors. First, we confirmed anti-cancer efficacy and induction of
apoptosis by PV-10 in vitro against a panel of adult solid tumor cell lines and characterized
its effects on protein kinase signaling, autophagy, and cell migration. We then developed
a xenograft model to assess the efficacy of PV-10 treatment in vivo and provide the first
preclinical data on systemic treatment of solid tumors using PV-10.

2. Materials and Methods
2.1. Materials

PV-10, a 10% w/v solution of rose bengal sodium (RBS) in 0.9% saline, and its derivative,
RBL, were provided by Provectus Biopharmaceuticals, Inc. (Knoxville, TN, USA) and stored
protected from light at room temperature. WNK463 (Selleckchem, Houston, TX, USA) was
dissolved in dimethyl sulfoxide (DMSO) and stored at −80 ◦C. For experiments, the drugs
were diluted in Opti-MEM to the indicated concentrations.

2.2. Cell Culture

The following cancer cells were used in this study: breast [MCF-7 (age: 69/sex: F),
MDA-MB-231 (51/F), and T-47D (54/F)], colorectal HCT-116 (48/M), LoVo (56/M), and
T-84 (72/M), head and neck [CAL-27 (56/M), Detroit-562 (unknown/F), FaDu (56/M), and
UM-SCC-1 (72/M)], and testicular [NCC-IT (24/M), NTERA-2 (22/M), and TCAM-2 (35/M)]
cancer (Table S1). Cell lines were obtained from the American Type Culture Collection
(ATCC; Manassas, VA, USA) or generously provided by Dr. Karl Riabowol from the
University of Calgary (Calgary, AB, Canada). Cells were cultured in Opti-MEM media
containing insulin, other metabolites and trace elements, and supplemented with 10% fetal
bovine serum (FBS; Thermo Fisher Scientific, Waltham, MA, USA) and maintained at 37 ◦C
in a 5% CO2 humidified incubator.

2.3. Cytotoxicity Assays

Cytotoxicity was assessed in a similar range to concentrations previously tested
in other cancer cells [14–17]. Initially, cells were seeded in triplicate in 96-well plates
at 5 × 103 cells per well in 100 µL of media. After 24 h, the cells were treated with
3.125–400 µM PV-10/RBL or phosphate-buffered saline (PBS) diluted in 100 µL of Opti-
MEM media. After treatment for 96 h, cells were washed twice with PBS and fresh media
were added to each well for cell viability assay using the alamarBlue® (alamar blue) reagent
(Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s protocol.
Alamar blue reagent was added to 10% volume in each well and incubated at 37 ◦C for 1–4 h,
followed by fluorescence measurements (excitation/emission: 560/590 nm). Half-maximal
inhibitory concentrations (IC50) were determined by non-linear regression.
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2.4. Western Blot Analysis

Cells were seeded at 106 cells per well in six-well plates. After 24 h, cells were
treated with 50–100 µM PV-10 or PBS for up to 48 h and whole cell lysates were pre-
pared. Protein concentration in lysates was measured using the DC Protein Assay (Bio-Rad,
Hercules, CA, USA) according to the manufacturer’s protocol and absorbance measure-
ments at 750 nm. Lysates containing 30 µg of protein in Laemmli sample buffer were
resolved by denaturing 7.5–15% polyacrylamide gel electrophoresis (SDS-PAGE) and trans-
ferred to nitrocellulose membranes. Membranes were blocked using 5% (w/v) bovine
serum albumin (BSA) in tris-buffered saline with 0.1% (v/v) Tween-20 (TBS-T) for 1 h.
The membranes were then incubated overnight at 4 ◦C with the following primary anti-
bodies diluted in TBS-T with 5% BSA: anti-poly-(ADP-ribose) polymerase (PARP; 1:1000,
9542S); anti-caspase-3 (1:1000, 9662S); anti-SQSTM1/p62 (1:1000); anti-beclin-1 (1:1000,
3738S); anti-β-catenin (1:1000, 9562S); and anti-β-actin (1:1000, 4967S) (Cell Signaling Tech-
nology, Danvers, MA, USA). After incubation with primary antibodies, the membranes
were washed three times with TBS-T and incubated with horseradish peroxidase (HRP)-
conjugated secondary antibody (1:10,000; 7074S) for 1 h. After washing three times, Western
blots were developed in Clarity Western ECL substrate, imaged using the Bio-Rad Chemi-
Doc™, and analyzed using Image Lab software (Version 6.1, Bio-Rad, Hercules, CA, USA).
Protein molecular masses in kilodaltons (kDa) were estimated using the Precision Plus
Protein™ Dual Color Standards (Bio-Rad).

2.5. Phospho-Kinase Array

The relative phosphorylation level of 37 proteins and total level of 2 other proteins
was measured using the Human Phospho-Kinase Array Kit (R&D Systems, Minneapolis,
MN, USA) according to the manufacturer’s protocol. Briefly, 106 cells were cultured for
24 h in six-well plates. Cells were treated with 100 µM PV-10 or PBS for 3 h, washed with
ice-cold PBS, and cell lysates were collected. The phospho-kinase arrays were incubated
with approximately 400 µg of cell lysate overnight at 4 ◦C. Following washing, the arrays
were incubated with HRP-conjugated streptavidin and developed by luminol-based chemi-
luminescence. Reference spots containing unrelated biotinylated proteins were used to
determine equal development.

2.6. Wound Healing Assay

Cells were seeded at 106 cells per well in a six-well plate and cultured to full confluency.
Two hours prior to scratching, cells were treated with a sublethal dose of 10 µM PV-10 or
1 µM WNK463, compared to the PBS control. Using a P200 pipette tip, cells were scraped
in a straight line to form a scratch void of cells. Debris was removed by washing with
PBS and fresh Opti-MEM containing 5% FBS was added. Plates were imaged by phase-
contrast microscopy using an EVOS FL Auto imaging system (Thermo Fisher Scientific)
with 4× magnification at 0 and 24 h following the initial scratch. Wound closure was
measured using the “MRI wound healing tool” plugin for ImageJ (Version 2.14, National
Institutes of Health, Bethesda, MD, USA), normalized to the initial scratch area at 0 h to
generate a percent wound closure.

2.7. In Vivo Xenograft Models

All animal procedures were carried out in accordance with the Canadian Council
on Animal Care and the National Institutes of Health guidelines on the use of laboratory
animals and ethics approval by the University of Calgary Animal Care Committee to study
the biology of pediatric and adult tumors and to test novel therapeutic agents in mouse
xenograft models. BALB/c and CB17 severe combined immunodeficiency (SCID) female
mice (Charles River Laboratories, Wilmington, MA, USA) were housed with a 12:12 h
light–dark cycle at 23 ◦C and 40–60% relative humidity and provided with commercial
rodent chow and water ad libitum. To provide insight into systemic tolerability, four
BALB/c mice were treated with 0, 50, 100, or 200 mg of RBL per kg of body weight (mg/kg)
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in 0.1 mL PBS by oral gavage. After two weeks, tissues from the brain, heart, kidney, liver,
lung, and spleen were isolated and sectioned for hematoxylin and eosin staining. The slides
were independently analyzed by a pathologist at the University of Calgary’s Department of
Pathology & Laboratory Medicine that was not associated with the project. For xenograft
experiments, 36 SCID mice were randomized into treatment groups. To validate clinically
established routes of administration using PV-10, three mice per intralesional treatment
group were used to reduce the number of animals. For the oral route of administration using
RBL, there were six mice per treatment group. At day 0, six- to eight-week-old mice were
subcutaneously injected in the right flank with 5 × 105 FaDu cells or 3 × 106 NTERA-2 cells
suspended in 0.1 mL PBS. After tumor cell injection, animals with detectable tumor growth
were treated with PBS, PV-10 or RBL. The mice injected with FaDu cells were treated with
0.08 or 0.24 mL of PV-10 per cm3 of lesion volume (mL/cm3) by intralesional injection. The
mice injected with NTERA-2 cells were treated with 110 or 220 mg/kg RBL by oral gavage.
Mice in the control group received an equivalent volume of PBS via the respective route
of administration. Animals were monitored daily and their tumor areas were measured
twice weekly with a vernier caliper until any mouse met the endpoint criteria. The defined
experimental endpoint was tumor width/length > 15 mm or area > 225 mm2 (three control
mice with FaDu tumors reached experimental endpoints on day 11 and one treatment
mouse with NTERA-2 tumor met humane endpoint criteria on day 20). Upon completion
of the experiments, mice were euthanized with 30–40% CO2 vol/min flow rate, followed
by cervical dislocation and visual confirmation for the absence of breathing and heartbeat
to verify death, according to standard procedures at the University of Calgary.

2.8. Statistical Analysis

Data were presented as mean ± standard deviation (SD) from three independent
experiments, unless stated otherwise. The one-way or two-way analysis of variance
(ANOVA) followed by Tukey’s post hoc test was performed at a significance of p < 0.05.
Analysis was conducted using Prism (Version 10.2, GraphPad Software, Boston, MA, USA).

3. Results
3.1. PV-10 Inhibits Growth of Diverse Adult Solid Tumor Cell Lines

To determine the effects of PV-10 on adult solid tumor cell lines with distinct molecular
and phenotypic features, we treated a panel of diverse cell lines (summarized in Table S1) with
concentrations of PV-10 ranging from 6.25 µM to 400 µM for 96 h, followed by cell viability
measurements. PV-10 decreased cell viability in a dose-dependent manner in all cell lines
tested (Figure 1A). Based on the calculated IC50 values for the cell lines (Table 1), testicular
cancer cells were highly sensitive to PV-10 treatment (mean IC50 ± SD: 37.5 µM ± 16.4 µM;
IC50 range: 23 µM–55 µM), followed by colorectal (50.4 µM ± 12.5 µM; 42 µM–65 µM), head
and neck (106.6 µM ± 29.2 µM; 67 µM–130 µM), and breast cancer (117.5 µM ± 71.0 µM;
76 µM–200 µM) (Figure 1B).

3.2. PV-10 Induces Cancer Cell Apoptosis and Autophagy

To determine whether PV-10 promotes apoptosis and autophagy in these adult solid
tumor cell lines, cells were treated with 100 µM PV-10 for 24 and 48 h. Cell lysates
were analyzed by Western blot to detect levels of markers associated with apoptosis
and autophagy induction (Figure 2A). PV-10 treatment induced markers of apoptosis
with decreased total PARP and pro-caspase-3 levels [18] in breast, colorectal, head and
neck, and testicular cancer cells (Figure 2B). Furthermore, PV-10 treatment consistently
led to downregulation of SQSTM1/p62 and upregulation of beclin-1 (Figure 2B), which
are markers for autophagy [19–21]. Altogether, these data indicate that PV-10 treatment
promotes time-dependent activation of drug-induced apoptosis and autophagy.
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Table 1. Half-maximal inhibitory concentrations (IC50) for adult solid tumor cell lines treated
with PV-10.

Tumor Cell Line IC50 (µM)

Breast
MCF-7 199.5

MDA-MB-231 76.99
T-47D 75.98

Colorectal
HCT-116 64.79

LoVo 43.96
T-84 42.37

Head and neck

CAL-27 127.3
Detroit-562 129.9

FaDu 67.09
UM-SCC-1 102.0

Testicular
NCC-IT 34.54

NTERA-2 22.77
TCAM-2 55.13

3.3. PV-10 Downregulates Key Phospho-Kinase Signaling Proteins

Next, we investigated target modulation by PV-10 on protein kinase signaling and
specific oncogenic pathways in representative cell lines from each tumor site (head and
neck: Detroit-562; breast: MDA-MB-231; testicular: NTERA-2; and colorectal: T-84). Cells
were treated with 100 µM PV-10 for 3 h, followed by analysis of kinase activity using an
array-based assay. PV-10 treatment reduced phosphorylation of several phospho-kinase
signaling proteins, including an inhibitor of autophagy, with no lysine/K (WNK) ly-
sine deficient protein kinase 1 (WNK1) [22,23], which was also the most dysregulated
candidate (Figure 3A). To validate the loss of WNK1 activity due to decreased phospho-
rylation of its threonine-60 (T60) residue (Figure 3B), we assessed the level of β-catenin,
which is regulated by WNK1 [24,25], in cells treated with 50 µM or 100 µM PV-10 for
3 h (Figure 3C). Consistent with decreased WNK1 activity, PV-10 treatment was associated
with concentration-dependent decreased levels of β-catenin (Figure 3D).
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Figure 2. PV-10 induces apoptosis and autophagy in adult solid tumor cells. (A) Adult solid tumor
cell lines treated with PBS (vehicle control) or 100 µM PV-10 for 24 or 48 h were immunoblotted with
antibodies against PARP, pro-caspase-3, SQSTM1/p62, and beclin-1 to detect markers associated
with apoptosis (decreased total PARP, increased cleaved PARP, and decreased pro-caspase-3) and
autophagy (decreased SQSTM1/p62 and increased beclin-1). β-actin was used to assess protein
loading. (B) The relative level of total PARP, pro-caspase-3, SQSTM1/p62, and beclin-1 normalized
to β-actin was determined by densitometry and the mean and distribution of each cell is shown.
* p < 0.05.

3.4. PV-10 Inhibits Cancer Cell Migration

Because WNK1 regulates cell migration [26–28] and β-catenin signaling also promotes
metastasis in head and neck cancer [29,30], wound healing assays were performed with
sublethal doses of PV-10 to investigate its effect on migration of aggressive head and neck
cancer cells (Figure 4A). Treatment of 10 µM PV-10 significantly inhibited migration of
CAL-27, Detroit-562, and FaDu cells, compared to the control (Figure 4B). A similar extent
of cell migration inhibition was observed in cells exposed to a pan-WNK kinase inhibitor,
WNK463 [31]. These results indicate that interfering with WNK1 and β-catenin, either
by treatment with PV-10 or WNK463, reduces migration of invasive types of adult solid
tumor cells.

3.5. Intralesional and Systemic Administration of PV-10 Decreases Tumor Growth In Vivo

To investigate if PV-10 is also effective in vivo, we characterized the effect of treatment
in CB17 SCID mice with subcutaneous FaDu and NTERA-2 xenograft tumors. Mice carrying
FaDu tumors responded to intralesional PV-10 with decreased tumor growth (Figure 5A).
For control mice with FaDu tumors, mean tumor size increased 108 mm2 from 66.5 mm2 to
174.5 mm2 in 11 days, reaching the experimental endpoint. By comparison, the size
of tumors treated with 0.08 and 0.24 mL/cm3 of intralesional PV-10 only increased by
45 and 38 mm2, respectively. Next, we tested systemic administration with RBL, a lipophilic
derivative of PV-10 that induced similar cytotoxicity against NTERA-2 cells in vitro (Figure 5B)
and demonstrated systemic tolerability in vivo, without specific pathology identified upon
oral treatment in normal mice (Table S2). After implantation, mice bearing NTERA-2
tumors were treated twice weekly with 110 or 220 mg/kg of RBL via oral gavage. RBL
significantly reduced tumor size at 220 mg/kg (Figure 5C). For control NTERA-2 tumors,
the tumor size increased 41 mm2 from 20.8 mm2 to 61.8 mm2 19 days post-treatment.



Cancers 2024, 16, 1520 7 of 11

By comparison, the size of tumors treated with 110 and 220 mg/kg of oral RBL only
increased by 36 and 23 mm2, respectively. In summary, PV-10 and RBL inhibit in vivo
growth of adult solid tumor cells in a dose-dependent manner by intralesional and systemic
administration, respectively.
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Figure 3. PV-10 downregulates WNK1 phosphorylation and Wnt/β-catenin signaling in adult solid
tumor cells. (A) Detroit-562 (head and neck), MDA-MB-231 (breast), NTERA-2 (testicular), and
T-84 (colorectal) cell lines treated with PBS (vehicle control) or 100 µM PV-10 for 3 h were subjected to
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β-catenin and β-actin. (D) The relative level of β-catenin normalized to β-actin was determined by
densitometry and the mean and distribution of each cell is shown. * p < 0.05.
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Figure 4. PV-10 inhibits migration of head and neck cancer cells. (A) Head and neck cancer
cells (CAL-27, Detroit-562, and FaDu) treated with PBS (vehicle control) or sublethal doses of
PV-10 (10 µM) or WNK463 (1 µM) were subjected to wound healing assays. Representative im-
ages from the start (0 h) and end point (24 h) are shown. Scale bar = 200 µm. (B) The percent wound
closure was quantified by comparison of the area containing cells at 24 h compared to 0 h and the
mean and distribution for each cell type is shown. * p < 0.05.
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Figure 5. PV-10 decreases tumor growth in vivo by intralesional or oral administration.
(A,C) CD17 SCID mice carrying FaDu (A) or NTERA-2 (C) tumors were treated with intralesional
PV-10 or oral RBL, respectively. For intralesional injections (A), mice were treated with 0.08 or 0.24 mL
of PV-10 per cm3 lesion volume (mL/cm3). For oral gavage (C), mice were treated twice weekly
with 110 or 220 mg of RBL per kg of body weight (mg/kg). Control mice received an equivalent
volume of PBS via the same route of administration. Tumor size (mm2) was regularly monitored
by vernier caliper measurements. Values represent means ± SD from 3–6 mice per treatment
group. * p < 0.05. (B) NTERA-2 cells were treated with increasing concentrations (3.125–400 µM)
of RBL for 96 h. The percent cell viability was determined by alamar blue assay and normalized to
PBS (vehicle control) treatment.

4. Discussion

In both preclinical and clinical studies, the active ingredient in PV-10, RBS, has previ-
ously demonstrated potent anti-tumor activity by intralesional injection for several types
of cancer, including skin, breast, and colon tumors. However, systemic administration of
PV-10 for the treatment of solid tumors has not been tested. To explore the use of PV-10 for
the treatment of solid tumors, we initially tested the drug in a panel of solid tumor cell
lines derived from male and female adults with breast, colorectal, head and neck, and
testicular cancers. We found that PV-10 decreased cell viability of these cancer cells in a
concentration-dependent manner. The IC50 values achieved by PV-10 in our study were
similar to other reports studying RBS, with cytotoxicity observed in the same range for
colon, gastric, neuroblastoma, and ovarian cancer cell lines [14–17]. Furthermore, there is
an appreciable therapeutic window in comparison to the cytotoxicity of PV-10 observed in
normal fibroblast cells [15,16,32]. Our results indicate that PV-10 induces cytotoxicity in a
broad range of adult solid tumor cells.

To further characterize PV-10-mediated cytotoxicity, we next investigated the mech-
anism of cell death. Previous studies have shown that RBS and PV-10 primarily induce
cell death by apoptosis [14–17,32]. Our analysis revealed a decrease in total PARP, likely
due to caspase-mediated cleavage, upon treatment with PV-10, indicating drug-induced
apoptosis [18]. Accordingly, the level of pro-caspase-3 was also reduced in all PV-10-treated
cells except MCF-7, which do not express caspase-3 [33,34], likely due to the activation
of cleaved caspase-3. Based on PV-10-induced lysosome degradation [15] and its role in
autophagic cell death [35], we also posited the potential for autophagy-induced cell death.
Remarkably, PV-10-treated cells had consistent degradation of SQSTM1/p62, which is re-
lated to autophagic flux [19]. Additionally, PV-10-treated cells also upregulated expression
of beclin-1, which contributes to autophagic cell death [21,36]. In some cells, conversion
of LC3B-I to LC3B-II was also noted; however, LC3 levels may not always accurately
represent autophagic flux due to degradation of LC3B-II itself during autophagy [20]. Alto-
gether, our data suggest that PV-10 induces cell death by a combination of apoptotic and
autophagic pathways.

Next, we investigated the effect of target modulation of PV-10 on signaling in specific
oncogenic pathways. Using an array-based assay, we observed that short-term exposure to
PV-10 downregulates protein kinase activity. Notably, the most dysregulated kinase in the
screen was WNK1, which may explain the PV-10-induced autophagy due to inhibition of
autophagy by WNK1 [22,23]. WNK1 also regulates Wnt signaling through β-catenin [24,25],
which was decreased in PV-10-treated cells with less activity of WNK1. WNK1 has been
implicated in tumor cell migration and invasive characteristics in breast [26,27], lung [37],
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and prostate [38] cancers. Inhibition of WNK signaling using the allosteric inhibitor
WNK463 [31] has been shown to decrease epithelial–mesenchymal markers and reduce
invasive potential [27], which is also observed with the knockdown of WNK1 [26,28,37]. We
show that treating cells with PV-10 or WNK463 significantly reduces the migratory capacity
of tumor cells in a similar fashion. WNK1 also regulates Wnt signaling by preventing degra-
dation of β-catenin and inhibition of WNK signaling prevented tumor growth in mice [25].
Consequently, inhibition or loss of β-catenin attenuates cell migration and invasive proper-
ties of head and neck cancer cells [29,30]. Our data provide evidence of PV-10-mediated
downregulation of signaling pathways, including WNK1 and Wnt/β-catenin signaling.

Having determined that PV-10 is cytotoxic to adult solid tumor cell lines in vitro,
we then tested in vivo activity using subcutaneous head and neck and testicular tumor
xenografts in mice. Because these experiments primarily aimed to evaluate the effect of
PV-10, all tumors were generated in female mice for practical reasons to minimize con-
founders. Consistent with clinical studies testing PV-10 by intralesional injection [6–11],
we found that pharmacologically relevant doses of intralesional PV-10 induced significant
tumor growth inhibition in immunodeficient mice with FaDu tumors. Further supporting
tumor regression, PV-10-treated mice had reduced average tumor masses than control mice.
Uniquely, we also discovered that RBL, a lipophilic derivative of PV-10 to enhance oral
bioavailability, has anti-tumor activity when delivered systemically. NTERA-2-bearing
mice orally treated with RBL had significantly reduced tumor growth and a trend towards
improved survival. Because PV-10 has been shown to induce anti-tumor immune responses
and immunogenic cell death [13,14], we anticipate that the effect of PV-10 would be aug-
mented in an immunocompetent model. Demonstrating systemic tolerability, analysis
of hematoxylin and eosin staining by an independent pathologist found no evidence of
specific pathology or significant acute or chronic inflammation in the brain, heart, kidneys,
liver, lungs, or spleen of normal mice orally treated with increasing concentrations of
RBL for two weeks. Several studies have established that intralesional treatment with
PV-10 also improves the response at distant non-target lesions [6,9,13], highlighting the
importance of understanding systemic responses to PV-10. Future studies should further
evaluate the effect of various doses through systemic administration in combination with
standard therapies.

5. Conclusions

In summary, this study provides preclinical proof-of-concept data supporting the
efficacy of PV-10 in a broad panel of adult solid tumors. Mechanistically, we identify
that PV-10 downregulates WNK1 and Wnt signaling through the loss of β-catenin, ul-
timately inhibiting cell migration and inducing cell death through both apoptotic and
autophagic pathways. Finally, we demonstrate the clinical utility of PV-10 and RBL in vivo
by intralesional or systemic administration, a novel route of administration, in tumor
xenograft mouse models. In conclusion, our data provide essential mechanism-based
evidence and biomarkers of activity to support further clinical studies of PV-10 in cancer
treatment protocols.
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