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Simple Summary: Resistance to the cell death of neoplastic cells represents one of the main lim-
itations for cancer treatment. The following review describes, in different types of leukemia, the
molecular mechanisms driving the new regulated cell death (RCD) processes and their de-regulation.
Furthermore, renowned or newly characterized pharmacological strategies, able to modulate the
specific mechanisms of RCD, will be addressed.

Abstract: Hematological malignancies are among the top five most frequent forms of cancer in
developed countries worldwide. Although the new therapeutic approaches have improved the
quality and the life expectancy of patients, the high rate of recurrence and drug resistance are the
main issues for counteracting blood disorders. Chemotherapy-resistant leukemic clones activate
molecular processes for biological survival, preventing the activation of regulated cell death pathways,
leading to cancer progression. In the past decade, leukemia research has predominantly centered
around modulating the well-established processes of apoptosis (type I cell death) and autophagy
(type II cell death). However, the development of therapy resistance and the adaptive nature of
leukemic clones have rendered targeting these cell death pathways ineffective. The identification of
novel cell death mechanisms, as categorized by the Nomenclature Committee on Cell Death (NCCD),
has provided researchers with new tools to overcome survival mechanisms and activate alternative
molecular pathways. This review aims to synthesize information on these recently discovered RCD
mechanisms in the major types of leukemia, providing researchers with a comprehensive overview
of cell death and its modulation.
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1. Introduction

Genetic and epigenetic changes are responsible for several abnormalities in the devel-
opment of hematopoietic stem cells (HSCs). This can occur at any state of differentiation,
generating undifferentiated cell clones, characteristic of the leukemogenesis process [1].
Leukemia is defined as the clonal development of leukemic cells in the bone marrow (BM),
characterized by an uncontrolled proliferation rate and, in the case of some lymphoid
malignancies, the lymphatic tissue. Immature cells are known as “blasts”, and in the BM,
under physiological conditions, they represent about 1% of the total cellular population [2].
In acute leukemias, their concentration is greater than 20% in peripheral blood or BM, result-
ing in a faster symptoms occurrence [3]. In contrast, in chronic leukemias, the concentration
of blasts is lower than 20% and symptoms appear gradually [2]. Leukemia is responsible
for approximately 2.5% of all new tumor incidence and 3.1% of deaths worldwide; its
incidence varies with age, gender, and geographic area [4]. According to the proliferation
rate and cell lineage, it is possible to distinguish leukemia into acute myeloid leukemia
(AML), chronic myeloid leukemia (CML), acute lymphoblastic leukemia (ALL), and chronic
lymphocytic leukemia (CLL) [5,6]. Myelodysplastic syndrome (MDS) is a blood disorder
caused by progressive disruption of the normal process of differentiation within the BM,
which is associated with a high risk of degeneration into the AML phenotype [7,8]. Evasion
of cell death mechanism(s) is a common feature of all malignancies due to the activation of
molecular pathways which promote the survival of the neoplastic clone [9], with a conse-
quent resistance to anticancer treatments [10]. During leukemia treatment, the progressive
selection of subclones leads to the lack of response to conventional therapies and to the
clonal expansion of leukemic stem cells (LSCs), which compete with normal HSCs to grad-
ually replace them in the BM niche [11]. Cell death is an evolutionarily conserved process,
with a pivotal role in maintaining cell homeostasis, whose alteration is strictly involved
in carcinogenesis. Indeed, the activation of cell death following chemo/radiotherapy
treatments underlines the importance of this mechanism in tumor regression [12,13]. It is
possible to differentiate accidental cell death (ACD), an unregulated physiological mecha-
nism triggered by unexpected damage, from RCD. The latter is a process occurring under
physiological conditions and is recognized as programmed cell death (PCD), occurring
without perturbation to homeostasis [12,13]. Adhering to the NCCD guidelines enabled the
classification of several types of RCD that may manifest a phenotype which blends charac-
teristics of both apoptotic and necrotic cell death. This classification was based on biological,
morphological, and functional attributes [14,15]. Using these parameters, it was feasible to
identify intrinsic and extrinsic apoptosis, autophagy-dependent cell death (ADCD), necrop-
tosis, pyroptosis, ferroptosis, parthanatos, NETosis, immunogenic cell death (ICD), entosis,
mitochondrial permeability transition (MPT)-driven necrosis, and lysosome-dependent
cell death (LDCD) [14,15]. The molecular mechanisms underlying autophagy and apopto-
sis have been well characterized in both physiological and pathological contexts such as
cancer, and have been extensively studied for the treatment of AML, ALL, CML, CLL, and
MDS [16,17]. The apoptotic pathway in most tumors, including leukemias, is altered or
even blocked because of gene mutations or functional alterations in pro-apoptotic proteins.
An in-depth understanding of the molecular processes that govern RCDs, as alternative
pathways to the apoptotic one, is fundamental for a better understanding of the neoplastic
process, offering a considerable advantage from a therapeutic point of view. Several cell
death regulators have been identified as molecular players able to activate and execute
their respective RCD pathways, representing potential therapeutic targets (Table 1). The
activation of RCD pathways, directly or indirectly, can modulate the effectiveness of CAR-T
immunotherapy, which is a therapy approved by the US Food and Drug Administration
(FDA) for the treatment of some types of leukemia, ALL, diffuse large B-cell lymphoma
(DLBCL), follicular lymphoma (FL), mantle cell lymphoma (ML), and multiple myeloma
(MM) [18]. Tumor cells bearing a silenced apoptotic machinery are insensitive to the action
of CAR-T. In addition, the molecules released by the execution of the RCD pathways can
positively or negatively modulate the effectiveness of the CAR-Ts themselves, as reported
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for numerous damage-associated molecular patterns (DAMPs) such as high-mobility group
box 1 (HMGB1), which, if on the one hand they increase the functionality of the CAR-Ts,
on the other hand they sensitize their cytotoxicity linked to the excess release of some
pro-inflammatory molecules [19,20]. It is becoming clear that none of these pathways oper-
ate alone, but in an intricate crosstalk, sharing different molecular players. The crosstalk
between the pathways of apoptosis, necroptosis, and pyroptosis has been identified and has
led to the conceptualization of a general cell death phenomenon called PANoptosis, where
the formation of a single molecular complex, the PANoptosome, orchestrates the activation
of the three RCD pathways [21]. The crosstalk makes it difficult to know when and which
pathway will be activated following therapeutic treatment in a condition of inactivation of
apoptosis. In this review, we have collected studies connecting the main types of leukemias
to the new classified RCD processes, providing an overview of the deregulated death
pathways and highlighting the consequent impact on leukemogenesis. We emphasize
that among the emerging mechanisms of cell death, inducing necroptosis, ferroptosis, and
parthanatos may be regarded as viable alternatives for activating tumor-selective RCD in
leukemia. Additionally, targeting specific essential cellular organelles, as seen in LDCD and
(MPT)-driven necrosis, also proves to be effective. Moreover, stimulating ICD constitutes a
novel immunotherapy approach, guiding the immune system toward the elimination of
neoplastic clones. However, pyroptosis acts as a double-edged sword, overcoming resis-
tance to cell death, but also potentially promoting oncogenesis through NLR family pyrin
domain containing 3 (NLRP3) inflammasome-mediated inflammation [22]. Maintaining
the correct balance of NETosis and neutrophil extracellular traps (NETs) production may
regulate the immune response, tipping the scales against tumor cells (Figure 1) [23]. One
potential strategy for eradicating neoplastic cells involves re-establishing the regulatory
homeostasis of RCD processes, preventing the activation of pro-tumor inflammatory cell
deaths and enhancing the tumor-selectivity of drugs.
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Table 1. Summary of the key biomarkers for identifying the potential targets for overcoming cell
death resistance in leukemia cells.

RCD POTENTIAL DRUG TARGETS

Necroptosis RIPK1, RIPK3, MLKL, TNFR1, JNK, p38, CYLD

Pyroptosis NLRP1, NLRC4, AIM2, IFI16, caspase 1, GSDMD, HMGB1

ICD CALR, HSP70, HSP90, HMGB1, P2X7, ATP, PD1

Ferroptosis GPX4, Ferritin, GSH, LOXs, cysteine, NRF-2, JNK, p38, sXc−,
Aldh3a2, TXNRD1

LDCD TPC2, CTSB, CD20, ABCA3

Parthanatos ERK1/2, PARP-1, AIF, γH2AX, NAMPT

MPT-driven necrosis CBRs

2. Regulation of Necroptosis in Leukemia

Necroptosis is a caspase-independent process regulated by three molecular players,
known as receptor-interacting serine/threonine-protein kinases 1 and 3 (RIPK1-RIPK3)
and pseudokinase mixed lineage kinase like (MLKL) able to control different cellular re-
sponses [24]. Necroptosis, one of the better characterized forms of regulated necrosis [25],
displays specific features such as cell enlargement, plasma membrane rupture, transparent
cytoplasm, and organelle dilatation, and shares some morphological characteristics with
apoptotic cells [26]. The role of necroptosis in cancer is not obvious since, for some type of
cancers, it has been implicated in the inhibition of tumorigenesis and metastasis, whereas
for others it is linked to increased cancer progression and metastasis. However, this dual
role remains to be explored, but undoubtedly the regulation of necroptosis has far-reaching
effects both in maintaining cellular health and as a target for disease treatment [27]. Notably,
considering that resistance to apoptosis may contribute to leukemogenesis, necroptosis
may provide a different approach to overcome treatment resistance by improving drug
response. Thus, a growing arsenal of compounds and multiple therapeutic agents have
been reported to modulate necroptosis in tumor cells by circumventing acquired or intrinsic
apoptosis resistance [27]. The inactivation of RIP1/RIP3 signaling significantly increases
the responsiveness of AML cells to interferon-γ (IFN-γ)-induced differentiation. This
implies that the inhibition of necroptotic signaling, particularly targeting RIP1 and RIP3,
in conjunction with IFN-γ or other differentiation inducers, could be beneficial [28]. An-
other study demonstrated reduced or absent expression of RIPK3 in human AML primary
samples without variations in RIPK1, highlighting the potential of tumor cells to escape
necroptosis to survive [29,30]. Interestingly, AML cells carrying the most frequent fms-like
tyrosine kinase 3-internal tandem duplication (FLT3-ITD) mutations express robust levels
of RIPK1 [31]. ALL cells exhibit a general dysregulation of cell death, e.g., by overexpres-
sion of inhibitor of apoptosis (IAP) proteins, which makes them resistant to chemotherapy
treatments [32]. In addition, the sensitivity to RIPK1-dependent cell death has previously
been demonstrated to represent a particular vulnerability of ALL refractory and recur-
rent patients, which has remained unexploited by conventional chemotherapy. Notably,
RIPK3-dependent necroptosis activation downstream of RIPK1 contributes significantly to
antileukemic activity, supporting the identification of RIPK3 as a tumor suppressor [33].
CLL patients exhibit a dysregulated necroptosis mechanism due to RIPK3 and cylindro-
matosis (CYLD) downregulation, which may explain why malignant B cells accumulate in
CLL patients [34]. Several human hematologic malignancies exhibit abnormal expression
of lymphoid enhancer-binding factor 1 (LEF1), a crucial transcription factor of the Wnt/ß-
catenin pathway and a member of the LEF/T-cell factor (TCF) family [34]. Particularly
LEF1 has been found to be a repressor of CYLD. Its high expression is a prognostic factor in
CLL and correlates with the low expression of CYLD [35]. Thus, restoring the necroptotic
pathway by targeting the LEF1–CYLD axis may provide a novel strategy for the treatment
of CLL. However, whether and how RIPK1 is implicated in CLL has not been fully explored
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yet. By analyzing public transcriptomic data, RIPK1 mRNA levels were observed to be
downregulated in some B-cell tumors [36]. Unfortunately, little progress has been made in
investigating necroptosis in CML, and likely also for its good prognosis.

3. Regulation of Pyroptosis in Leukemia

Pyroptotic cell death was initially characterized as a spontaneous immune mechanism
in response to pathogens which occurs as a result of the gasdermine (GSDM)-mediated
pore assembly in the plasma membrane followed by the release of the inflammatory cy-
tokines such as interleukin-1 beta (IL-1β) and interleukin-18 (IL-18) into the surrounding
microenvironment [37]. Pyroptosis is a process strictly dependent on the activation of
the inflammasomes, multiprotein oligomeric complexes with cytosolic localization, whose
formation requires the assembly of simple subunits composed of an intracellular recep-
tor/sensor, an adapter protein, and an effector enzyme which initiates the mechanism [38].
Elevated IL-1β levels, coupled with the hyperactivation of the NLRP3 inflammasome, are
frequently observed in hematologic malignancies, and exhibit a strong correlation with
tumor progression and unfavorable prognosis [22]. Several scientific studies found anoma-
lies and polymorphisms in inflammation-related genes such as NF-κB, NLRP3, IL-1β, and
IL-18, making them potential prognostic markers for hematological tumors [39–41]. The
activation of NLRP3 in leukemia is associated with its pro-inflammatory phenotype, yet it
seems to be decoupled from the induction of pyroptosis [42]. To induce inflammasomes
and pyroptosis in leukemic models, various compounds have been identified that activate
intracellular sensors distinct from NLRP3 [43]. Additional studies would be essential to
understand how to modulate the pyroptotic process by going deeper into the molecular
mechanisms underlying leukemia and the potential therapeutic strategies. In AML, the
constitutive activation of KRAS and of the MAPK pathways are crucial events for tumor
initiation and progression [44]. The interaction between KRAS and RAC1 increases reac-
tive oxygen species (ROS) production and NLRP3 priming, highlighting a functional link
between NLRP3 inflammasome activation and the MAPK pathway [45,46]. The high levels
of NLRP3 expression found in AML are also associated with those of the Aryl hydrocar-
bon receptor (AHR), implicated in immune system regulation, especially in T helper cells
(Th cells) subset development [47]. Overexpression of NLRP3 and AHR resulted in an
imbalance of Th22 populations at the expense of Th1, leading to impaired differentiation
and AML progression [47]. Moreover, various studies have linked the activation of the
NLRP3 inflammasome and the production of IL-1β to the deterioration of the structure and
function of the BM [48,49]. Because of the basal activation of the NLRP3-inflammasome
in AML, which correlates with survival, it has been studied how to activate pyroptosis
through the induction of other types of inflammasomes [39,50]. The hyper activation of the
NLRP3-inflammasome and the effector caspase 1 is responsible for the drug-resistance pro-
cesses in ALL patients under glucocorticoid therapy [51]. Indeed, the enzymatic cleavage
of the nuclear receptor 3C1 (NR3C1) in the transactivation domain by caspase 1 prevents
its nuclear translocation, reducing the sensitivity to glucocorticoids, currently used in
therapy [51]. The application of CAR-T therapy, an immunotherapy approach against the
ALL cluster of differentiation 19 (CD19+) blasts, induces an alternative form of pyroptosis
which involves both GSDME/GSDMD together with a cytokine release syndrome [52].
Compared to other types of leukemia, CLL patients display diminished expression levels
of NLRP3, coupled with elevated GSDM-E. This combination is strongly associated with
an unfavorable prognosis [53]. Despite the limited empirical support, emerging evidence
suggests a potential tumor suppressor role for NLRP3 in CLL. This putative function is
attributed to its capacity to impede tumorigenesis by suppressing the expression of P2X7R,
an adenosine triphosphate (ATP) receptor [54]. Current scientific knowledge does not
show a direct link between pyroptosis and CML, but hypothesizes a possible involvement
considering the high expression levels of some cytokines involved in the pyroptotic process.
Indeed, high levels of IL-1β were found in the CML bone marrow [55], and high levels of
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interleukin-1 receptor (IL-1R) and interleukin-1 receptor accessory protein (IL-1RAP) were
found in CML LSCs [56].

4. Regulation of Immunogenic Cell Death in Leukemia

ICD is a distinctive form of RCD that plays a crucial role in activating an immune
response against cancer cells in the tumor microenvironment (TME). Unlike conventional
cell death processes, ICD induces the release of specific danger signals, known as DAMPs,
and immunostimulatory factors. These molecules alert the immune system, triggering
the recruitment and activation of antigen-presenting cells (APC) and promoting the sub-
sequent recognition and elimination of cancer cells by cytotoxic T lymphocytes [57]. Key
molecular events in ICD involve the exposure of calreticulin (CALR) on the cell surface,
the release of ATP, Heat-shock proteins (HSPs), and HMGB1, and the activation of en-
doplasmic reticulum stress responses [58]. Little evidence is reported in hematological
malignancies, including leukemia. Particularly, ICD-related DAMPs, especially CALR and
HSPs, may play a crucial role in leukemia by enhancing both innate and adaptive immune
responses [59]. Inducing ICD in leukemia cells could render them more vulnerable to the
attacks of immune system cells, thereby enhancing the efficacy of immunological therapies
and targeted immunotherapies [60]. Although in AML patients the malignant blasts exhibit
on the membrane surface several immunostimulatory signals, the activation of antitumor
immunity and ICD through natural killer (NK), CD4+, and CD8+ T cells is closely related
to the recognition of the externalized CALR (ecto-CALR) [60]. Specifically, a significant
increase in circulating CD4+ and CD8+ T lymphocytes was found upon recognition of
leukemia-associated antigens (LAA) suggesting ecto-CALR and ICD stimulation as a po-
tential strategy to improve clinical patients’ outcomes in AML [60,61]. The formation of
the immunosuppressive microenvironment in AML patients is determined by the genera-
tion of ATP following chemotherapy treatment by increasing the presence of regulatory
T lymphocytes (Tregs) and dendritic cells (DCs) [62]. Moreover, in addition to immune
system activation, the action of Tregs and DCs following chemotherapy administration in
AML activates the tolerogenic pathways necessary for ICD-related phenomena [62]. Not
many studies have been reported about ALL where prognostic predictions for stage III
children can be made by assessing the differential expression of genes associated with
DAMPs produced within the TME following ICD [63]. Notably, individuals classified in
the low-risk group exhibited enrichment in activities related to APCs, NK cells, and T cell
activation. This observation implies an inherent antitumor role attributed to ICD in the
context of ALL [63].

5. Regulation of Ferroptosis in Leukemia

The iron-dependent cell death process, known as ferroptosis, is caused by lipoxy-
genases (LOXs) lipid peroxidation of polyunsaturated fatty acids (PUFAs) in the plasma
membrane [64]. The program includes three primary metabolic processes involving thi-
ols, lipids, and iron by producing lipid peroxidation and, ultimately, cell death [64]. The
oxidative mechanisms causing ferroptosis are controlled by the heterodimeric amino acid
transporter system Xc− (sXc−), a cystine/glutamate antiporter complex able to regulate
the traffic of cystine and glutamate through the cell membrane and the enzymatic activity
of glutathione peroxidases (GPXs) [65]. Selected studies conducted on leukemia patients
indicates that the excessive intracellular accumulation of iron can significantly augment the
sensitivity of leukemia cells to ferroptosis. AML patients show high expression levels of
GPX1, GPX3, GPX4, and GPX7 genes, which probably confer resistance to ferroptosis and
appear to be promising biomarkers of poor prognosis [66]. AML cells are protected from
oxidative damage by the enzymatic activity of aldehyde dehydrogenase 3a2 (Aldh3a2),
which detoxifies the long-chain aliphatic aldehydes produced by lipid peroxidation [67].
Indeed, in AML, knockdown of Aldh3a2 encourages accumulation of toxic metabolites by
activating ferroptosis [67]. Several researchers have reported the activation of ferroptosis in
AML models, opening new scenarios for the modulation of this process [68]. Poor evidence
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exists regarding the involvement of ferroptosis in CLL. A comprehensive analysis involving
the screening of 110 ferroptotic-related genes in a CLL patient cohort led to the identifica-
tion of 14 genes with prognostic significance. These genes stratified patients into high-risk
and low-risk groups based on their expression profiles and responses to chemotherapy [69].
Additionally, the poorly expressed SLC3A2 receptor in CLL has been observed to exert
a modest detoxifying effect via the sXc− system [70]. This observation implies potential
applications in the development of ferroptosis-inducing compounds targeted against CLL.

6. Regulation of NETosis in Leukemia

NETosis is an RCD-targeting neutrophils characterized by the formation of NETs
known to play an essential role in innate immune response to infections [71]. NETs are
composed of aggregates of decondensed chromatin, granules, and cytoplasmic proteins,
which are released into the extracellular space in order to trap and neutralize the pathogen
also through the interaction between NETs and the complement cascade components [72].
Tumor-induced NETs act as a scaffold on the tumor cell, delivering pro-tumor media-
tors which accelerate mitochondrial biogenesis and cell proliferation [73]. Furthermore,
tumor-induced NETs seem to be linked to a poor prognosis, elevated thrombotic risk, and
systemic inflammation, suggesting that the inhibition of the NETs process can be used as a
therapeutic strategy against cancer [23]. In the context of leukemia, abnormal white blood
cells, including neutrophils, may experience sustained NETosis activation due to genetic
mutations. The release of DNA and cellular components can further aggravate the inflam-
matory microenvironment associated with leukemia [74]. In the AML subtype, known as
acute promyelocytic leukemia (APL), the imbalance of NETs production by neutrophils
leads to progressive endothelial damage and vascular leakage [74]. The occurrence of
NETosis is linked with the proper function of the neutrophilic cytoskeleton; in contrast, in
pathologies showing defects in actin polymerization, such as the rare form of AML known
as acute myelocaryoblastic leukemia (AMKL), NETosis cannot happen [75]. In childhood
ALL patients, although neutrophil counts are not impaired in the early stages of the disease,
it has been demonstrated the low production of NETs before therapy [76]. Following the
first remission, a significant increase in NETs production has been observed, suggesting a
possible link between the treatment response and the restoration of neutrophil immune
capacity [76]. The activation of oxidative reactions and the enzymatic activity of neutrophil
elastase (NE) are strongly reduced at the diagnosis of ALL and show a tendency to return
to physiological levels after consolidation therapy [77]. One of the best strategies in the
treatment of high-risk ALL patients is the allogeneic transplantation of HSCs. Nevertheless,
complications such as graft versus host disease (GVHD), can compromise its efficacy [78,79].
Although the role of neutrophils in CLL has traditionally been underestimated, recent stud-
ies have brought attention to a notable trend: CLL patients exhibit a higher inclination for
NETs release compared to their healthy counterparts. This phenomenon triggers intricate
transcriptional mechanisms within leukemic cells, resulting in the upregulation of CD69+,
CD80+, and CD86+ markers [80,81]. Furthermore, the existing literature establishes a clear
link between elevated NETs and an increased risk of diffuse coagulative strokes [82]. It
is plausible that the heightened susceptibility to thrombotic events frequently observed
in CLL may, in part, be rooted in dysregulated neutrophil NETosis [83,84]. In CML, it has
been demonstrated that the overproduction of NETs is a recurrent event. In addition, the
excessive production of NETs induced by the tyrosine kinase inhibitor (TKI) ponatinib
probably correlates with increased vascular toxicity [85]. Furthermore, in CML, both neu-
trophils Ph+ e Ph− populations appear to increase the production and the release of NETs
in response to platelet-activating factor (PAF) stimulation, suggesting that the increase in
NETs does not depend on the presence of the Philadelphia (Ph) chromosome [86]. In the
context of leukemia, NETosis is associated with a range of negative impacts, including
chronic inflammation, alterations in the microenvironment, and the worsening of symp-
toms, suggesting the imperative need to inhibit the cell death process to counteract the
pathology. Treatment with DNAse-1 significantly reduces the chromatin agglomerates of



Cancers 2024, 16, 1657 8 of 28

NETs, opening new approaches for the treatment of hemorrhagic events in APL through
the modulation of NETosis [74]. In addition, light chain 3 (LC3) autophagy inhibitors, such
as wortmannin and 3-MA, prevent the development of NETs production, indicating the
direct link between autophagy activation and NETs formation in neutrophils [87].

7. Regulation of Lysosome-Dependent Cell Death in Leukemia

Lysosomes are intracellular organelles responsible for the removal of macromolecules
through hydrolytic digestion mediated by acidophilic enzymes, leading to the recycling of
many cellular components [88]. When lysosomes are damaged, the lysosomal membrane
permeabilization (LMP) can cause the cytoplasmic release of lytic enzymes and activate
molecular pathways leading to the so-called LDCD [88]. Despite LDCD being first defined
many years ago, the whole process is still not fully understood [89]. The cytoplasmic
acidification and the proteolytic action of enzymes such as cathepsins (CTSs), chymotrypsin,
and proteases following LMP are the main cause of generalized intracellular damage and
of LDCD [90]. Overexpression of lysosomal enzymes e.g., heparanase and CTSs, have
been reported in several cancer types such as gastric cancer, colorectal cancer, melanoma,
glioma, lung cancer, and leukemia [91,92]. Furthermore, the stabilizing action on the
lysosomal membrane carried out by HSP70 was also studied, which can be compromised
in cancer causing the increased tendency of lysosomes to LMP [93]. Lysosomal fragility
can be harnessed both to selectively eliminate neoplastic clones and to prevent lysosomal
drug clearance, thereby limiting the development of drug resistance [94]. Morphological
and functional alterations of lysosomes have been reported in AML, but little is known
about LDCD [95]. In AML, the high oxidative rate is responsible for the increase in
enzymatic activity, lysosomal mass, and membrane damage, which contribute to rise
lysosomal fragility without changing their intracellular number [96]. Dysregulation of
lysosomes promotes drug clearance and chemoresistance processes, opening the possibility
of using lysosome-selective drugs to improve the response to treatments in AML [96].
Hence, inhibiting the production of lysosomal membrane proteins can be used to limit
the activation of pro-survival autophagy, causing LDCD and solving the issue of drug
resistance in AML [97].

8. Regulation of Others RCD in Leukemia

In the landscape of leukemia research, some of the mechanisms in RCD remain
relatively unexplored. Limited insights into these pathways have prompted investigations
into novel drug interventions designed to activate and modulate these elusive mechanisms.
The RCD process known as parthanatos has been disclosed during the study of oxidative
damage induced by diabetic hyperglycemia [98]. The pivotal player of the parthanatos
molecular mechanism is poly (ADP-ribose)-polymerase-1 (PARP-1), a nuclear enzyme
involved in DNA repair and in the regulation of cell division due to its interaction with
DNA helicases, topoisomerases, and transcription factors [99]. Many of the roles played
by PARP-1 are based on the synthesis of poly (ADP-ribose) (PAR) and their binding
to specific targets, including histones on promoters, can modify gene expression and
chromatin acetylation levels [100]. Despite a dysregulation of parthanatos being found in
several pathological conditions such as retinal diseases, diabetes, cardiovascular diseases,
neurological diseases, and solid cancers, limited information is available about its regulation
in leukemia [101–103]. These are conflicting and currently limited to AML, and there is
still much to uncover regarding its regulatory mechanisms, such as metabolic balancing of
NAD+ and ATP, alternative activations of PARP-1 and epigenetic targets of PARylation,
parthanatos holds the potential to emerge as a possible weapon against hematological
malignancies [104].

9. RCD Mechanisms in MDS

The evasion of regulated cell death mechanisms in MDS has been inadequately
described. RNA-Seq investigation of CD34+ bone marrow cells from MDS or chronic
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myelomonocytic leukemia (CMML) patients revealed an overexpression of the necroptotic
executor MLKL and its relationship with anemia severity. Furthermore, elevated RIPK1
expression supports its role as an inflammatory mediator, classifying it as a predictor of
poor overall survival, albeit the mechanism remains unknown [105]. Elevated levels of toll
like receptor 4 (TLR4) and TNF receptor-associated factor 6 (TRAF6) have been identified in
hematopoietic stem/progenitor cells of MDS patients, contributing to the hyperactivation
of the NLRP3 inflammasome via NF-κB [106]. This condition is further exacerbated by
mutations in the alarmin S100A9, an immunogenic protein secreted by neutrophils, which
instigates an inflammatory response through the TLR4 receptor [107]. Additionally, S100A9
amplifies oxidative stress and activates pyroptosis via NLRP3 in nascent bone marrow
cells [106,107]. The overexpression of GSDM-D disrupts the inflammatory homeostasis of
the bone marrow in MDS mice, leading to leukocytosis, accelerated aging, and anemia [108].
In the progression of MDS, bone marrow failure and reduced hepatic hepcidin result in
inefficient intestinal iron uptake, causing significant iron overload [109]. Elevated oxidative
stress in erythroid progenitors is a primary contributor to MDS-associated anemia [110].
However, the onset of cytopenia as a side effect is a potential concern following the acti-
vation of ferroptosis in MDS with decitabine (DAC) treatment [111]. Reduced neutrophil
microbicidal ability in MDS patients is, in part, attributed to impaired myeloperoxidase
(MPO) enzymatic activity, resulting in inadequate ROS release and NETs production [112].
Unfortunately, there is no drug currently that significantly enhances NETs production and
activates the adaptive immune system in MDS. Granulocyte colony-stimulating factor
(G-CSF) remains the only molecule utilized to reactivate NETs formation in neutrophils,
although its clinical efficacy in preventing infections in MDS patients has not been notably
improved [113].

10. Pharmacological Modulation of Novel RCD Pathways in Leukemia: Unlocking
Therapeutic Strategies

Several studies have demonstrated how some RCD pathways can be activated as a
response to the action of different drugs, alone or in combination with other treatments.
This effect could constitute a crucial strategy to overcome cell death resistance, impacting
both prognosis and patients’ outcomes. In the following paragraphs, we provide a summary
of RCDs’ activation mediated by different molecules. These are mostly preclinical studies,
except for two treatments in combination, capable of activating two specific cell death
pathways in vitro, such as pyroptosis and ICD, and are currently being investigated in
clinical trials.

10.1. Modulation of Necroptosis

Despite current aggressive treatment strategies, the prognosis of AML remains poor
due to its low survival and high relapse rate [114]. Moreover, the cell-permeable piperazinyl-
quinazolinone compound Erastin, exhibiting lipid peroxidation and oncogene-selective
lethality, has been shown to cause mixed cell-type deaths in vitro, including ferroptosis
and necroptosis, via the c-Jun-NH(2)-terminal kinase (JNK) and p38 pathway, making
AML cells more susceptible to chemotherapy drugs in an RAS-independent manner [115].
A therapeutic breakthrough in AML demonstrated that Birinapant, a synthetic small
molecule inhibitor of IAP family proteins, is particularly effective when combined with the
clinical caspase 8 inhibitor Emricasan/IDN-6556, promoting necroptosis. Notably, while
caspase 8 deletion sensitizes AML cells to Birinapant, the combined loss of caspase 8 and
necroptosis effector MLKL prevents Birinapant/IDN-6556-induced death, demonstrating
that caspase 8 inhibition sensitizes AML cells to Birinapant-induced necroptosis [116]. A
new antagonist of IAP proteins, BV6, classified as a second mitochondria-derived activator
of caspases (SMAC) mimetic, offers good therapeutic opportunities [27]. The clinical
utility of SMAC mimetic alone and/or in combination with therapy (e.g., epigenetic and
chemotherapeutic drugs) indicates that necroptosis may represent, in AML, a different
mechanism of cell death that is an alternative to apoptosis [27]. BV6 cooperates with
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the demethylating agent such as 5-azacytidine (5AC) and DAC to induce cell death in
AML following the autocrine/paracrine cycle of tumor necrosis factor α (TNFα) [117].
Interestingly, the BV6/DAC co-treatment bypasses apoptotic resistance switching versus
the necroptotic pathway after caspase inhibition [117]. The same effect was found when
BV6 acts synergistically with cytarabine (AraC), a key chemotherapy drug used in the
treatment of AML [118]. Furthermore, BV6 acts synergistically with histone deacetylase
inhibitors (HDACi), such as MS275 and SAHA, to induce necroptotic cell death when
caspase activation is inhibited [119]. BV6 also sensitizes FLT3-ITD AML cells toward
apoptosis and necroptosis, both alone and in combination with death ligands, for example,
CD95L or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) [31]. Together
with SMAC mimetics, inhibition of the transcription factor Homeobox protein/Pre-B-
cell leukemia homeobox (HOX/PBX), belonging to the homeobox family, also induces
necroptosis, which can be blocked by protein kinase C (PKC)-mediated signaling. Using
the short cell-penetrating peptide HXR9, which replicates the conserved hexapeptide
in HOX proteins, it is possible to disrupt the connection between HOX and its binding
partner PBX, resulting in necroptotic cell death and decreased tumor development [120].
Regardless of resistance to apoptosis, AML cells can be selectively targeted by the GM-CSF
diphtheria toxin (DT-GMCSF) leading to apoptosis and caspase-independent necroptosis
simultaneously [121]. Granulocyte-macrophage colony-stimulating factor receptor (GM-
CSFR) is upregulated in AML and drives tumor growth [122]. According to a mechanism
of inhibition of protein synthesis through adenosine diphosphate (ADP)-ribosylation of
eukaryotic translation elongation factor-2 (eEF-2), treatment with diphtheria toxin alone is
sufficient to simultaneously activate the cell death pathways of apoptosis and necroptosis
in leukemic cells compared to normal hematopoietic cells [121]. Although this treatment
has so far demonstrated good clinical effectiveness, other fusion toxin drugs, e.g., DT-
IL3, are currently undergoing clinical trials to treat AML to mitigate the toxicity [121].
As in AML, small molecule SMAC mimetics (i.e., BV6, LCL161, and Birinapant) and
demethylating agents synergize to induce cell death via both the apoptotic and necroptotic
pathways [123]. BV6 and 5AC cooperate to trigger caspase-dependent cell death, but
when caspase activation is blocked, the co-treatment results in caspase-independent non-
apoptotic cell death. This indicates a switch from apoptosis to necroptosis, which represents
an alternative approach for the treatment of ALL [123]. In ALL cells lacking FAS-associated
death domain protein (FADD) and caspase 8, and being refractory to apoptosis, BV6
and TNFα have been able to activate the necroptosis pathway [124,125]. Dexamethasone
(DEXA) and BV6 together can trigger necroptotic cell death in ALL cells that express
the RIPK3 protein but lack caspase activation due to low caspase 8 expression or its
pharmacological suppression [126]. The co-treatment promotes the loss of mitochondrial
membrane potential (MMP), ROS generation, BCL2 homologous antagonist/killer (BAK)
activation, and interruption of mitochondrial respiration [126]. Proteasome inhibition has
shown potential as an anticancer drug, but failure of the ubiquitin-proteasome system (UPS)
can result in several diseases, including carcinogenesis [127]. When RIPK3 kinase activity is
intact and MLKL is available, the proteasome inhibitors MG132 and Bortezomib can trigger
RIPK3-dependent necroptosis in Jurkat T-cell leukemia cell lines without inhibiting caspase
8. However, when MLKL recruitment to RIPK3 is blocked, RIPK3 binds RIPK1, FADD, and
caspase 8 to create a complex that triggers apoptosis [128]. For the treatment of patients
with chronic or accelerated CML who are resistant or intolerant to TKIs, the natural alkaloid
Homoharringtonine (HHT) induces a distinct pathway of necroptosis mediated by TRAIL
via the RIPK1/RIPK3/MLKL signaling [129]. HHT was recently approved by the FDA
as an alternative to cycloheximide (CHX)-mediated necroptosis, which is cytotoxic and
unsuitable for the treatment of cancer patients [129]. LQFM018, a piperazine-containing
drug, induces CML cell death in vitro activating necroptotic signaling, probably with the
involvement of the dopamine D4 receptor [67]. LQFM018 triggers the characteristic events
of necroptosis, including the mitochondrial damage followed by ROS production and
the increase in TNF-R1 protein and CYLD mRNA expression levels, without involving
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caspase 3 and 8 NF-κB activation [130]. Since these results also revealed low toxicity
in mice in vivo, further studies are needed to better define the mechanisms involved in
its antitumor effects. For the treatment of CLL, restoring the necroptotic pathway by
targeting the LEF1-CYLD axis may provide a new therapeutic strategy. Ethacrynic acid
(EA), a diuretic drug that is a particular antagonist of Wnt signaling, has been shown to
specifically kill CLL cells by interfering with the binding of LEF1 to DNA and restoring
CYLD expression [131]. Furthermore, it appears that elevated levels of CXCL-1 in CLL cells
regulate LEF1 expression, resulting in dysregulated necroptosis. Together with TNF- α and
the pan-caspase inhibitor z-VAD-fmk (z-VAD), selenite can block the expression of CXCL1
and repair the defective necropotonic pathway of CLL cells (Table 2) [132].

Table 2. Overview of the drugs inducing necroptosis and the related pathways involved in each
reported leukemia subtype.

Disease Drug Target Mechanism of Necroptosis Ref.

AML Birinapant + Emricasan cIAPs,
Caspase 8

TNFR1 signaling, RIPK1/RIPK3/
MLKL dependent [116]

BV6 + 5AC or DAC cIAPs, DNA methylation RIPK1/RIPK3/
MLKL dependent, autocrine TNFα [117]

BV6 + AraC cIAPs, DNA synthesis RIPK1/RIPK3/MLKL dependent,
autocrine TNFα [118]

BV6 + MS275
BV6 + SAHA

cIAPs,
HDACs

RIPK1/RIPK3/MLKL dependent,
autocrine TNFα [119]

BV6 + DAMPs RIPK1 Caspase-dependent and independent
cell death [31]

HXR9 HOX/PBX
dimers RIPK1 dependent [120]

DT-GMCSF Inhibition of
protein synthesis RIPK1 dependent [121]

Erastin Unknown RIPK3 dependent; c-JNK and p38
dependent [115]

ALL BV6 + DEXA cIAPs,
Glucocorticoid receptor

RIPK3/MLKL dependent,
BAK activation [126]

BV6, LCL161,
Birinapant + 5AC or DAC

cIAPs,
DNA methylation

RIPK1/RIPK3/
MLKL dependent, autocrine TNFα [123]

MG132, Bortezomib Proteasome RIPK3/MLKL dependent [128]

CML CHX, HHT Unknown TRAILR/RIPK1/RIPK3/MLKL [129]

LQFM018 Unknown TNFR1 and CYLD
upregulation [130]

CLL EA LEF1 CYLD activation [131]

sodium selenite +
TNF-α + z-VAD CXCL-1 RIPK1/RIPK3/MLKL dependent [132]

10.2. Modulation of Pyroptosis

Several scientific papers have demonstrated how some RCD pathways can be activated
as a response to the action of different drugs, alone or in combination with other treatments.
This effect could constitute a crucial strategy to overcome cell death resistance, impacting
both prognosis and patients’ outcomes. Combined treatment between Dasatinib and IFN-α
activates the pyroptotic pathway and is in phase IV of the clinical trial, conducted to expand
treatment options of patients with Ph+ ALL during long-term maintenance therapy [133].
The study investigated the effectiveness of the combination therapy, demonstrating good
tolerability of the drugs and a better response of patients to this treatment, compared to
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those ones treated with the TKI alone (chiCTR1800015763) [133]. The inhibition of the IL-1β
pathway by Anakinra, an antagonist of the IL-1R1 or through the monoclonal IL1RAP
antibody mAb81.2, attenuated the expansion of CML LSCs [134]. Moreover, treatment
with the inhibitor of the dipeptidyl peptidases DPP8/DPP9, Val-BoroPro, induces pyrop-
tosis through the activation of the NLRP1 sensor in AML [135]. The pyroptotic pathway
can be also activated after the treatment with natural compounds such as curcumin and
Ardisianone. Curcumin, an active molecule extracted from turmeric, can simultaneously
activate the NLRC4, AIM2, and IFI16 inflammasomes, promoting the activation of caspase
1, the GSDM-D cleavage, and pyroptotic cell death [136]. Ardisianone, a natural benzo-
quinone extracted from the roots and stems of Ardisia virens, activates pyroptosis through
the negative modulation of IAPs and the caspase-1-mediated GSDM-D cleavage, allowing
for monocytic differentiation towards a macrophagic phenotype (Table 3) [137].

Table 3. Overview of the drugs inducing pyroptosis and the related pathways involved in each
reported leukemia subtype.

Disease Drug Target Mechanism of Pyroptosis Ref.

AML Val-BoroPro DPP8/DPP9 NLRP1 mediated caspase
1 activation [135]

Curcumin ISG3 Caspase 1 mediated
GSDM-D cleavage [136]

Ardisianone IAPs,
TNFR2

Caspase 1 mediated GSDM-D
cleavage [137]

ALL
DAS + IFN-α

Phase IV clinical trial
(chiCTR1800015763)

ABL, Src Caspase 1 mediated GSDM-D
cleavage and IL-1β release [133]

10.3. Modulation of ICD

Chemotherapy drugs, such as Anthracyclines or ionizing irradiation, can trigger the
ICD through the modulation of ICD-related DAMPs, suggesting that their action could be
fundamental during cancer development [59,138,139]. Some in vitro and in vivo studies
reported that, after chemotherapy treatment, DCs expressing indoleamine 2,3-dioxygenase
1 (IDO1) and Tregs participate in the creation of an immunosuppressive environment, and
the balance between tolerance and immunity activation could lead to several final immune
system responses [140]. In primary AML blasts and the HL-60 leukemic cell line, treatments
with Etoposide (ETO) and Daunorubicin (DNR) can induce ICD mechanisms through the
exposure on the cell surface of both CALR and HSPs and also induce the release of HMGB1
and ATP [141]. For consolidation therapy in patients with acute myeloid leukemia in first
remission, the effectiveness of the administration of anthracycline before immunotherapy
with histamine dihydrochloride (HDC) and IL-2 has been demonstrated. This study is
currently in phase IV of the clinical trial. This improvement is associated with increased
blood levels of CD8+ TEM cells, potentially due to enhanced exposure of CALR and the
activation of ICD in leukemic cells (NCT01347996) [142]. CALR is not only exposed via
exocytosis on the cell membrane after anthracycline treatment, but it is also present in the
serum of AML patients after induction therapy [143]. Moreover, the exposure of CALR in
primary human AML cells was detected in 65% of patients after the treatment with all-trans
retinoic acid (ATRA) [144]. In this context, it was also demonstrated that for both mice
and AML patients, CALR exposure on malignant blasts stimulates anticancer immunity
through type I IFNs overproduction, which activates the cytotoxic action of T and NK cells
inducing the innate and adaptative immune responses [61]. Furthermore, the activation
of the ICD in ALL has been demonstrated following treatment with CM-272, a potent
reversible inhibitor of both G9a and DNA methyltransferases (DNMTs) [145]. The use of
CM-272 has been shown to improve the in vivo and in vitro survival of hematologic ALL
models by activating the type 1 IFN response leading to the expression of IFN-stimulated
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genes (ISGs) as well as the induction of ICD [145]. Since the transmembrane protein CD47 is
overexpressed in many types of hematologic cancers and especially in ALL, where it is able
to drive cell death processes through its binding to the signal regulatory protein α (SIRPα)
or thrombospondin-1 (TSP1), the use of the first-described serum-stable CD47-agonist
peptide PKBH1 has been shown to induce ICD in ALL [146]. Indeed, PKBH1 has been
shown to induce ICD in T-ALL leukemia cell lines through the expression of CALR on the
cell surface and by releasing HSPs as well as HMGB1, shedding light on the therapeutic
potential of CD47 agonist peptides in the treatment of ALL (Table 4) [146].

Table 4. Overview of drugs inducing ICD and the related pathways involved in each reported
leukemia subtype.

Disease Drug Target Mechanism of ICD Ref.

AML ETO, DNR DNA topoisomerase II;
DNA/RNA synthesis

CALR and HSPs surface exposure,
HMGB1 and ATP release [141]

DNR + AraC DNA/RNA synthesis Increased expression of IDO1;
Tregs-dependent regulation [140]

anthracyclines +
HDC/IL-2

Phase IV clinical trial (NCT01347996)
DNA/RNA synthesis CALR exposure and HSP70 release [142]

Anthracyclines
DNA/RNA synthesis;

Topoisomerase II; nuclear and
cytoplasmatic sites

CALR exposure and release [143]

ATRA PML/RARα CALR exposure [144]

ALL CM-272 G9a and DNMTs Type 1 IFN response and ISGs
activation [145]

PKBH1 CD47 CALR exposure, HSPs and
HMGB1 release [146]

10.4. Modulation of Ferroptosis

Numerous compounds have been identified, by the scientific literature, which have the
ability to modulate ferroptosis, acting either as inhibitors or as inducers. Notably, iron chela-
tors like deferoxamine (DFO) or deferiprone (Def) have been recognized for their efficacy
in suppressing ferroptosis processes. Conversely, external agents such as ferric ammonium
citrate (FAC) or Erastin have demonstrated their capacity to elicit and promote ferropto-
sis [147–149]. Erastin, known as the inhibitor of the sXc−, can enhance ferroptosis in HL-60
cells through the activation of the JNK/p38 molecular pathway, but not ERK, increasing the
nuclear translocation of HMGB1, and also supporting the therapeutic effect of AraC and
doxorubicin (DXR) [115,150]. The transcriptional activator of p53, APR-246, alone and in
combination with the GPX4 inhibitors RSL3 and FINO2, reduces the ability of AML clones
to detoxify membrane lipid peroxidation, activating ferroptosis [151]. Ferroptosis can also
be regulated by the activity of long non-coding RNAs (lncRNAs), some of which can be
considered good prognostic markers in AML [152]. A recent characterized ncRNA, known
as CircKDM4C, acts as a microRNA (miRNA) sponge on hsa-let-7b-5p miRNA, exerting a
tumor-suppressive role by upregulating p53 and inducing ferroptosis [153]. Furthermore, in
AML, the activation of the autophagic mechanism and the subsequent induction of ferrop-
tosis is well demonstrated [154]. Dihydroartemisinin (DHA) and Typaneoside (TYP) have
shown the ability to activate the progressive autophagy-dependent ferritin degradation
via the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)
pathway, increasing oxidative damage and causing ferroptosis [155,156]. By examining
the effects of an ATRA-derived compound ATPR on AML models, it has been highlighted
that autophagy is an upstream process of ferroptosis activation, induced by nuclear factor
erythroid 2–related factor 2 (NRF-2) downregulation and ROS production [157]. The inhibi-
tion of the autophagic mechanism upon 3-methyladenine (3-MA) treatment significantly
reduces the ferroptosis caused by the TKI neratinib [158]. In ALL, the combination between
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the SMAC mimetic BV6 and the GPX4 inhibitor RSL3 activates ferroptosis through the
modulation of the redox equilibrium [159]. In addition, RSL3 can overcome resistance to
apoptotic cell death in a FADD-deficient ALL model through the activation of ferroptosis,
which can be prevented counteracting PUFAs peroxidation with the pan-LOX inhibitor
nordihydroguaiaretic acid (NDGA) [160]. Ferroptosis not only occurs as a unique death
mechanism, but can coexist with other RCD processes. The well-known antimalaria drug
Artesunate (ART) exhibited strong cytotoxic and oxidative effects in ALL by activating
ferroptosis in conjunction with apoptosis and necroptosis [161]. The mushroom-derived
component poricoic acid (PAA) triggers, in T-ALL cells, the activation of the autophagy pro-
cess via the AMPK/mTOR/ Microtubule-associated protein 1A/1B-LC3, and in secondary
ferroptosis via the GSH depletion and GPX4 inhibition [162]. In addition, it is reported that
the autophagy activator rapamycin (RAPA) can sensitize ALL cells to Erastin, activating
ferroptosis [163]. Increasing scientific evidence associates high levels of circular RNAs
(circRNAs) in the bone marrow with the development and evolution of leukemias [164].
The knockdown of the circRNA circ_0000745 in ALL patients and in leukemia cellular
models leads to cell cycle arrest, affecting the glycolytic mechanism and activating ferrop-
tosis [165]. Thioredoxin reductase 1 (TXNRD1), a flavoenzyme containing selenocysteine,
plays a crucial role in protecting against ferroptosis-induced oxidative damage. Inhibition
of TXNRD1, achieved with the TXNRD1-inhibitor auranofin, has been shown to induce
ferroptosis in CML models [166]. Conversely, ferroptosis induced using IM therapy in
CML patients leads to adverse effects, such as cardiotoxicity, due to reduced GPX4 levels,
increased p53 expression, and elevated production of ROS in cardiomyocytes. This cascade
results in elevated serum concentrations of creatine kinase (CK) and lactate dehydrogenase
(LDH) [167,168]. Due to the iron dependence of ferroptosis, treatment with DAC has been
shown to reduce the antioxidant activity of GPX4 in MDS cells, leading to increased ROS
release and the evolution of AML through ferroptosis activation [111]. This corroborates
earlier findings in both low- and high-risk MDS patients (Table 5).

Table 5. Overview of the drugs inducing ferroptosis and the related pathways involved in each
reported leukemia subtype.

Disease Drug Target Mechanism of Ferroptosis Ref.

AML Erastin Unknown GPX4 inhibition and c-JNK/p38
activation [115]

DHA, TYP
NDUFS3,

SDHB,
UQCRFS1

Ferritin degradation via
AMPK/mTOR and ROS

production, redox instability
[155,156]

ATPR NRF-2 NRF-2 downregulation and ROS
production, redox instability [157]

ALL RSL3 + BV6 GPX4 Iron-dependent PUFAs
peroxidation by LOXs [159]

RSL3 GPX4 Iron-dependent PUFAs
peroxidation by LOXs [160]

ART DNA/RNA
synthesis Iron-dependent ROS production [161]

PAA Unknown GPX4 inhibition, GSH depletion,
and ROS production [162]

Erastin + RAPA Unknown FBXW7 downregulation, VDAC3
upregulation [163]

CML Auranofin TXNRD1 TXNRD1 downregulation, cysteine
depletion, and ROS production [166]

MDS DAC DNA synthesis GSH depletion, GPX4 inactivation,
and ROS production [111]
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10.5. Modulation of LDCD

One of the best strategies to modulate lysosomal function and activate LDCD processes
in tumor cells is to act on channel proteins responsible of the ion transport to and from
the lumen of lysosomes [169]. Two-pore channel 2 (TPC2) is a cationic pore responsible
for regulating sodium and calcium levels as well as lysosomal pH, known to be highly
expressed in ALL [170,171]. Knockout or inhibition of TPC2 in ALL patients and cellular
models increases lysosomal pH and enhances the response to the cytostatic drugs vin-
cristine (VCR), DXR, and topotecan (TPT), activating CTSB-mediated LDCD [172]. A key
component of standard treatments for ALL involves the use of BCL-2 inhibitors. However,
the development of mutations can lead to therapy resistance [173,174]. The lysosomotropic
drug derived from betulinic acid, B10, has been shown to enhance the effects of the BCL-2
inhibitor ABT-263, increasing lysosomal permeabilization and activating LDCD in different
ALL models [175]. The precise mechanism underlying the induction of LMP by lysoso-
motropic drugs, such as the sigma receptor agonist siramesine, and its subsequent impact
on mitochondrial membrane potential, leading to LDCD, remains elusive. However, it
has been demonstrated that the selective killing of primary CLL cells can be achieved by
impairing the sphingolipid metabolism [176]. The use of monoclonal antibodies such as
anti CD20 and HLA-DR monoclonal antibodies triggers, in primary CLL samples, a rapid
LDCD with cytoplasmic release of CTSB without the involvement of caspases [177]. The
antimalarial drug tafenoquine (TQ) rapidly enters the lysosomes of CLL cancer cells causing
LMP, the subsequent peroxidation of lipids, and the simultaneous activation of LDCD and
mitochondrial apoptosis [178]. The impact of LDCD has not been extensively characterized
in CML, although alterations of lysosomal functions are known in this cancer disease [179].
IM acts in the cytoplasm of the neoplastic cell by preventing the autophosphorylation of the
ABL/BCR fusion protein [180]. The ATP-binding cassette subfamily A member 3 (ABCA3)
transporter is in the lysosomal membrane of CML cells, and its expression is directly related
to the sequestration of IM in lysosomes and drug resistance [181]. Imatinib resistance can
be overcome by combining IM with mefloquine (MQ), suggesting lysosome targeting as a
cross-sectional pathway to induce cell death in TKIs-resistant CML cells [182]. Additionally,
MQ can trigger apoptosis secondary to LDCD with the release of CTSs and the increase of
oxidative damage [183]. The natural compound extracted from plants of the solenaceae
family solamargine (SM) is a steroid alkaloid glycoside and shows cytotoxic effects in
various tumor models [184]. Specifically, in a CML model, SM activates apoptosis following
lysosomal swelling, cytoplasmic activation of CTSB, and mitochondrial damage [179]. This
evidence supports the role of LCDD as an early phenomenon of intrinsic apoptosis in CML
(Table 6).

Table 6. Overview of the drugs inducing LDCD and the related pathways involved in each reported
leukemia subtype.

Disease Drug Target Mechanism of LDCD Ref.

AML MQ Protein synthesis Oxidative damage, lysosomal
permeabilization and CTPs cytosol release [183]

ALL

VCR, DXR,
TPT +

Narigenin/
Tetrandrine

Microtubule polymerization,
DNA synthesis,

TPC2

Increase in lysosomal PH, lysosomal
permeabilization and CTSB cytosol release [172]

ABT-263 + B10 BCL-2 Lysosomal permeabilization, loss of
mitochondrial membrane potential [175]

CML SM Unknown Lysosomal permeabilization, CTSB release,
mitochondrial damage [179]

CLL Siramesine Sigma receptor Lipid peroxidation and LMP [176]

Tositumomab,
L243 CD20, HLA-DR Lysosomal membrane permeabilization

and CTSB cytosol release [177]
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10.6. Modulation of Other RCD Mechanisms

The immunodeficient status of leukemia patients affected by AML could be related to
the ability of malignant ROS-producing myeloid clones to activate parthanatos through
the ERK1/2/PARP-1 axis in NK lymphocyte populations [185,186]. To recover lymphocyte
function and reverse the parthanatos mechanism, new immunotherapy strategies have been
carried out using ROS formation inhibitors or ERK1/2 inhibitors [187–189]. With regard
to hematological malignancies, parthanatos activation has been reported in 50% of AML
patients undergoing AraC and anthracycline therapy, while resistant patients show low
expression levels of PARP-1, classifying it as a potential biomarker of drug resistance [104].
In addition, AraC activates parthanatos in OCI-AML3 cells, causing PAR accumulation
and cytoplasmic translocation of the apoptosis-inducing factor (AIF) [104]. Different
drugs promote parthanatos cell death in AML, such as the naphthoquinone-derived drug
known in traditional Chinese medicine as “shikonin”, which has shown the ability to
simultaneously induce apoptosis, necroptosis, and parthanatos via γH2AX hyper-activation
of PARP-1 [190]. Furthermore, the small molecule APO866, an inhibitor of nicotinamide
phosphoribosyltransferase (NAMPT) and NAD+ biosynthesis, can induce parthanatos
in AML models by NAD+ depletion, mitochondrial polarization, and PARP-1 activation,
alone and in combination with ETO [191]. Furthermore, a study on AML reported the
selective and potent anti-leukemic effects induced by the aminoalkylindole derivative WIN-
55,212-2 (WIN-55), which acts as a parthanatos inductor promoting nuclear translocation
of AIF with a glycolytic metabolic drop and hyperactivation of PARP-1. This effect is
completely reversed by using the PARP-1 inhibitor Olaparib [192]. The plant-derived
flavonoid resveratrol has been shown to induce the potential mitochondrial membrane
imbalance in ALL patients, and its combination with the mitochondrial permeability
transition pores (mPTPs) inhibitor cyclosporine A (CsA) potentiates the cytotoxic effect
of the natural compound in the Jurkat cell line [193,194]. CsA prevents the opening of
mPTPs through the sequestration of Ca2+ ions and the inhibition of CypD, leading to
apoptosis activation instead of necrosis [194]. Furthermore, in ALL cellular models, it
has been shown that cannabidiol (CBD) triggers certain processes typical of apoptosis,
such as cytosolic migration of Cytc and caspase 9 activation, but causes cell death by
MPT-driven necrosis by completely arresting oxidative phosphorylation and mitochondrial
production of ATP [195]. Regarding leukemia, NETotic cell death is associated with a range
of negative impacts, including chronic inflammation, alterations in the microenvironment,
and a worsening of symptoms, suggesting the imperative need to inhibit the process to
counteract the pathology. Treatment with DNAse-1 significantly reduces the chromatin
agglomerates of NETs, opening new approaches for the treatment of hemorrhagic events in
APL through the modulation of NETosis [74]. In addition, LC3 autophagy inhibitors, such
as wortmannin and 3-MA, prevent the development of NETs production, indicating the
direct link between autophagy activation and NETs formation in neutrophils [87]. MPT is
a biological event characterized by the modification of the potential and permeability of
the mitochondrial membranes [196]. MPT is activated by elevated levels of mitochondrial
Ca2+ and ROS, whilst being inhibited by Mg2+ and adenosine diphosphate (ADP) [197].
The complete loss of membrane potential and cessation of ATP synthesis are distinctive
characteristics of MPT-driven necrosis [198]. Currently, there is a lack of direct information
linking MPT-driven necrosis regulation and leukemia. However, the literature suggests the
intriguing possibility of activating this mechanism using specific drugs. CBD, a cannabis
sativa-derivative compound, which has been shown to trigger apoptosis in leukemic
systems, has been researched in the past for its potential anticancer properties [199]. More
recently, in ALL cellular models, it has been shown that CBD triggers certain processes
typical of apoptosis, such as cytosolic migration of Cytc and caspase 9 activation, but causes
cell death by MPT-driven necrosis by completely arresting oxidative phosphorylation and
the mitochondrial production of ATP (Table 7) [195].
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Table 7. Overview on drugs-inducing parthanatos and MPT-driven necrosis and related pathways
involved in each reported leukemia subtype.

Cell Death Disease Drug Target Molecular Mechanism Ref.

Parthanatos AML Ara-C DNA synthesis PAR accumulation and AIF
nuclear translocation [104]

Shikonin PMK2 γH2AX phosphorylation and
PARP-1 activation [190]

APO-866 NAMPT NAD+ and ATP depletion, AIF nuclear
translocation and PARP-1 activation [191]

WIN-55 CBRs AIF nuclear translocation and PARP-1
activation, glycolytic metabolic drop [192]

MPT-driven necrosis ALL CBD CBRs Ca2+ overload, MPT formation,
oxidative phosphorylation arrest

[195]

11. Conclusions

The identification of new cell death processes has expanded and strengthened knowl-
edge about the role of cell death dysregulation as a fundamental event for leukemogenesis.
While advancements in leukemia treatment have significantly improved patient outcomes,
several anomalies in the apoptotic pathways are responsible for the uncontrolled prolif-
eration of leukemic cells, and their resistance to pharmacological treatments. Addressing
these limitations is crucial for enhancing therapeutic efficacy and patient prognosis. The
identification and the molecular characterization of the role of a single player involved
in the activation of one or more RCDs, through a crosstalk of action, has broadened the
therapeutic perspectives through the identification of new molecular targets. The char-
acterization of RCDs has led to the functional identification of different drugs capable
of modulating them. Among these drugs, two are in phase IV of the clinical trial. For
some RCDs such as necroptosis, pyroptosis, or ferroptosis, several drugs are identified,
increasing the attractiveness of these molecular pathways as alternatives to apoptotic block-
ade. The role of RCDs as possible therapeutic targets represents one of the most discussed
topics to date. The exploration of novel cellular RCD mechanisms provides a promising
strategy for overcoming resistance mechanisms and identifying innovative alternatives in
leukemia management. The crosstalk between the different pathways and the coexistence
of some of them that can operate simultaneously make the study of cell death a complex
scenario. By deepening the understanding of how these cell death mechanisms can be
activated, solid foundations can be laid for the development of targeted interventions that
can potentially revolutionize leukemia treatment strategies, offering renewed “weapons”
to counteract the survival of neoplastic clones, which is necessary to discover new ways to
treat hematological malignancies.
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3-MA 3-methyladenine
5AC 5-azacytidine
ACD accidental cell death
ALL acute lymphoblastic leukemia
AMKL acute myelocaryoblastic leukemia
AML acute myeloid leukemia
APL acute promyelocytic leukemia
ADP adenosine diphosphate
ATP adenosine triphosphate
Aldh3a2 aldehyde dehydrogenase 3a2
ATRA all-trans retinoic acid
AMPK AMP-activated protein kinase
APC antigen-presenting cells
AIF apoptosis-inducing factor
ART artesunate
AHR aryl hydrocarbon receptor
ABCA3 ATP binding cassette subfamily A member 3
ADCD autophagy-dependent cell death
BAK BCL2 homologous antagonist/killer
BM bone marrow
CALR calreticulin
CBD cannabidiol
CTSs cathepsins
CLL chronic lymphocytic leukemia
CML chronic myeloid leukemia
CMML chronic myelomonocytic leukemia
circRNAs circular RNAs
JNK c-Jun-NH(2)-terminal kinase
CK creatine kinase
CHX cycloheximide
CsA cyclosporine A
CYLD cylindromatosis
AraC cytarabine
DAMPs damage-associated molecular patterns
DAS dasatinib
DNR daunorubicin
DAC decitabine
Def deferiprone
DFO deferoxamine
DCs dendritic cells
DEXA dexamethasone
DLBCL diffuse large B-cell lymphoma
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DHA dihydroartemisinin
DNMTs DNA methyltransferases
DXR doxorubicin
eEF-2 elongation factor-2
EA ethacrynic acid
ETO etoposide
ecto-CALR externalized CALR
FADD FAS-associated death domain protein
FAC ferric ammonium citrate
FLT3-ITD fms-like tyrosine kinase 3-internal tandem duplication
FL follicular lymphoma
GSDM gasdermine
GPX glutathione peroxidase
GSH gluthatione
DT-GMCSF GM-CSF diphtheria toxin
GVHD graft versus host disease
G-CSF granulocyte colony-stimulating factor
GM-CSFR granulocyte-macrophage colony-stimulating factor receptor
HSPs heat-shock proteins
HSCs hematopoietic stem cells
HMGB1 high-mobility group box 1
HDC histamine dihydrochloride
HDACi histone deacetylase inhibitors
HOX homeobox protein
HHT homoharringtonine
ISGs IFN-stimulated genes
ICD immunogenic cell death
IDO1 indoleamine 2,3-dioxygenase 1
IAP inhibitor of apoptosis
IFN-α interferon alpha
IFN-γ interferon-γ
IL-1β interleukin-1 beta
IL-1R interleukin-1 receptor
IL-1RAP interleukin-1 receptor accessory protein
IL-18 interleukin-18
LDH lactate dehydrogenase
LAA leukemia-associated antigens
LSCs leukemic stem cells
LC3 light chain 3
LOXs lipoxygenases
lncRNAs long non-coding RNAs
LEF1 lymphoid enhancer binding factor 1
LMP lysosomal membrane permeabilization
LDCD lysosome-dependent cell death
mTOR mammalian target of rapamycin
ML mantle cell lymphoma
MQ mefloquine
miRNA microRNA
MMP mitochondrial membrane potential
MPT mitochondrial permeability transition
mPTPs mitochondrial permeability transition pores
MM multiple myeloma
MDS myelodysplastic syndrome
MPO myeloperoxidase
NK natural killer
NE neutrophil elastase
NETs neutrophil extracellular traps
NAMPT nicotinamide phosphoribosyltransferase
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NLRP3 NLR family pyrin domain containing 3
NCCD nomenclature committee on cell death
NDGA nordihydroguaiaretic acid
NRF-2 nuclear factor erythroid 2–related factor 2
NR3C1 nuclear receptor 3C1
Ph Philadelphia
PAF platelet-activating factor
PAR poly (ADP-ribose)
PARP-1 poly (ADP-ribose)-polymerase-1
PUFAs polyunsaturated fatty acids
PAA poricoic acid
PBX pre-B-cell leukemia homeobox
PCD programmed cell death
PKC protein kinase C
MLKL pseudokinase mixed lineage kinase like
RAPA rapamycin
ROS reactive oxygen species
RIPK1 receptor-interacting serine/threonine-protein kinases 1
RIPK3 receptor-interacting serine/threonine-protein kinases 3
RCD regulated cell death
Tregs regulatory T lymphocytes
SMAC second mitochondria-derived activator of caspases
SIRPα signal regulatory protein α

SM solamargine
sXc− system Xc−
TQ tafenoquine
TCF T-cell factor
Th cells T-helper cells
TXNRD1 thioredoxin reductase 1
TSP1 thrombospondin-1
TRAF6 TNF receptor-associated factor 6
TLR4 toll like receptor 4
TPT topotecan
TME tumor microenvironment
TNFα tumor necrosis factor α
TRAIL tumor necrosis factor-related apoptosis-inducing ligand
TPC2 two-pore channel 2
TYP typaneoside
TKI tyrosine kinase inhibitor
UPS ubiquitin-proteasome system
FDA US Food and Drug Administration
VCR vincristine
WIN-55 WIN-55,212-2
z-VAD z-VAD-fmk
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