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Simple Summary: Human papillomavirus (HPV) causes 5% of cancers and is the main cause of
oropharyngeal cancer in the United States and of cervical cancer worldwide. HPV proteins induce
DNA damage and exploit and hijack the host DNA damage response. The HPV oncoproteins E6
and E7 induce chromosomal instability (CIN), or chromosome missegregation during mitosis, which
also causes DNA damage and can lead to profound genetic alterations in the host cell. Though these
features are known to contribute to HPV-induced carcinogenesis, how this affects tumor cell response
to DNA damaging treatments is not well understood. Here, we review how HPV induces DNA
damage and activates the DNA damage response and how the HPV-induced CIN likely exacerbates
this. We then discuss how this viral protein-mediated DNA damage may affect the efficacy of
chemoradiation therapy.

Abstract: High-risk human papillomaviruses (HPVs) are the main cause of cervical, oropharyngeal,
and anogenital cancers, which are all treated with definitive chemoradiation therapy when locally
advanced. HPV proteins are known to exploit the host DNA damage response to enable viral
replication and the epithelial differentiation protocol. This has far-reaching consequences for the host
genome, as the DNA damage response is critical for the maintenance of genomic stability. HPV+ cells
therefore have increased DNA damage, leading to widespread genomic instability, a hallmark of
cancer, which can contribute to tumorigenesis. Following transformation, high-risk HPV oncoproteins
induce chromosomal instability, or chromosome missegregation during mitosis, which is associated
with a further increase in DNA damage, particularly due to micronuclei and double-strand break
formation. Thus, HPV induces significant DNA damage and activation of the DNA damage response
in multiple contexts, which likely affects radiation sensitivity and efficacy. Here, we review how HPV
activates the DNA damage response, how it induces chromosome missegregation and micronuclei
formation, and discuss how these factors may affect radiation response. Understanding how HPV
affects the DNA damage response in the context of radiation therapy may help determine potential
mechanisms to improve therapeutic response.

Keywords: human papillomavirus (HPV); chromosomal instability (CIN); DNA damage response;
radiation; alternative end-joining; mitosis

1. Human Papillomavirus Genome and Lifecycle

Human Papillomaviruses (HPVs) are small 8 kb double-stranded DNA tumor viruses
and are the most common sexually transmitted infection. Over 85% of men and women are
estimated to be infected with HPV during their lifetime [1,2]. Although most infections
are cleared naturally, HPV infection can persist in host cells. The alpha papillomaviruses
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have a mucosal tropism and are designated to be low-risk or high-risk depending on
their capacity for malignant transformation, which largely depends on the affinity of
oncogenes E6 and E7 for their targets: the tumor suppressors p53 and retinoblastoma (Rb),
respectively. Over 200 types of HPVs have been identified and 40 infect the anogenital
and oropharyngeal tracts. Of these, a subset (12 types) are considered oncogenic high-risk
HPVs. The most common and frequently studied high-risk alpha-HPVs that cause cancer
are HPV16 and HPV18 [3].

The HPV genome can be divided into three regions: the early region, the late region,
and the long control region. The early region (genes denoted with “E”) encodes regulatory
proteins for the virus, the late region (L) encodes the viral capsid proteins L1 and L2, and
the long control region (also known as the upstream regulatory region) is responsible for
regulating transcription and replication of the viral DNA [4]. The core HPV proteins, E1
and E2, are involved in viral DNA replication and amplification, while E1ˆE4, E4, E5, E6, E7,
and E8ˆE2 [5] are involved in the viral life cycle and optimize the survival of the virus in its
host by promoting immune evasion, cell growth, and inhibiting apoptosis (reviewed in [6]).

HPV initially infects basal cells in stratified squamous epithelium to which its life
cycle is intimately linked. Infection is thought to occur by binding to the basal epithelium
due to microabrasions caused by physical or sexual contact and by the binding of L1 capsid
protein to heparan sulfate proteoglycans, which are the main receptors of HPV [7]. Once the
basal cell has been infected, the capsid is endocytosed and degraded, and the viral genome
is coated with the L2 protein, which mediates trafficking from the trans-golgi network to
the nucleus [8,9]. The virus then attaches to the mitotic chromatin of the host cell via an
E2-mediated complex with BRD4 and TOPBP1 and remains tethered to the chromatin until
the nuclear envelope reforms [10–12]. The virus is immediately amplified to 10–100 copies
per cell in a process known as basal replication/amplification. As basal cells divide, the
viral copy number is maintained through a process known as viral maintenance, a type of
persistent infection. The virus is therefore able to reside in the nucleus which is imperative
to its survival, as it depends entirely on the host cell machinery for viral DNA replication,
although the polymerase repertoire that replicates HPV is not yet fully defined through the
stages of the viral life cycle. This allows for hijacking of the host DNA damage response to
support and promote its own DNA replication.

Viral proteins E1 and E2 are essential for viral genome amplification and activate
the DNA damage response, which recruits repair proteins to the site of viral replication
(discussed in more detail below). This enables rapid and high-volume viral DNA synthesis
resulting in hundreds of episomal copies per host cell, although the exact mechanisms
are still not well understood. The canonical high-risk HPV oncoproteins E6 and E7 cause
degradation of p53 and deregulate Rb, respectively, which stimulate cell cycle re-entry
in otherwise quiescent upper differentiated epithelial layers to allow for viral genome
amplification and delay epithelial differentiation by targeting PTPN14 [13]. Eventually
one of these cells commits to differentiation, and the HPV genome is amplified from
10–100 copies per cell to thousands of copies per cell. The viral proteins L1 and L2 are
then expressed, leading to the formation of functional viral particles and release from the
outermost epithelial layer. In some cases, high-risk HPV can become integrated into the
host cell’s DNA, signifying a dead end for the virus itself and causing grave consequences
for the host.

2. Causes of Carcinogenesis

Mucosotropic high-risk HPV causes 5% of cancers worldwide, including cervical,
oropharyngeal, and anogenital carcinomas (anal, vaginal, vulvar, penile) [14]. Globally, cer-
vical cancer is the fourth most prevalent cancer for women and is the second most common
cause of years of life lost in women with cancer [15]. HPV-associated oropharyngeal cancer
is rapidly rising in incidence in men in high-income countries and there are now more men
with this diagnosis than women with cervical cancer in the USA [16]. The HPV vaccine
has the potential to completely prevent the development of HPV-associated cancers, but



Cancers 2024, 16, 1662 3 of 16

only 58.5% of adolescents received the vaccine in 2021 [17] and rates are certainly not high
enough for herd immunity [18]. In addition to this issue, there is a striking disparity in
terms of screening for HPV, vaccination rates, and access to treatment that exist along racial,
regional, and socioeconomic lines [19].

In general, HPV integration leads to increased and unbridled expression of E6 and
E7, as they are now being driven by host promoters. E6 and E7 are both effective in
immortalizing most cell types as they work in synchrony to promote growth and survival.
However, E6 and E7 are necessary, but not sufficient, for carcinogenesis, as other somatic
events in the host cell are required for this. E6 causes degradation of p53, leading to
reduced apoptosis even in the presence of DNA damage and uncontrolled cell growth.
This allows for the accumulation of damaged DNA, as well as genomic instability, which
promotes tumorigenesis. E6 also encodes for a PDZ binding domain that binds nearly
20 proteins, including MAGI-1 and other tumor suppressors hDlg and hScrib [20,21]. The
other main oncoprotein E7 targets tumor suppressor gene pRB, leading to the release of the
E2F transcription factor promoting S-phase entry [22]. E7 also causes cell cycle deregulation,
and together with abrogated cell cycle checkpoints mediated by reduced p53, allows for
mitosis to proceed in the presence of mitotic errors leading to chromosomal instability
(CIN). E6 and E7 alone and together also induce host DSBs [23] and drive immortalization
through activation of the hTERT promoter [24]. In summary, E6 and E7 alter host cell
physiology by decreasing growth arrest and cell death, increasing S-phase entry, abrogating
mitotic checkpoints, and inducing DNA damage and replication stress, which leads to
chromosomal instability and aneuploidy, all of which culminate in cellular transformation
and tumorigenesis.

Nearly all cases of locally advanced cervical, head and neck, and anal cancers are
treated with definitive chemoradiation. HPV-associated cancers are generally more sensi-
tive to radiation in all of these cancer types, but the difference is most striking in head and
neck cancer [25–27]. Radiation induces double-stranded DNA breaks (DSBs), which initiate
a profound DNA damage response with the recruitment of ataxia telangiectasia-mediated
(ATM), ataxia telangiectasia and Rad3-related (ATR), and DNA-dependent protein kinase
catalytic subunit (DNA-PKcs). Since HPV hijacks these pathways to promote viral repli-
cation, it may promote radiation sensitivity due to delayed or ineffective DNA damage
repair (DDR). Alternatively, excessive activation of the DDR could lead to enhanced DNA
damage repair following radiation, ultimately leading to radiation resistance.

3. HPV Activates the DNA Damage Response

DNA damage within cells can be repaired through multiple mechanisms, including
homology-directed recombination (HR), non-homologous end-joining (NHEJ), alternative
end-joining (alt-EJ), mismatch repair, nucleotide excision repair, base excision repair, break-
induced replication, and other DNA damage tolerance pathways, including translesion
synthesis and repriming polymerases. The DDR network is characterized by the activation
of three master kinases that are part of the phosphatidylinositol-3-kinase-related kinase
(PIKK) family, including ATM, ATR, and DNA-PKcs [28,29]. DSBs activate the ATM, ATR,
and DNA-PKcs kinases, while single-stranded DNA (ssDNA) breaks and replication stress
activate the ATR kinase [29]. DSBs, such as those occurring after radiation exposure, are
primarily repaired through HR and NHEJ [30]. NHEJ is facilitated by DNA-dependent
protein kinase (DNA-PK), as well as ATM, and can occur throughout the entirety of the cell
cycle [31]. HR is directed by ATM and ATR and only occurs in the S and G2 phases of the
cell cycle, as it requires a homologous template for repair [32].

It has been well established that high-risk HPV can activate the DDR in order to
promote viral genome amplification [33,34]. Both HPV proteins E1 and E2 have been
shown to activate the DDR in HPV-expressing cells [35] (and personal communication with
Dr. Iain Morgan, manuscript in revision). Because the viral genome is quickly amplified
upon infection, the E1 and E2 origins of replication fire repeatedly resulting in a suggested
“onion skin” pattern of replication that may contribute to structural DNA malformations
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and are a source of replication stress [36]. These aberrant structures are associated with
increased DNA DSBs and can themselves initiate a DDR [37]. This is further supported by
evidence that E1 and E2 localize to nuclear foci and are associated with phosphorylation of
ATM and γH2AX, both markers of DSB formation and general replication stress [35]. E2
also increases DNA damage by forming a complex with BRD4 and TOPBP1 to gain access
to host chromatin and the nucleus during initial infection in some HPV types [11,38]. The
cohesin SMC1 and its binding partner, the DNA insulator and DNA looper CTCF, may
be an alternative or complementary tethering mechanism besides BRD4 and E2 for viral
maintenance [39]. In fact, SMC1 is constitutively activated in HPV+ cells and complexes
with γH2AX and CHK2. Though E1 and E2 are best known for their involvement in viral
replication and are thought to be largely absent in cancer cells following HPV integration
into the host genome, viral genomes can persist as episomes in cancer cells alongside their
integrated forms. This occurs most often in head and neck cancer [40], but there is evidence
that both E1 and E2 are also expressed in cervical cancer cells and tissues [41–43], implying
there may be some activation of the DDR by E1 and E2 in HPV+ cancers.

Increased levels of topoisomerases are also present in HPV+ cells, likely due to the
increase in replication stress induced by viral genome replication. HPV16 E7 increases the
levels of topoisomerase 2β (TOP2β), which is associated with increased DSBs and seems to
be necessary for HPV genome replication [44], again confirming the relationship between
viral genome amplification and activation of the DDR. This replication stress-induced
increase in topoisomerase activity activates the ATR pathway. Accordingly, the ATR
signaling pathway was shown to be constitutively activated in HPV+ cells in the absence of
exogenous DNA damaging agents [45]. HPV E7 also activates STAT-5, a regulator of innate
immune signaling, which transcriptionally regulates TOPBP1, leading to further ATR
activation [45]. There is evidence that HPV+ cells divert DNA damage repair proteins to the
viral DNA at the expense of host DNA to selfishly ensure their own genome integrity [26].
This same study showed that HPV31+ cells have higher levels of small DNA fragments
generated from DSBs and that the amount of DSBs correlates with the extent of viral
genome amplification. Whether the virus selfishly utilizes host DDR proteins in cancer cells
(when viral amplification is no longer occurring) is not known, though it is tempting to
hypothesize that this could hamper efficient DNA damage repair after radiation leading to
increased radiation sensitivity. Interestingly, the host proteins involved in enhancing viral
replication, such as BRD4, cohesins, and CTCF, are all linked to radiation responses [46–48].

HPV both activates the ATM pathway and requires its activation for persistent repli-
cation [34]. HPV31+ cells have increased phosphorylation of ATM and its substrates,
including CHK2, BRCA1, SMC1, and NBS1, compared to HPV- keratinocytes [26,34]. Virus-
induced activation of ATM is necessary for viral genome amplification in differentiating
cells, but not for the maintenance of viral episomes in undifferentiated keratinocytes [34].
Therefore, ATM effectors, such as γH2AX, 53BP1, Rad51, BRCA1, and members of the MRN
complex, also localize to sites of viral replication at nuclear foci, and this is increased during
differentiation-dependent amplification [33]. This could assist with either the maintenance
of viral DNA integrity or resolving replication intermediates during viral DNA amplifi-
cation. Indeed, ATM was demonstrated to resolve replication intermediates during SV40
infection, which has similarities to papillomaviruses [49]. Recent reports also indicate that
R-loops formed by replication and transcription conflicts are critical for HPV pathogenesis
and require HPV E6 [50].

Importantly, E6 and E7 can induce DSBs and the ATM pathway in both host and viral
DNA independently of viral replication, implying its activity in cancer cells (Figure 1).
Keratinocytes expressing E6 and E7 had increased DNA damage as indicated by γH2AX
foci, which was associated with an increase in PARP expression [51,52] and both upregu-
lated pathways involved in DNA repair (both NHEJ and HR pathways), including BRCA
and PARP1 genes, as well as blocking other DNA damage pathways, such as translesion
synthesis [53,54]. E7 itself may also be increasing DSBs by inactivating Rb, as upregulation
of E2F1 induces an increase in DSBs in cells [55]. This is consistent with the fact that
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activation of ATM and ATR and several downstream factors by E7 is dependent on the E7
Rb-binding domain [56]. RNF168 in host cells is critical for the DDR and DNA DSB repair
and is downstream of γH2AX signaling. It is also required for productive viral replication;
however, E7 was found to decrease the levels of RNF168 recruited to DSBs, ultimately
affecting the DNA pathway repair choice and directing it toward HR. Both HPV+ cervical
and head and neck cancer cells express high levels of RNF168 mRNA, which is likely an
adaptation to chronic E7-mediated RNF168 sequestration [57]. HPV+ anal and cervical
tumors were found to have enlarged nuclear 53BP1 bodies and high levels of RNF168,
which were not present in HPV- tumors. This was associated with increased NHEJ and HR
and radiation resistance in vitro [58]. However, another group found that the E7-mediated
increase in p16 leads to decreased HR activity [59], which is consistent with the enhanced
radiation sensitivity observed clinically.
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Figure 1. Human papillomavirus oncoproteins can activate the DNA damage response directly
(top) or indirectly by inducing chromosomal instability (CIN, bottom). Viral-induced DSBs can also
directly activate the DDR pathways. HPV E6 and E7 induce specific types of chromosomal instability,
including misaligned and lagging chromosomes, chromosome bridges, multipolar spindles, and
micronuclei formation, each of which can activate DDR pathways. Radiation and chemotherapeutic
drugs induce DSBs, which also increase CIN and activate the DDR. Created with BioRender.com.

There is ample evidence that HPV can activate the DDR in vitro, and this appears
to also be true in HPV+ tumors from patients. The expression of DNA repair factors is
increased in high-grade cervical intraepithelial lesions compared to low-grade [60]. This
is also true in HPV+ oropharyngeal cancers compared to HPV- head and neck cancers.
Specifically, HPV+ head and neck cancers have increased levels of pCHK1, FANCD2,
BRCA1, RAD51, and γH2AX foci, implying the presence of increased DSBs and activation
of the ATR pathway in human tumors [61]. Another study confirmed that HPV+ head
and neck tumors have higher expression of DNA repair genes across all DDR pathways,
including higher BRCA1 and Rad51 protein levels than HPV- head and neck tumors [62].
Upregulated DDR proteins may serve as effective therapeutic targets. Inhibition of ATR
impaired HPV DNA amplification, caused DNA damage and apoptosis in an E7-dependent
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manner, and sensitized cervical cancer cells to cisplatin [63]. However, ATR inhibition
did not increase radiation sensitivity in HPV+ compared to HPV- head and neck cancer
cells [64], implying there may be other DDR pathways that can substitute for the loss of
ATR. In general, there seems to be potential in targeting the DDR to specifically induce
HPV+ cell death.

Not only can HPV activate the DDR, but it can also hamper the efficiency of DNA
damage repair, which has significant implications for the host cell. HPV+ cell lines and
HPV16 E6 and E6+E7 expressing cells have a delay in DDR following radiation [52,65]. This
may indicate that the viral upregulation of DDR proteins impairs their utilization. HPV16
E6 was shown to repress HR, which is due to the initiation of HR during G1, as there is no
sister chromatid present to act as a template for the repair and mislocalization of Rad51
complexes [52]. Additionally, HPV+ head and neck cancer cell lines have an impaired
ATM-mediated DNA damage response compared to HPV- cells despite having functional
ATM [66]. Thus, there is evidence that both ATM and ATR pathways are compromised in
HPV+ cells, which may explain their enhanced radiation sensitivity. HPV16 E6 was shown
to degrade the translesion synthesis (TLS) pathway polymerase eta (POLH) which leads
to increased replication fork collapse and sensitivity to treatments that induce replication
stress, such as cisplatin [54]. Conversely, HPV E7 induces p63 expression to facilitate a DDR,
allowing for progression through the cell cycle and continued cellular growth after exposure
to ionizing radiation [67]. This may be associated with radiation resistance. Future studies
will need to investigate the importance of other TLS polymerases and DDR pathways in
HPV-associated cancers and how these may affect chemoradiotherapy response.

If HPV+ tumors have deficient HR repair, it is possible that they exhibit a “BRCAness”
phenotype that would imply sensitivity to PARP or CHK1 inhibition. Overexpression
of p16, which is mediated by E7-induced Rb inhibition, leads to suppression of HR and
increases sensitivity to the PARP inhibitor Olaparib [59]. Furthermore, three out of nine
primary HPV+ cervical cancer cell lines were highly sensitive to PARP inhibition [68].
However, other studies have shown that there is no difference in sensitivity to PARP
inhibition between HPV+ and HPV- head and neck cancer cells [66,69]. Further biomarker
studies regarding other hallmarks of BRCAness to predict responses to PARP inhibition in
HPV+ cancers need to be performed to better guide future therapeutic interventions.

4. HPV Induces Chromosomal Instability, Which Can Lead to Further DNA Damage

During mitosis, the kinetochores of each sister chromatid attach to microtubules
emanating from opposite spindle poles. Once all kinetochores are properly attached to
microtubules, the spindle assembly checkpoint is satisfied, and anaphase leads to the
separation of the sister chromatids yielding two genetically identical daughter cells. Ap-
proximately 50% of cancer cells have aberrant mitosis, or chromosomal instability (CIN),
which is the continued missegregation of whole chromosomes or chromosome arms or
fragments over successive mitotic divisions. Mitotic errors include misaligned or lagging
chromosomes, chromosome bridges, or multipolar spindles, which are discussed in more
detail below (and reviewed in [70]).

HPV16 oncogenes E6 and E7 are known to induce CIN and have been implicated in
the formation of misaligned, lagging, and bridge chromosomes [51,71]. High-risk HPV
has also been shown to induce centrosome amplification, resulting in multipolar spindles
and multipolar divisions [51,72] (and reviewed in [73]). Centrosome amplification and
spindle pole multipolarity cause CIN directly by promoting multipolar divisions, which is
often lethal [74,75]. This can also cause CIN in the form of lagging chromosomes, although
this has not been studied in the context of HPV [74]. Cosper et al. recently showed
that HPV16 E6 causes the specific degradation of centromere protein E (CENP-E), which
stabilizes microtubule capture by kinetochores and is required for chromosome alignment
at metaphase. This E6-induced degradation of CENP-E results in chromosomes misaligned
at the spindle pole and was found in HPV+ cell lines, HPV+ patient-derived xenografts,
as well as HPV+ head and neck cancers from patients [71]. HPV16 E6 and E7 also induce
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chromosome bridges, which is likely due to increased DNA damage with incorrect repair, as
well as telomere erosion [51,76]. However, others have shown that HPV E6 and E7 induce
telomerase activity [77,78] by epigenetically or directly regulating the hTERT promoter, or
by post-transcriptional regulation of the promoter (reviewed in [79]). Perhaps there is a
balance between telomere erosion and elongation in human tumors.

While it is clear that HPV induces many types of CIN, it is not known whether
HPV-induced CIN is associated with increased DNA damage or an altered DNA damage
response. There are, however, many lines of evidence that CIN induced by other mecha-
nisms causes DNA damage, implying that this may also be the case in HPV-induced CIN
(Figures 1 and 2). Chromosome bridges (reviewed in [80]) occur when DNA is stretched
between opposite spindle poles due to the presence of dicentric chromosomes, which can
be caused by radiation or telomere crisis [81], or defects in DNA decatenation or sister
chromatid cohesion [82,83]. Bridges are perhaps the best example of CIN directly causing
DNA damage because they can rupture after mitosis in a process requiring actomyosin ring
contractile forces [84–86]. This can initiate a breakage-fusion-bridge (BFB) cycle, where bro-
ken ends from different chromosomes join producing another dicentric chromosome, which
is destined to form a bridge and perpetuate DNA damage. Evidence of BFB cycles has
been found in cervical cancer cells [87]. The 3′ exonuclease TREX1 localizes to chromatin
bridges and generates ssDNA that ultimately joins the daughter nucleus. The remnants of
these broken bridges activate the DNA damage response as they stain positive for γH2AX,
53BP1, and MRE11 [85]. Analysis of daughter cells following bridge breakage revealed
reciprocal chromosome segment gain and loss, as well as evidence of DNA fragmentation
and rearrangements from the ligation of these fragments [86]. The ends of broken bridges
further activate the DDR, as they erroneously undergo DNA replication during mitosis [86].
It is important to note that not all bridges break during mitosis and many persist into the
next interphase as intercellular bridges [85,88]. This is theorized to be due to alterations in
K-fiber kinetics during anaphase to avoid breaking during mitosis [88].

Chromosome missegregation causes DNA damage with increased γH2AX, 53BP1
recruitment, and activation of ATM on missegregated chromosomes [84] (Figure 2). This
mostly occurs on chromosomes trapped in the cleavage furrow as only 10% of missegre-
gated chromosomes outside of this region had evidence of DNA damage. Chromatids
with unattached kinetochores activate the spindle assembly checkpoint as the cell attempts
to correct this error, resulting in mitotic arrest. This, and other activators of the spindle
assembly checkpoint, results in prolonged mitosis, which itself leads to DNA damage [89].
Anal tissue positive for high-risk HPV subtypes has significantly higher levels of DNA
damage during mitosis compared to control tissue, and this increases with pathological
grade. This was shown to be due to E7’s ability to abrogate the G2 checkpoint and promote
mitotic entry in the presence of DNA damage [90]. HPV is therefore associated with DNA
damage during mitosis, which may be due to chromosome missegregation events, leading
to a further upregulation of the DNA damage response. However, whether this functionally
affects the DDR and, therefore, radiation response remains to be determined.

Missegregated chromosomes often end up in micronuclei, which are distinct membrane-
bound compartments containing DNA that are separate from the main nucleus. Misaligned,
lagging, and bridge chromosomes can all lead to the formation of micronuclei, though
lagging and bridge chromosomes are the most common sources [91]. It has been reported
that bridges do not result in micronuclei formation during the initial abnormal mitosis [85]
but over half of the cells undergoing the subsequent division formed micronuclei [86].
Missegregation of a whole chromosome with micronucleus formation does not cause DNA
damage initially, but DNA damage is significantly increased during the subsequent G2
phase due to defective DNA replication during the S phase [92]. This results in pulveriza-
tion of chromosomes that cause extensive genomic rearrangements in a process known as
chromothripsis [86,92,93], which is a common fate of DNA in micronuclei. Chromothripsis
is characterized by massive intrachromosomal rearrangements in a single chromosome or
chromosome arm. This damaged DNA can re-incorporate into the main nucleus during the
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next mitosis [92], leading to genomic heterogeneity with the possible consequence of tumor
cell genome evolution. Additionally, micronuclear envelopes are prone to rupture partially
due to lack of lamin B1, which further increases DNA damage and releases cytosolic DNA,
resulting in activation of an inflammatory signaling cascade [94,95].

Cancers 2024, 16, x FOR PEER REVIEW  8  of  17 
 

 

and promote mitotic entry in the presence of DNA damage [90]. HPV is therefore associ-

ated with DNA damage during mitosis, which may be due to chromosome missegrega-

tion events,  leading to a further upregulation of the DNA damage response. However, 

whether this functionally affects the DDR and, therefore, radiation response remains to be 

determined.   

 

Figure 2. Representative  immunofluorescent  images  revealing how chromosome missegregation 

can be associated with DNA damage in HPV+ cells. Images are of untreated 93-VU-147T (HPV16+) 

head and neck cancer cells undergoing mitosis with evidence of chromosomal instability (CIN) in 

the form of micronuclei, misaligned chromosomes, chromosome bridges (indicated by arrows), or 

Figure 2. Representative immunofluorescent images revealing how chromosome missegregation can
be associated with DNA damage in HPV+ cells. Images are of untreated 93-VU-147T (HPV16+) head
and neck cancer cells undergoing mitosis with evidence of chromosomal instability (CIN) in the form
of micronuclei, misaligned chromosomes, chromosome bridges (indicated by arrows), or multipolar
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spindles (spindles denoted by asterisks). Recognition of DSBs by ATM leads to the phosphorylation
of the histone H2AX yielding γH2AX. The top three panels represent examples of interphase or
mitotic cells with CIN that are not associated with DNA damage, while the bottom four panels
represent examples of CIN that are associated with DSBs and γH2AX signaling. Thus, CIN is not
always associated with DNA damage. The 93-VU-147T cells were fixed with paraformaldehyde,
incubated with anti-tubulin or anti-γH2AX antibodies, and counterstained with DAPI. (Blue, DAPI;
pink, alpha-tubulin; green, γH2AX). All images were acquired using a Nikon Eclipse Ti2-E (Nikon,
Yokohama, Japan) inverted fluorescence microscope with a 100×/1.4 numerical aperture oil objective.
Images are maximum projections of 0.2 µm z-stacks that have been deconvolved.

While micronuclei themselves can cause DNA damage, DNA damage due to abnormal
DNA replication and repair or DNA damaging agents, such as radiation, can lead to the
formation of micronuclei. For example, disruption of Fanconi anemia (FA) repair proteins
and the DNA damage response mediator proteins MDC1 and TOPB1 lead to increased
micronuclei formation [96,97]. FANCD2, a member of the FA complex, not only binds high-
risk HPVs but is required for episomal maintenance [98]. Thus, episomal HPV in tumors
may dilute FANCD2 from the host DNA, resulting in repair defects and micronuclei.

Ionizing radiation is one of the most well-known inducers of micronuclei and was
observed over 60 years ago [99]. In fact, micronuclei are quantified in the cytokinesis-block
micronucleus assay, which is a well-established sign of prior radiation exposure [100]. This
is due to radiation-induced CIN and the formation of acentric fragments, which are chromo-
some fragments that lack a centromere. These are unable to attach to microtubules as they
lack a kinetochore, are missegregated, and often end up in micronuclei [101], though chro-
mosomes with a centromere can also form micronuclei when missegregated. NHEJ is the
major DSB repair pathway following radiation-induced chromosome missegregation and
often leads to significant chromosomal rearrangements [102]. Micronuclei have defective
DNA damage repair, where components fail to be recruited, resulting in a slow resolution
of γH2AX foci after irradiation [92,103]. Thus, radiation induces DNA damage beyond the
initial dsDNA breaks by inducing many types of CIN, which can result in chromosomal
rearrangements and micronuclei, which perpetuate DNA damage and hamper DNA repair.

HPV16 E6 and E7 expression increase micronuclei frequency [104] (Figure 2). Accord-
ingly, micronuclei are more prevalent in HPV+ cervical smears than HPV- [105] and there
is a significant association between HPV infection and micronuclei frequency [106,107].
Cervical smears from women with cervical intraepithelial neoplasia grade I had signifi-
cantly more micronuclei than normal or HPV- cervical cells and the extent of micronuclei
correlated with viral load [107]. Furthermore, micronuclei increase with increasing grade
of dysplasia in cervical smears, are highest in invasive squamous cell carcinoma [108] and
are associated with the persistence of intraepithelial neoplasia [109]. This was corroborated
in a meta-analysis of 21 studies correlating the incidence of micronuclei with the grade of
cervical dysplasia [110]. The Beta genus of HPV is suspected to play a role in the promotion
of squamous skin cancers and it was found that HPV8 E6 also caused increased anaphase
bridges and micronuclei, and induced chromothripsis [111]. Thus, induction of CIN result-
ing in micronuclei may be a feature of many different types of HPV and is likely causing
increased DNA damage, which contributes to carcinogenesis. How this DNA damage
affects radiation response is not well understood, but it has been shown that tumor cells
with high levels of CIN are more sensitive to radiation [112] (and reviewed in [113]).

5. HPV+ Cancers Use the Alternative End-Joining DNA Repair Pathway

Alternative end-joining (alt-EJ), also termed microhomology-mediated end-joining
(MMEJ [114]) and polymerase theta mediated end-joining (TMEJ [115]), will be referred to as
alt-EJ henceforth. Alt-EJ is defined as a DSB repair that is distinct from NHEJ, acts on DNA
ends with resection-dependent 3′ ssDNA overhangs, and produces repair products with
large deletions (~30–200 bp) that extend to microhomologies [115–117]. It is a highly error-
prone pathway that promotes inter- and intra-chromosome rearrangements related to DNA
deletions by using sequence microhomology to recombine broken DNA ends [114,117–120].
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Additionally, alt-EJ is similar to HR as both occur only in the S and G2- phases of the cell
cycle and each uses the same DNA resection factors, including Mre11 and CtlP, to promote
the formation of 3′ ssDNA overhangs at DSBs [32,117,118,121].

Polymerase theta (Polθ) has been identified as an essential protein for DNA synthesis
and repair, DNA end-joining, and reestablishing replication following replication fork
collapse in the alt-EJ pathway [115,117,122–124]. Alt-EJ activation is regulated through
DSB recognition and is rarely used under normal conditions. However, when resection is
misregulated or NHEJ is compromised, Polθ is engaged in a larger fraction of repair, thereby
initiating alt-EJ [115,125–129]. Its ability to synthesize DNA in vitro is low and error-prone,
while also inducing substitutions, insertions, and deletions, all at similar rates [115].

HPV+ head and neck cancer cells have been found to suppress HR and increase
the use of the alt-EJ pathway, which is partially due to a lack of responsiveness to TGF-
β signaling [130]. Analysis of the TCGA head and neck cancer cohort confirmed that
HPV+ cancers have low expression of TGF-β target genes and upregulated alt-EJ genes
compared to HPV- cancers [131]. TGF-β signaling is therefore inversely correlated with
the use of the alt-EJ pathway [130,131]. Additionally, genomic sites of HPV integration
in cervical and oropharyngeal cancers are highly enriched for microhomology, a defining
characteristic of alt-EJ [114,132,133]. HPV8 (β-HPV) E6 also promotes alt-EJ for DSB
repair [134] suggesting a conserved viral mechanism to ensure DNA repair, which is
likely contributing to genomic instability. Further mechanistic studies revealed that E7
suppresses NHEJ and promotes alt-EJ, matching human-level evidence in HPV-associated
cancer genomes [114].

Alt-EJ may play an important role in dictating radiosensitivity as it is highly error
prone and, therefore, more likely leads to DSB repair incompatible with viability, or further
mitosis [114,119,120]. Indeed, upregulation of this altered DDR pathway predicted better
response to DNA damaging therapy, including radiotherapy in multiple cancer types,
leading to improved patient outcomes [131]. Thus, utilization of alternative DSB repair
pathways, such as alt-EJ, is associated with a reduced accuracy of DNA repair, which
may contribute to enhanced radiation-induced cell death. Crucially, Polθ inhibitors have
been recently described and are currently in the clinic [135]. Future studies need to clarify
HPV+ cancer response to these inhibitors in the presence and absence of radiation.

6. Conclusions

HPV infection is nearly ubiquitous in both men and women and can cause cancers
of the head, neck, and anogenital tracts. HPV oncoproteins induce DNA damage and
activate the DNA damage response both during viral replication and after viral persistence
in dysplastic and malignant tissue. HPV also induces many types of CIN, which are
often associated with significant DNA damage and activation of the DDR. We think these
two independent mechanisms of inducing DNA damage may overwhelm the host DDR,
which could reduce the efficiency of DNA damage repair following chemoradiation. For
example, viral quenching of the DDR proteins could be a mechanism for the increased
radiation sensitivity of HPV+ cells that have been observed in both pre-clinical and clinical
studies. Our laboratory is currently studying how specific types of CIN modulate radiation
response as we aim to provide more personalized therapeutics. Further understanding
of how activation of the DDR in HPV+ tumors affects radiation response is vital for the
discovery of novel therapeutic approaches.
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