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Simple Summary: The manual measurement of ablation zones (AZs) in radiofrequency ablation
(RFA) therapy is prone to inaccuracies, highlighting the need for automated methods. Our study
investigated the effectiveness of an Artificial Intelligence (AI) model, Mask2Former, in automating
AZ measurements from ultrasound images, comparing its performance against manual techniques.
Conducted on chicken breast and liver samples, the study found the AI model to achieve high
accuracy, particularly in chicken breast tissue, with no significant difference in measurements between
AI and manual methods. These results suggest that the Mask2Former model can significantly reduce
variability in manual measurements, marking a step forward in the automation of AZ measurement
in RFA therapy research and potentially improving the precision of treatment assessments.

Abstract: Background: The accurate delineation of ablation zones (AZs) is crucial for assessing
radiofrequency ablation (RFA) therapy’s efficacy. Manual measurement, the current standard, is
subject to variability and potential inaccuracies. Aim: This study aims to assess the effectiveness
of Artificial Intelligence (AI) in automating AZ measurements in ultrasound images and compare
its accuracy with manual measurements in ultrasound images. Methods: An in vitro study was
conducted using chicken breast and liver samples subjected to bipolar RFA. Ultrasound images
were captured every 15 s, with the AI model Mask2Former trained for AZ segmentation. The
measurements were compared across all methods, focusing on short-axis (SA) metrics. Results: We
performed 308 RFA procedures, generating 7275 ultrasound images across liver and chicken breast
tissues. Manual and AI measurement comparisons for ablation zone diameters revealed no significant
differences, with correlation coefficients exceeding 0.96 in both tissues (p < 0.001). Bland–Altman
plots and a Deming regression analysis demonstrated a very close alignment between AI predictions
and manual measurements, with the average difference between the two methods being −0.259 and
−0.243 mm, for bovine liver and chicken breast tissue, respectively. Conclusion: The study validates
the Mask2Former model as a promising tool for automating AZ measurement in RFA research,
offering a significant step towards reducing manual measurement variability.

Keywords: radiofrequency ablation; ultrasonography; artificial intelligence; image processing;
computer-assisted; ablation techniques

1. Introduction

The battle against cancer remains a formidable challenge in the quest to extend the
human lifespan into the 21st century [1]. In this context, minimally invasive thermal
ablation techniques, such as radiofrequency ablation (RFA), microwave ablation (MWA),
and high-intensity focused ultrasound (HIFU), have emerged as effective options for the
treatment of tumors in organs like the liver, lung, kidney, and bone [2]. These techniques
employ the targeted thermal destruction of cancerous tissues, offering a critical advantage
by minimizing damage to surrounding healthy tissues [3].
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Radiofrequency ablation has ascended as a prominent treatment modality, suitable
for both curative and palliative objectives [4,5]. Its efficacy is most pronounced in tumors
less than 3 cm in diameter, where a precise application of alternating current generates
significant hyperthermia to induce tumor cell death [5,6]. The affected area, known as the
ablation zone (AZ), is typically modeled as a three-dimensional spheroid characterized by
one long axis and two short axes (SAs), which correspond to the dimensions covered by
the ablation [7–9].

Despite its benefits, the success of RFA and other ablation methods hinges on the
accurate assessment and monitoring of the AZ, necessitating advanced imaging techniques
for real-time guidance [10]. The advent of image-guided interventions has significantly
enhanced the precision of ablation therapies [11]. Although traditional imaging modalities
like computed tomography (CT) and magnetic resonance imaging (MRI) provide detailed
anatomical visualization, their utility is limited by the lack of real-time feedback and high
operational costs [5,12,13]. Ultrasound (US) imaging, by contrast, offers a cost-effective and
real-time alternative for monitoring ablation procedures [14]. Nevertheless, challenges such
as image artifacts and inter-operator variability underscore the need for improvements in
imaging accuracy and interpretation [5,14–16].

The integration of deep-learning algorithms with ultrasound imaging presents a
promising avenue for overcoming these limitations [17–20]. By automating the recognition
and measurement of the ablation zone, deep-learning (DL) models can potentially enhance
the precision, reproducibility, and efficiency of thermal ablation therapies [21,22]. Convolu-
tional neural networks (CNNs), as a particularly appropriate method of DL, were proven
as a good method for object recognition and characterization [23–26]. Recent advancements
in computer vision have seen a transition from CNNs to Transformer-based architectures,
presenting a paradigm shift in imaging tasks. CNNs excel in image tasks but struggle with
long-range dependencies vital for granular recognition. Transformer-based architectures,
initially designed for natural language processing, offer a promising alternative. These
models excel at processing complex spatial relationships within images and offer signifi-
cant improvements in how imaging data are interpreted, providing a detailed semantic
segmentation that can enhance real-time monitoring and procedural accuracy [27].

The objective of this study is, therefore, to explore the efficacy of employing a
Transformer-based architecture for the automatic segmentation of the AZ in US images.
This investigation is also aimed at facilitating the real-time monitoring of RFA progress,
with the additional goal of developing an experimental setup that integrates US imaging
with DL technologies.

2. Materials and Methods
2.1. Data Acquisition and Experimental Setup

The experimental setup for this study was designed to investigate the efficacy of RFA
using a bipolar RFA probe (Erbe Elektromedizin GmbH, Tübingen, Germany). The primary
objective was to create ablation zones (AZs) of varying sizes to assess the performance of
US imaging in conjunction with deep learning for AZ segmentation and measurement.

The RFA procedures were conducted on two types of tissue: bovine liver tissue, a
commonly used surrogate for human liver in ex vivo RFA studies, and chicken breast
tissue. These tissues were chosen based on their electrical properties, availability, different
tissue density, and the distinct color change upon coagulation at temperatures above 60 ◦C,
facilitating visual identification of the AZ [7,28,29]. Both tissue types were maintained at
room temperature throughout the experiments.

A self-designed test stand that can ensure precise positioning of the RFA probe and the
US transducer was developed (Figure 1). The RFA probe was horizontally inserted into the
tissue, while the US transducer, attached to a handheld wireless linear US scanner (L7HD,
Clarius Mobile Health Corp., Vancouver, BC, Canada), was positioned perpendicularly
above the probe. This setup allowed for uniform imaging conditions and minimized
operator-induced variability.
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Figure 1. Self-designed test stand with liver tissue. The RFA probe (1) was horizontally introduced in
the tissue which was placed in the tissue cup (3). The US transducer (2) was placed horizontally and
perpendicular to the RFA probe at the location of the separator, as shown in the schematic on the
right. For the adjustment the US transducer could be moved in three dimensions indicated by the
white arrows.

We used five distinct RFA durations (30, 120, 300, 600, and 900 s) to generate AZs of
different sizes. The “muscle setting” on the Clarius scanner was used, and the imaging
depth was set to 3 cm to ensure a consistent scale across all images. US images were
captured automatically every 15 s during RFA activation, providing a detailed temporal
record of the AZ development.

2.2. Image Processing, Deep-Learning Model, and Analysis

In the essential phase of image processing and analysis, this study employed an
advanced deep-learning architecture, specifically the Mask2Former model, to analyze ultra-
sound (US) images captured during radiofrequency ablation (RFA) procedures.
Mask2Former was chosen because of its high accuracy for ultrasound imaging processing
compared to other architectures like Mask R-CNN or SOLO [30]. The initial step involved
adopting the foundational code of the Mask2Former model to handle the segmentation of
the AZ within US images. The architecture consists of an encoder–decoder structure and
integrates a pixel decoder and Transformer decoder in the decoder stage. In the encoder,
a Swin-B Transformer is used as a backbone, resulting in an overall model size of 107M
parameters [27,31].

Given the limited number of images accessible for model training, the study leveraged
transfer learning techniques, utilizing pre-trained weights from the Microsoft Common
Objects in Context (MS COCO) dataset [32]. This approach was complemented by data
augmentation strategies, including image cropping, vertical mirroring, and contrast ad-
justments, to enrich the dataset artificially, ensuring a robust training process despite the
dataset’s constraints [33].

The model’s training was conducted through supervised learning, utilizing two dis-
tinct datasets of US images. Each dataset underwent meticulous annotation by an expert,
ensuring accurate delineation of the AZ. Prior to training, individual normalization pro-
cedures were applied to the images within each dataset to cover their respective ranges.
Separate models were trained for liver and chicken breast to maintain consistent accuracy
across different tissue types. The datasets were then partitioned into training, validation,
and test sets, following an 80/10/10 split, resulting in a distribution of 2397 training, 303 val-
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idations, and 299 test images for chicken breast tissue, and 3421 training, 457 validation,
and 398 test images for liver tissue.

2.3. Short-Axis (SA) Measurement

The accurate measurement of the AZ short axis is essential for evaluating the effectiveness
of RFA procedures. We employed several distinct approaches to SA measurement. Manual
measurement was performed on the horizontally sectioned tissue using a caliper, but, as we
were able to do so only after the RFA was completed, without the possibility for real-time
serial measurement, this was dismissed as a possibility for a ground-truth standard.

Instead, we used the value of SA measured directly in each individual US image taken
over the entire RFA run. These measurements were referred to as US diameters.

Finally, the approach that we developed for the purpose of this research involved
analyzing US images through a Mask2Former model (AI method), which predicted the
AZ’s mask. This method identified the largest horizontal span within the predicted mask
as the SA. Subsequently, the pixel values obtained were converted to millimeters using the
scale established by the ZenCore (ZenCore v2.7, Zeiss, Oberkochen, Germany) software,
allowing for an accurate comparison with manual methods.

2.4. Statistical Methods

Prior to analysis, data were normalized to ensure uniformity across different measure-
ment scales. This included converting all measurements to a common unit (millimeters)
and aligning data points according to predefined RFA durations and tissue types. De-
scriptive statistics (mean, median, standard deviation, and range) were calculated for each
measurement method across both tissue types (liver and chicken breast) to summarize the
central tendency and variability of AZ dimensions. The Shapiro–Wilk test was employed
to assess the normality of data distributions.

Comparisons between measurement methods were performed using paired t-tests or
Wilcoxon signed-rank tests, depending on the normality of the data. The Bland–Altman
analysis was utilized to assess the agreement between methods, with limits of agreement
defined as mean difference ± 1.96 standard deviations. We assessed the data by using
correlation and Deming regression to explore the alignment between two measuring
methods. The significance of differences in slopes and intercepts was tested to assess
method-specific biases.

A p-value of <0.05 was considered statistically significant for all tests. Statistical
analyses were performed using GraphPad Prism 9.0.

3. Results

We performed a total of 308 RFA runs, out of which 59.7% were performed in liver
tissue and the remaining 40.3% were performed in chicken breast tissue (Table 1). During
these runs, we acquired a total of 7275 images, with a similar percentage split (58.7%
and 41.3%) between liver and chicken breast tissue, as with the RFA runs. The training,
validation, and testing sets of images were split in an 8:1:1 ratio.

Table 1. Baseline characteristics of number of RFA and sample split for AI training.

Total Number of
RFA Runs Training Set Validation Set Test Set Total Number of

US Images

Liver 184 147 20 17 4276
Chicken 124 98 15 11 2999

Thirty manual measurements of the ablation zone were performed at the end of the
RFA run using a caliper. The average diameter (SD) was 16.3 mm (3.8 mm). Serial US
manual measurements of the ablation zone in the liver tissue were made on US images, as
previously described. A total of 398 measurements were performed, with a mean of 15.8 mm
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(5.9 mm), ranging from 1.83 to 29.2 mm. In the chicken breast tissue, 299 measurements
were made, with a mean of 10.5 mm (4.2 mm), ranging from 2.2 to 19.4 mm.

3.1. Segmentation Performance of the AI Model

To evaluate the AI model’s performance, four pixel-based metrics were used. The AZ
exhibited different segmentation performance for different tissue types (Table 2).

Table 2. Evaluation metrics of the trained Mask2Former model according to the tissue type. Higher
metrics were scored for chicken breast tissue. The amount of test images used for each tissue type is
given by n.

Tissue Type n Accuracy
[%] Sensitivity [%] Specificity [%] F1-Score [%]

Liver 398 98.5 88.8 99.3 89.7
Chicken
breast 299 99.4 91.9 99.7 92.6

Notably, the AZ in chicken breast tissue appeared less hyperechoic in US images
compared to liver tissue, as depicted in Figure 2. Conversely, the growth of the AZ around
the RFA probe was shaped as an oval in chicken breast tissue, whereas, in liver tissue, the
AZ assumed a more elliptical shape. As RFA progressed, increased image artifacts arose
due to tissue heating and the forming of gas bubbles, thus creating a posterior shadowing
effect, and complicating the assessment of the lower AZ contour. Figure 2 illustrates
examples of these image artifacts.
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Figure 2. Representation of AZ in US images of liver (first row) and chicken tissue (second row) and
the labelled mask (green) and predicted mask (orange). The AZ is less hyperechoic represented in
chicken breast tissue as in liver tissue. Larger image artifacts can be observed underneath the AZ in
liver tissue with ongoing RFA, making the assessment of the under AZ contour difficult. An acoustic
shadow can be observed in the case of chicken breast.

3.2. Comparison of AI vs. US Manual Measurements

To begin our analysis, we compared the mean values of AI and US manual measure-
ments in both liver and chicken breast tissue. The average diameter for AI in liver tissue
was 15.6 mm (5.9 mm), while, for US, it was 15.8 mm (5.9 mm). This difference was not
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significant (t-test; p = 0.54). In chicken breast tissue, the mean predicted diameter for AI was
10.2 mm (4.1 mm), while the mean for US manual measurements was 10.5 mm (4.2 mm).
This difference was also not significant (p = 0.48). Figure 3 presents a graphical comparison
of the average values obtained from both methods in chicken and liver tissue.
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Figure 3. Box-plot diagrams comparing the mean values of AI predicted and US manual measured
diameter of RFA ablation zones in bovine liver tissue (left) and chicken breast tissue (right).

Correlation coefficients were calculated between the diameters measured by AI and
US. In bovine liver, the Pearson’s correlation coefficient was 0.965 (95% CI: 0.957–0.971;
p < 0.001), with R2 = 0.931, while, in chicken breast tissue, it was 0.962 (95% CI: 0.953–0.970),
with R2 = 0.925.

To test the alignment in measurements between the AI and US manual mode, we
used a Bland–Altman plot (Figure 4). The average difference between the two methods
in liver tissue was −0.259 mm (95% CI: −0.414 to −0.104), with the lower boundary at
−3.339 mm and the upper boundary at 2.820 mm. In chicken breast tissue, the average
difference between the two methods was −0.243 mm (95% CI: −0.374 to −0.112 mm), with
the lower boundary at −2.771 mm and the upper boundary at 1.777 mm.
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Finally, we utilized Deming regression to compare the AI-predicted diameter of the
ablation zone in bovine liver against the US-measured diameter as the ground truth. The
analysis yielded the regression equation, AI diameter = 0.9953 × US diameter + 0.3332. The
equation slope of 0.9953 indicates a near one-to-one relationship between the AI predictions
and the US measurements, thus demonstrating the AI model’s accuracy (with a small
underestimation) in assessing the diameter of the ablation zone. The Y-intercept was found
to be 0.3332, suggesting a small systematic bias in the AI predictions.

The same analysis was performed for chicken breast tissue and the resultant regression
formula, AI diameter = 1.014 × US diameter + 0.09540, signifies a slope of 1.014. Here,
the AI model performed with a slight overestimation. The Y-intercept, determined to be
0.09540, hints at a minor systematic bias in the AI predictions.

Both final analyses underline the precision of the AZ diameter prediction by our AI
algorithm (Figure 4).

4. Discussion

This study explores the potential of automated AZ measurements in US images
through the application of a Mask2Former model, aiming to enhance both laboratory
processes and the outcomes of RFA research. The model underwent supervised training
to identify and delineate AZs in US images captured at 15 s intervals during bipolar RFA
activations, focusing separately on chicken and liver samples. A custom-built test stand
facilitated straightforward and consistent laboratory procedures. AZ labelling within these
images was conducted by a single expert to train the Mask2Former model. Short-axis
measurements were conducted to compare the performance of the AI-predicted diameter
in comparison to the manually measured US diameter.

Machine learning (ML) has found extensive applications within the medical sector,
notably in image analysis and diagnostics [34–36]. Different AI models trained via super-
vised learning are frequently employed for their capabilities in US image tasks [14,25,36].
Nonetheless, a significant challenge is the limited amount of available training samples,
potentially hindering the effectiveness of AI training [17,25]. To address this issue, data
augmentation strategies were employed to enrich the dataset and prevent model overfitting,
a practice supported by various studies. This step was essential in enhancing the model’s
ability to accurately recognize and delineate the AZ across different tissue types [36,37].

The manual measurement, serving as the primary benchmark against which other
methods are evaluated, is a staple in laboratory practices. It relies on the tissue color change
upon coagulation, an indicator of histopathological damage from thermal exposure [38,39].
However, we decided against using it, primarily as it does not allow for obtaining a large
number of dynamic measurements needed for accurate comparison and for the real-time
tracking of the size of ablation zone, which is one of the major clinical requirements in
practical use.

Additional factors influencing manual measurements include the specifics of tissue
sectioning and inherent tissue characteristics, such as the presence of vessels or muscle
fibers, which may distort the AZ. Accurate slicing at the RFA probe’s height is crucial,
as the AZ typically forms spherically around it [7]. This requirement underscores the
potential advantages of automated measurement techniques, which promise consistent and
precise SA measurements in undisturbed tissue, mitigating the impact of human variance.
AI-enhanced image segmentation in conjunction with US imaging emerges as a promising
approach to address these limitations [5,25,33].

Ultrasound imaging is a cornerstone of diagnostic and therapeutic procedures, in-
cluding image-guided thermal ablation, prized for its real-time imaging capabilities [5,12].
However, US’s grayscale imaging limits lesion clarity compared to CT or MRI, intensified
by challenges in tissue visibility and the effects of hyperechoic structures and gas. Despite
these limitations, the US remains preferable for routine laboratory use over CT and MRI,
given the latter’s extensive technical and material requirements [12,13].
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The efficacy and reliability of the SA measurement via US have been substantiated
across studies, though outcomes can vary based on equipment brand, scanner orientation,
and distance from the transducer to the target [40–43]. The Clarius US scanner, a modern
handheld, wireless device, demonstrates no significant compromise in image quality,
maintaining measurement accuracy on par with traditional stationary systems [44].

The main goal of the present study was to compare the AI-predicted diameter against
the ground truth—in our study, the manually measured US diameter. AI-derived SA
measurements were extracted from the largest horizontal span across the predicted mask
within the US image. This approach was grounded on the assumption that the AZ uniformly
encircles the RFA probe’s center, although deviations caused by nearby vascular structures
or other anomalies could challenge this assumption [8]. Given that AI utilized the same
image set as the US method, it was subject to similar challenges of image artifacts, which
could lead to overestimations of the SA in comparison to manual measurements. This is
consistent with the broader literature noting the complexities of interpreting US images
with AI due to image artifacts [16,45]. It is important to emphasize that overestimation of
the SA size regularly occurs with US imaging; therefore, all methods that rely on US will
have a certain amount of overestimation, which needs to be taken into account, especially
in future research in real-life clinical settings.

When examining AI’s performance relative to manual measurements, it was noted
that AI more accurately delineated the AZ in chicken breast tissue compared to liver tissue
(Figure 2). This discrepancy may be attributed to the differential impact of US image
artifacts on tissue visibility, with chicken breast tissue presenting fewer disturbances. This
observation is supported by comparisons with existing literature, where AI’s efficacy in
AZ detection showcases the potential for more accurate assessments in conditions with
less ultrasonic interference [46]. The challenges associated with ultrasound image artifacts,
such as shadowing and speckle noise, were minimized by allowing the model to learn the
representation of such artifacts during the training process. As the model was trained with
the expert’s labels, it behaves in a similar fashion regarding the AZ.

The results gained with Bland–Altman plots and Deming´s regression demonstrate
an excellent alignment of the AI-predicted diameter with manual measurements, with
negligible systematic bias and a very slight propensity for underestimation. However, it
appears that this alignment is more variable in small AZs, notably, AZ < 10 mm in liver
tissue and AZ < 5 mm in chicken breast tissue (Figure 4). Conversely, AI demonstrated a
higher accuracy for larger SAs, especially in chicken breast tissue, likely due to the high
acoustic impedance of chicken breast tissue affecting AZ visibility [47–49]. A smaller AZ
corresponds with the start of RFA, where the acoustic properties of tissue are prone to the
huge variability due to uneven heating of the tissue or steam formation next to the RFA
electrodes which may at least partially explain this phenomenon. For future research into
the clinical use of our method, it is important to consider that AI-predicted measurements
of AZ at the beginning of the ablation may be less reliable.

It is important to mention several limitations of the present study, which primarily
stem from its in vitro nature, affecting the generalizability of the findings to clinical settings.
Other potential limitations include the controlled environment not fully replicating the
complexity of live tissue characteristics and responses to RFA, and the use of a specific set
of tissues (chicken breast and liver) which may not represent the diversity found in human
pathology. Another limitation is the fact that only homogenous imaging conditions were
present, without movement artifacts or blood flow. Additionally, the study’s focus on a sin-
gle AI model (Mask2Former) limits exploration of alternative or potentially more effective
AI approaches. Yet, the clear potential of our approach proves its applicability in laboratory
conditions but warrants further investigations regarding the clinical applicability.

The evaluation of clinical applicability is, of course, a further necessary step in the
exploration of this field, particularly in terms of assessing its clinical potential for both
percutaneous ultrasound-guided (i.e., in the liver) and endoscopic ultrasound-guided (i.e.,
in the lung and pancreas) RFA procedures. Based on the results of the present study, we
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strongly believe that this approach offers clear potential for the reliable real-time tracking
of ablation zone size in the clinical setting.

5. Conclusions

In conclusion, our study demonstrated the potential of using a Mask2Former model
for the automatic delineation and measurement of ablation zones in ultrasound images,
offering a promising tool for enhancing the accuracy and efficiency of radiofrequency
ablation research. While the AI model showed notable precision compared to manual
methods, variations across tissue types and the variability with smaller ablation zones
highlight areas for further development. Future work should focus on refining the AI
model’s adaptability and accuracy to fully leverage AI in clinical RFA applications. This
will improve patient outcomes by optimizing therapeutic interventions and transferring and
using the model for the real-time monitoring of US-guided RFA ablation in clinical settings.
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