
Citation: Maeser, D.; Gruener, R.F.;

Galvin, R.; Lee, A.; Koga, T.; Grigore,

F.-N.; Suzuki, Y.; Furnari, F.B.; Chen,

C.; Huang, R.S. Integration of

Computational Pipeline to Streamline

Efficacious Drug Nomination and

Biomarker Discovery in Glioblastoma.

Cancers 2024, 16, 1723. https://

doi.org/10.3390/cancers16091723

Academic Editor: Maxim V.

Berezovski

Received: 15 March 2024

Revised: 21 April 2024

Accepted: 26 April 2024

Published: 28 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Integration of Computational Pipeline to Streamline Efficacious
Drug Nomination and Biomarker Discovery in Glioblastoma
Danielle Maeser 1, Robert F. Gruener 2, Robert Galvin 3 , Adam Lee 2, Tomoyuki Koga 4, Florina-Nicoleta Grigore 4,
Yuta Suzuki 4, Frank B. Furnari 5 , Clark Chen 4 and R. Stephanie Huang 2,*

1 Department of Bioinformatics and Computational Biology, University of Minnesota,
Minneapolis, MN 55455, USA

2 Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455,
USA; leeam@umn.edu (A.L.)

3 Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; rgalvin@umn.edu
4 Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA;

suzuki.yuta@mayo.edu (Y.S.)
5 Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA;

ffurnari@health.ucsd.edu
* Correspondence: rshuang@umn.edu

Simple Summary: The major impact from this work is two-fold, first in providing a list of repro-
ducible candidate drugs nominated against multiple glioblastoma (GBM) datasets, and second in
providing drug–gene biomarkers of interest for GBM as well as reproducible computational pipelines
for identifying drug–biomarker leads that could be extended to other cancer types beyond GBM.
We believe the research community will be interested and can utilize our results here for the further
development of biomarker-specific drug therapies in both GBM as well as other disease types.

Abstract: Glioblastoma multiforme (GBM) is the deadliest, most heterogeneous, and most common
brain cancer in adults. Not only is there an urgent need to identify efficacious therapeutics, but
there is also a great need to pair these therapeutics with biomarkers that can help tailor treatment to
the right patient populations. We built patient drug response models by integrating patient tumor
transcriptome data with high-throughput cell line drug screening data as well as Bayesian networks
to infer relationships between patient gene expression and drug response. Through these discovery
pipelines, we identified agents of interest for GBM to be effective across five independent patient
cohorts and in a mouse avatar model: among them are a number of MEK inhibitors (MEKis). We
also predicted phosphoglycerate dehydrogenase enzyme (PHGDH) gene expression levels to be
causally associated with MEKi efficacy, where knockdown of this gene increased tumor sensitivity
to MEKi and overexpression led to MEKi resistance. Overall, our work demonstrated the power
of integrating computational approaches. In doing so, we quickly nominated several drugs with
varying known mechanisms of action that can efficaciously target GBM. By simultaneously identi-
fying biomarkers with these drugs, we also provide tools to select the right patient populations for
subsequent evaluation.

Keywords: glioblastoma multiforme; drug discovery; biomarker discovery; drug response prediction;
precision medicine

1. Introduction

Glioblastoma multiforme (GBM) is one of the deadliest diseases, with only approxi-
mately 2% of GBM patients surviving three years or more [1,2]. Following radiation therapy
and surgery, standard of care for GBM can consist of chemotherapy such as temozolomide
(TMZ) used for radiosensitization. Carmustine may also be used in certain situations such
as in recurrent GBM [3]. Unfortunately, a large portion of GBM patients do not respond to
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these treatment strategies and develop resistance to them very quickly. There is an urgent
need to develop new therapeutic options for GBM patients. Yet, the heterogeneous nature
of this disease and the requirement of passing through the blood–brain barrier for most of
systematic treatment have significantly limited the progress on development of efficacious
drug treatment for GBM. Furthermore, traditional drug development takes on average
about 12 years and 1 billion dollars to bring a new drug through regulatory approval. At
this rate, hundreds and thousands of GBM patients will continue to suffer from lack of treat-
ment. To this end, computational approaches to nominate drugs and identify biomarkers
may offer a new path to significantly expedite the drug development process.

In this study, we apply a computational pipeline, oncoPredict [4], to enable drug sensi-
tivity prediction in patient tumors [5]. Previously, when applied to several hard-to-treat
cancer settings (e.g., triple-negative breast cancer and castration-resistant prostate cancer),
oncoPredict has successfully nominated and pre-clinically validated drugs currently un-
dergoing animal and clinical evaluation [6,7]. We are now applying this computational
tool to the GBM setting in order to nominate efficacious therapy and help combat this
highly heterogeneous disease. Specifically, the computational pipeline was applied to
eight independent GBM and non-high-grade glioma (non-HGG) patient datasets (spanning
nearly 2000 patients total). In addition, we generated drug sensitivity predictions and
performed experimental validation in a previously validated GBM mouse avatar model [8]
to validate candidate drugs nominated across the GBM clinical cohorts. Furthermore, we
employed a causal inference framework to identify biomarkers for the candidate drugs of
interest with the goal to facilitate selection of the right patients to be treated with the right
drug, which is critically important in heterogeneous disease like GBM [9]. Experimental
validation of a selected biomarker was also carried out in the mouse avatar model. Our
GBM avatar model, enriched with computational insights, has not only confirmed the
efficacy of selected drug candidates but has also paved the way for more personalized
treatment strategies in the relentless fight against GBM.

2. Materials and Methods
2.1. GBM Clinical Data Tested in Computational Modeling

In this study, we applied computational drug and biomarker discovery pipelines to
nine publicly available primary low-grade glioma (LGG) and adult GBM patient datasets
(Supplemental Table S1) to identify compounds of interest for specific patient populations
defined by the presence of biomarkers. In total, our drug imputation model was applied
to almost 2000 LGG and GBM samples, imputing almost 500 drug response scores for
each sample. The LGG datasets consisted of bulk RNAseq from TCGA (n = 516) and
the Chinese Glioma Genome Atlas (CGGA) (n = 282). TCGA datasets were downloaded
using the TCGAbiolinks R package [10], and CGGA datasets were downloaded from
the CGGA webpage [11]. The GBM datasets include microarray data (n = 332) and bulk
RNAseq (n = 165) from TCGA, microarray data from CGGA (n = 102), microarray data
from Rembrandt (n = 189, GSE108476) [12], and a personally combined dataset of pub-
lished literature (referred to as CMDAT) also using affymatrix (n = 62). All datasets were
previously normalized and log transformed to yield Gaussian expression distributions.

2.2. GBM Mouse Avatar Model Utilized for Experimental Validation of Drug Candidates and
Inferred Drug–Biomarker Relationships

The GBM avatar model [8] was previously found to be a viable preclinical model for
GBM. It was created by introducing different genetic driver mutations using CRISPR-Cas9
into human induced pluripotent stem cells. This was followed by differentiation of GBM-
associated mutations containing neural progenitor cells (NPCs) and animal orthotopic
engraftment to develop human adult GBM models. The NPC samples represent a pre-HGG
state. Tumor cells were obtained and cultured to produce spheres, and this process was
repeated twice to produce primary and secondary sets of tumors and spheres. Secondary
tumors were obtained following engraftment of primary spheres, and secondary spheres



Cancers 2024, 16, 1723 3 of 13

were obtained from secondary tumors. This process is reflected in Supplemental Figure S3.
This resulted in 66 total samples including NPCs, engrafted tumor avatar samples, and
spheres with technical replicas. Specifically, 6/66 samples were NPCs, and the remaining
60 samples consisted of 28 mesenchymal subtype samples and 32 proneural subtype
samples. The samples representative of the mesenchymal subtype were characterized by
PTEN and NF1 deletion, and the proneural subtype was characterized by TP53 deletion
and PDGFRA mutation. The bulk RNAseq expression profiles for these NPCs, tumors, and
spheres were obtained, and batch effect correction was performed where appropriate using
remove unwanted variation (RUV) normalization [13].

2.3. Overview of Drug Discovery Pipeline

To identify drug leads or drugs predicted to elicit a greater response in GBM samples
relative to non-high-grade glioma (non-HGG) samples, we applied a drug discovery
pipeline. This pipeline involved comparing drug response scores or imputed AUC across
different sequencing platforms (microarray and RNAseq) as well as patient and avatar data.
Cancer cell line screening data have been used to train machine learning models, aiming to
translate in vitro drug response to in vivo tumor response predictions and generate novel
drug discovery hypotheses. To date, the Broad Institute’s Cancer Therapeutics Response
Portal [14] (CTRP) is one of the largest publicly available drug screening efforts, providing
drug screening for nearly 1000 cell lines and 500 compounds. The most updated dataset
from CTRP is CTRP version 2 (CTRP2), representing a variety of cancers and molecular
targets. CTRP’s cell line transcriptome data are provided through the Broad Institute’s
Cancer Cell Line Encyclopedia database [15] (CCLE). For our purposes, the names across
the cancer cell lines from CTRP2 and CCLE were harmonized to Cellosaurus accession
numbers, indicated by the ‘CVCL’ prefix [16]. Drugs screened across <40% of all the cancer
cell lines were also removed, helping to ensure robust predictions. This resulted in 887 cell
lines and 493 drugs. Our R package oncoPredict’s function calcPhenotype() estimates a
gene’s weight in determining a cell’s drug sensitivity through applying linear regression
with a ridge penalty. This allowed a predictive drug sensitivity score, in the form of AUC
to be obtained for each sample running through oncoPredict. Therefore, the imputed
AUC was generated using a score system trained on high-throughput drug screenings in
hundreds of cancer cell lines at a concentration range from 0 to 10 µM for all drugs (e.g.,
CTRPv2). These scores are in the general range of 10–20. To compare cross platform drug
response data, we accounted for technical variation and platform effects by transcriptome
integration using Rank-In [17] prior to running calcPhenotype().

The non-parametric Wilcoxon rank sum (WRS) tests were selected for the statistical
comparison between GBM and non-HGG data. WRS tests were performed, as the as-
sumption of normality did not hold for the independent samples T-test, in which case
the WRS holds power advantages. To reduce the probability of making one or more false
discoveries or type 1 errors, which are common in multiple hypothesis tests, the statistical
Benjamini and Hochberg FDR controlling procedure was implemented to adjust p-values.
Drugs were filtered for statistically significant p-values, which confirmed that differences in
predicted drug response scores existed between GBM and non-HGG data, and ranked by
their effect size. The Hodges–Lehmann estimate (HLE) was measured for the magnitude of
significance or effect size, known as the location shift [18]. It established directionality to
determine whether a given drug was recommended for GBM over non-HGG, offering a
robust measure of effect size against outliers and distribution assumptions. Once drugs
were ranked, the top percentage of significant drugs with the largest location shift were
selected. The top 50th percentile of compounds with the largest HLE was selected as a
conservative choice, as it was large enough to help prevent efficacious drugs from slipping
through the pipeline while restrictive enough to help capture compounds with the greatest
magnitude in response. Due to the high variability of drugs recommended for each GBM
patient dataset, drugs recommended across the majority of clinical datasets were selected
for comparison with those recommended across the avatar data. Drug imputation was
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also performed for the avatar dataset, which served as computational verification prior
to experimental testing. Drugs selected in the top 50% of HLE across both the major-
ity of clinical data as well as avatar data were brought forward as drug candidates for
experimental validation.

2.4. Overview of Biomarker Discovery Pipeline

Our biomarker discovery pipeline was employed to predict biomarkers for drug leads
in an effort to uncover vulnerable patient populations. This pipeline utilized the SCC as
a univariate approach to biomarker discovery with Bayesian-network learning (MMPC
and hybrid-PC) [19] as a multivariate approach. Univariate approaches like the SCC are
defined as those that evaluate the informativeness of each gene individually in isolation
from the other genes according to a criterion. MMPC and hybrid-PC algorithms depict a
more biologically accurate representation of gene interactions by testing for conditional
independence. They implemented the Fisher Independence Test to measure the partial
correlation coefficient between predicted drug response scores and the expression of a
gene under scrutiny while conditioning on a set of the other predictor genes known as
the ‘conditioning set’. The TCGA-GBM RNASeq dataset was selected as the primary
GBM dataset used in the biomarker discovery pipeline because relative to microarray
data, RNAseq has higher specificity. It can more accurately detect differential expression
as well as rare or low expressed genes, and it outperforms microarray in determining
transcriptomic characteristics of cancer [20,21]. The first step in this pipeline was to filter the
TCGA-GBM RNASeq patient gene expression dataset for genes that were significantly (FDR
p-value < 0.05) and moderately to strongly correlated (|SCC| ≥ 0.60) with the predicted
drug response scores under scrutiny. The SCC was computed by setting ‘cc = TRUE’ in
oncoPredict’s calcPhenotype() function, adjusted for Spearman correlation.

After filtering by the SCC, we applied the MMPC algorithm to predict PCs. Filtering
the gene expression data using SCC reduced the dimensionality of the MMPC algorithm’s
input data. This achieved reproducibility of its outputs since Bayesian network learning
algorithms like MMPC can suffer from variable order dependence, which is a problem with
high-dimensional data like gene expression [22]. The partial correlation computed for a
given gene is equal to the correlation between two sets of residuals when linear regression
is applied: the first is between the drug under scrutiny and the conditioning set, and
the second is between the gene under scrutiny and the conditioning set. Hence, this test
regresses both the target and the variable under scrutiny on the conditioning set. Drugs
which are predicted to be independent have a partial correlation of zero, larger values
indicate greater dependency, and smaller values indicate limited dependency. MMPC
outputs a test statistic, taking into account the directionality of the partial correlation,
measuring the strength and the directionality of the predicted gene–drug associations
identified. As the independence tests are performed, they progressively exclude irrelevant
genes (genes that are independent from the predicted drug response scores). The end result
of this algorithm is genes that have survived these elimination stages known as PCs. PCs
will have significantly large test statistics, where the sign of the test statistic (whether it is
positive or negative) indicates directionality. This sign allowed us to determine whether a
gene under scrutiny was associated with drug sensitivity through up or down regulation.
The MMPC algorithm does not distinguish parental and child nodes from the PCs identified,
so we also applied the Hybrid PC algorithm to the filtered gene expression data to infer the
structure of the Bayesian network between gene expression and predicted drug response
in order to determine which PCs were parental nodes. By utilizing these univariate and
multivariate approaches, we were able to predict correlation, causality, and which genes
lead to drug sensitivity and how (whether through up or down regulation).

2.5. Experimental Testing of Drug Candidates GBM Mouse Avatar Model

The avatar models used to computationally validate drug leads were also used for
experimental evaluation. Drug leads (PD318088, trametinib, selumetinib) and standard of
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care agents (TMZ, carmustine) were tested in six avatar samples. Two samples were NPCs,
two were primary spheres, and two were secondary spheres. Mesenchymal and proneural
avatar samples were represented equally amongst these sample types. To measure efficacy
of drug leads, CellTiter Glo assay was performed independently four times for each
model and each drug with six technical replicates included in each biological test. The
experimental concentration range employed was 0.015 nM–100 nM. The relative ATP was
measured on day three post drug/control treatment. The concentrations used for testing
were selected by referencing dose–response curves obtained from several published cell
line drug screening datasets for GBM cell lines, reported in our Simplicity application.
Doses selected are provided in Supplemental Data S1. For each drug tested, relative ATP
was captured six times per sample across nine different doses. Drug response or measured
AUC was obtained by generating dose–response curves Then measuring AUC using the
trapezoidal rule to compute the area underneath the relative ATP curve through the R
function trapz() from the package pracma.

2.6. Experimental Testing of Inferred Drug–Biomarker Relationships in GBM Mouse Avatar Model

Through applying our biomarker discovery pipeline to TCGA-GBM RNAseq data, we
hypothesized that PHGDH knockdown contributes to trametinib sensitivity and overex-
pression contributes to resistance. To experimentally test this relationship in GBM mouse
avatar samples, secondary mesenchymal and proneural spheres with PHGDH knockdown
and overexpression were treated with trametinib, and the surviving percentage was mea-
sured and compared to negative controls. Negative controls consisted of parental samples
and empty vector transduced samples. To assess knockdown, control samples also included
lentivirus plasmid vector pLKO.1-puro control vector.

3. Results
3.1. Identification of GBM Therapeutic Susceptibilities Utilizing Drug Response Prediction

In our drug discovery pipeline, we first applied oncoPredict to patient tumor tran-
scriptome profiles to project patient likelihood of response to hundreds of medications. The
patient tumor drug sensitivity projection was performed in five independent GBM patient
datasets (a total of n = 850), a mouse GBM avatar model (n = 60), as well as two low-grade
glioma (LGG) datasets from the Chinese Glioma Genome Atlas (CGGA-LGG, n = 282) and
The Cancer Genome Atlas (TCGA-LGG, n = 516) and avatar neural progenitor cells (NPCs,
n = 6). Details of datasets employed are listed in Supplemental Table S1. Our goal is to
identify which drugs are repeatedly predicted to be more efficacious in GBM samples when
compared to non-GBM samples across various datasets and modality. Hodges–Lehmann
estimate (HLE) was performed with predicted drug sensitivity between GBM and non-
GBM samples. Consensus across the majority (at least three of the five) of the GBM clinical
datasets and validation in the mouse GBM avatar data relative to NPCs was set to select
candidate drugs of interest. After comparing predicted drug sensitivity scores between
each of the five GBM patient datasets and CGGA-LGG dataset, with these filtering criteria,
we identified 22 drugs of interest (red * marked in Figure 1A, where HLE is also indicated
in Figure 1B). The difference in these predicted drug response scores, indicated by the HLE,
for these 22 drug candidates between GBM and non-HGG groups are shown in Figure 1B.
When a different set of non-GBM control, TCGA-LGG, was used, we identified 62 drugs
(red * marked in Supplemental Figure S2A, where HLE is also indicated in Supplemental
Figure S1B).
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mate (HLE) within the top 50% of drugs with an FDR-corrected p-value of ≤0.05. The asterisk indi-
cates 22 drugs that were predicted as efficacious in more than half of the clinical datasets against 
CGGA-LGG and validated in the avatar dataset, which included MEK inhibitors selumetinib, 
PD318088, and trametinib. (B). The top panel heatmap displays the standardized HLE for all drugs 
identified to have a significantly different drug response across GBM and non-HGG samples. The 
bottom panel heatmap displays the HLE specifically for the 22 drug leads. Drugs predicted to be 
more efficacious for GBM are darker, in red. Those more efficacious for non-HGG are lighter, in 
blue. 

Of the drug candidates predicted to be efficacious in GBM relative to non-HGG, six 
of these drugs were predicted to confer efficacy in GBM relative to both CGGA-LGG (Fig-
ure 1) and TCGA-LGG (Supplemental Figure S1) non-HGG patient controls. These six 
drugs included mitogen-activated protein kinase inhibitors (MEKis) PD318088 and tra-
metinib, as well as BRD.K71935468 (inducer of reactive oxygen species), Fumonisin.B1 
(inhibitor of ceramide synthase), ML203 (activator of muscle pyruvate kinase), and RITA 
(inhibitor of p53-MDM2 interaction). Overall, the drugs identified across the LGG controls 
fell under a variety of classes including MEKis, EGFR inhibitors (EGFRis), and VEGFR 
inhibitors (VEGFRis). Other targets include STAT3, BRAF, CDKs, etc. (Supplemental Data 
S2). Many of these drug leads have already been identified as potentially efficacious ther-
apeutics in preclinical studies, supporting the validity of our computational projection. A 
few of these candidates have been tested in patients, yet none of them have been tested in 
patient populations guided by biomarker screening. As seen in Figure 1 and Supplemental 
Figure S1, MEKis were repeatedly identified as drug leads across independent patient da-
tasets. For example, higher predicted sensitivity towards trametinib was observed across 
GBM samples relative to non-HGG (regardless of the control datasets: CGGA-LGG, 
TCGA-LGG, or NPCs) where the heatmaps display similar effect size and directionality 
measured by HLE with an FDR-corrected p-value < 0.001. Therefore, we went forward 
with experimentally testing trametinib and additional MEKis selumetinib and PD318088 
in the GBM avatar models. It is worth noting that while our drug discovery pipeline 

Figure 1. Drug candidates identified for GBM relative to non-HGG (CGGA-LGG and NPC). (A) Upset
plot displaying intersections of drugs predicted to be efficacious for GBM relative to non-high-grade
glioma (non-HGG) across six GBM datasets. These drugs had a Hodges–Lehmann estimate (HLE)
within the top 50% of drugs with an FDR-corrected p-value of ≤0.05. The asterisk indicates 22 drugs
that were predicted as efficacious in more than half of the clinical datasets against CGGA-LGG
and validated in the avatar dataset, which included MEK inhibitors selumetinib, PD318088, and
trametinib. (B) The top panel heatmap displays the standardized HLE for all drugs identified to
have a significantly different drug response across GBM and non-HGG samples. The bottom panel
heatmap displays the HLE specifically for the 22 drug leads. Drugs predicted to be more efficacious
for GBM are darker, in red. Those more efficacious for non-HGG are lighter, in blue.

Of the drug candidates predicted to be efficacious in GBM relative to non-HGG, six of
these drugs were predicted to confer efficacy in GBM relative to both CGGA-LGG (Figure 1)
and TCGA-LGG (Supplemental Figure S1) non-HGG patient controls. These six drugs
included mitogen-activated protein kinase inhibitors (MEKis) PD318088 and trametinib, as
well as BRD.K71935468 (inducer of reactive oxygen species), Fumonisin.B1 (inhibitor of
ceramide synthase), ML203 (activator of muscle pyruvate kinase), and RITA (inhibitor of
p53-MDM2 interaction). Overall, the drugs identified across the LGG controls fell under
a variety of classes including MEKis, EGFR inhibitors (EGFRis), and VEGFR inhibitors
(VEGFRis). Other targets include STAT3, BRAF, CDKs, etc. (Supplemental Data S2). Many
of these drug leads have already been identified as potentially efficacious therapeutics
in preclinical studies, supporting the validity of our computational projection. A few
of these candidates have been tested in patients, yet none of them have been tested in
patient populations guided by biomarker screening. As seen in Figure 1 and Supplemental
Figure S1, MEKis were repeatedly identified as drug leads across independent patient
datasets. For example, higher predicted sensitivity towards trametinib was observed
across GBM samples relative to non-HGG (regardless of the control datasets: CGGA-LGG,
TCGA-LGG, or NPCs) where the heatmaps display similar effect size and directionality
measured by HLE with an FDR-corrected p-value < 0.001. Therefore, we went forward
with experimentally testing trametinib and additional MEKis selumetinib and PD318088 in
the GBM avatar models. It is worth noting that while our drug discovery pipeline focused
on candidate drugs predicted across the majority of clinical datasets with computational
validation in avatar data, several other drugs were predicted to show higher sensitivity in
all GBM clinical datasets; however, they were not also predicted to confer higher sensitivity
in the avatar GBM samples. The independent nature of these patient datasets made the
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discovery interesting as well, and these drugs’ information can be found in Supplemental
Data S3.

3.2. The Efficacy of MEKis Was Validated in GBM Avatar Model

Fundamentally, we found a number of MEKis showing higher predicted sensitivity in
GBM across a number of independent datasets. We selected trametinib, selumetinib, and
PD318088 for experimental testing in our GBM avatar model along standard of care agents:
temozolomide (TMZ) and carmustine. After exposing to increasing concentrations of TMZ
or carmustine, both standard of care agents produced a lower area under the dose response
curve (AUC) for GBM cells relative to NPCs (although this finding is only statistically
significant for carmustine, p < 0.05, Supplemental Figure S2), Lower and significantly
different AUC values were also observed upon treatment of GBM cells with all three MEKis
evaluated. In Figure 2, we plotted both imputed and experimentally measured AUC for
MEKis across avatar samples. All three MEKis performed as predicted across these samples,
where GBM samples were significantly (FDR p-value < 0.001) more sensitive to each MEKi
tested, producing a lower AUC value relative to the NPC control samples.
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Figure 2. Imputed vs. measured drug response of MEK inhibitors (MEKis) across glioblastoma (GBM)
avatar and control samples. Top row: Predicted drug sensitivity scores for three MEKis (PD318088,
selumetinib, trametinib) obtained from oncoPredict. AUC (area under the dose–response curve) was
predicted for neural progenitor cells (NPCs) and GBM samples for three MEKis. The asterisk indicates
statistical significance (FDR p-value < 0.05) Bottom row: Measured drug response by exposing GBM
avatar or NPC cells to each MEKi separately with increasing concentrations (across a range of
0.015 nM–100 nM for the drug). AUC was calculated using area under the dose–response curve
after CellTiter experiments. For both imputed and measured scenarios, AUC across GBM and NPC
samples were compared using a Wilcoxon sum rank test. The asterisk indicates statistical significance
between NPC and GBM samples. For imputed drug response, the p-value was 0.006, 0.01, and 0.02
for PD318088, selumetinib, and trametinib, respectively. For measured drug response, p < 0.001. To
ensure the accuracy and the reliability of the CellTiter experiments, four biological replicates with six
technical replicates within each experiment were measured to minimize the variability and to ensure
the accuracy.

3.3. Application of Causal Inference to Identify Biomarkers Indicative of MEKi Response

We employed a computational pipeline intended for causal inference in large omic
data analysis for biomarker discovery for our drug of interest. This enabled us to predict
drug–gene relationships for the MEKi drug candidates identified. Our pipeline contains
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two steps: 1. Spearman correlation coefficient (SCC) analysis, a univariate approach with a
goal to filter for the most informative genes and 2. Bayesian-network learning, a multivari-
ate approach consisting of the min-max parents–child (MMPC) and hybrid-parent and child
(hybrid-PC) algorithms to infer and visualize causal biomarkers. As shown in Figure 3A,
through SCC analysis between TCGA-GBM RNA-Sequencing (RNASeq) data and pre-
dicted drug response for each MEKi, independently, we identified genes whose expression
correlated with drug sensitivity (FDR p < 0.05 with moderately–strongly |r| >= 0.60). This
substantially reduced the dimensionality of the transcriptomic data from tens of thousands
to hundreds or less and enabled reliable application of the Bayesian algorithms. Specifically,
the data’s dimensionality was reduced to 239, 72, and 54 informative genes for trametinib,
PD318088, and selumetinib, respectively. Using each of these gene sets, the MMPC algo-
rithm predicted parent and child (PC) nodes representative of genes that either directly
influence or are directly impacted by drug response, where 8–12 PCs were identified for
each drug. The MMPC algorithm also computed a test statistic, indicating the magnitude
of the partial correlation for each PC, where a larger correlation indicates a stronger causal
relationship. The hybrid-PC algorithm was also directly applied to the filtered TCGA-
GBM RNASeq data to predict 1–2 parental nodes for each drug. For both trametinib and
PD318088, phosphoglycerate dehydrogenase enzyme (PHGDH) was predicted to be a PC
by the MMPC algorithm and a parental node by the hybrid-PC algorithm. In addition,
SH2B adaptor protein was also predicted to be a PC for selumetinib and PD318088 as well
as a parental node for selumetinib, directly influencing MEKi response (Supplemental
Figure S4).
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Figure 3. PHDGH was identified and validated to be a biomarker that affects MEKi treatment effect
in GBM. (A) Biomarker discovery pipelines and findings for trametinib (red), PD318088 (gold), and
selumetinib (blue). The pipeline consisted of filtering these data using the Spearman correlation
coefficient (SCC) to select genes whose significant and absolute SCC was equal to or exceeded 0.60
(FDR p < 0.05) then applying two Bayesian algorithms (MMPC and Hybrid-PC) to infer correlation
and causality between gene expression and drug response using these filtered data. From this
pipeline, PHGDH expression was predicted to directly influence both trametinib and PD318088
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responses. (B) Western blot of PHGDH and house-keeping control GAPDH in two GBM avatar
subtype samples (the proneural and mesenchymal subtype, each carrying unique genomic modifica-
tions). The experiment confirms knockdown and overexpression of PHGDH were successful in our
GBM avatar (across mesenchymal and proneural GBM subtypes). (C,D) CellTiter Glo experiments
after trametinib exposure for 72 h in GBM avatar cells (of both proneural and mesenchymal subtypes)
following PHGDH knockdown (C) and PHGDH overexpression (D). Each experimental condition
was evaluated in triplicate, and the plots (C,D) represent the average across all experiments. For
knockdown experiments, 3 sets of shRNA were employed, and their average effects were plotted
as shown in the blue curve in panel C. A 2-way ANOVA test was employed to test the statistical
differences among conditions. There are statistical differences in the cell survival after trametinib
treatment between PHGDH knockdown and both controls (p < 0.001 for both parental and pLKO).
There are also statistical differences in the cell survival after trametinib treatment between PHGDH
overexpression and both controls (p < 0.001 for both parental and pLV-EF1). A significant increase in
drug resistance occurred following overexpression as well as a significant increase in drug efficacy
following knockdown.

3.4. PHGDH Expression Levels Help Inform MEKi Response

Our computational pipeline identified PHGDH as a parental node for two MEKis with
the largest test statistic from conditional independence testing (Supplemental Figure S4).
The significant p-value and the large test statistic indicates a significantly strong causal
relationship between PHGDH expression levels and MEKi response relative to the other PC
nodes. In addition, in the univariate analysis, we observed a significant and positive corre-
lation between PHGDH gene expression and predicted or measured trametinib response
across our six GBM datasets (five patient cohorts and avatar) (Supplemental Figure S5).
Taken together, we hypothesized that PHGDH knockdown increases cellular sensitivity
to trametinib, and overexpression leads to trametinib resistance. To test this hypothesis,
experimental testing was carried out by manipulating the PHGDH expression levels in a
collection of GBM avatar samples (both proneural and mesenchymal subtype cells). We
had successful knockdown and overexpression of PHGDH in all GBM avatar samples
(Figure 3B). The GBM cells with/without PHGDH manipulation were then treated with
increasing concentrations of trametinib, and the surviving percentage was measured and
compared to controls. Two control samples with unmanipulated PHGDH expression were
used, including a parental condition. To assess knockdown, control samples also included
lentivirus plasmid vector pLKO.1-puro control vector. The average of three short hairpin
RNA (shRNAs) constructs with PHGDH knockdown demonstrated significantly increased
sensitivity to trametinib (p-value < 0.0001) relative to both control samples (Figure 3C).
To assess overexpression, control samples also included plasmid pLV-EF1. The PHGDH
overexpression led to significantly increased resistance to trametinib (p-value < 0.0001)
relative to both control samples as well (Figure 3D).

4. Discussion

Utilizing a computational drug sensitivity prediction tool independently across five
GBM patient datasets (approximately 1000 samples), a GBM mouse avatar model, and two
control non-HGG patient datasets, we identified a collection of drugs that were predicted
to have a higher sensitivity in GBM relative to non-HGG (the complete list is provided in
Supplemental Data S2). While many of our nominated drugs (close to 20) have been/are
being evaluated in clinical studies against GBM, nearly half (approximately 40) of our
discoveries have shown efficacy in preclinical experiments reported previously. All of these
justify the validity of our computational approach. Furthermore, given the heterogeneity
among these independent clinical studies, the consistency in our discoveries further justify
their importance and presents numerous opportunities for follow-up studies. These drugs
achieve tumor growth inhibition through a variety of mechanisms of actions, namely VEG-
FRis, EGFRis, and MEKis, which have a rich history of study in the context of GBM [23–33].
Other targets identified that frequently show up in clinical studies include mammalian
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target of rapamycin (MTOR) and cyclin-dependent kinases (CDKs). In addition, drugs
targeting STAT3, reactive oxygen species (ROS), PAR1, PAK4, apoptosis proteins, and
ubiquitin-specific protease 14 (USP14) are also among our top predicted efficacious candi-
dates in treating GBM. All of them present potential new opportunities. The one unique
outcome of our approach is that we identified agents that are known to act through various
mechanisms of actions yet are all effective in the setting of GBM simultaneously.

To dive in deeper for the candidate drugs of interest, we found a number of VEGFRis
through our pipeline, namely avastin, axitinib, and lenvatinib. VEGFRis have a long track
record in GBM applications and have been identified as providing promising therapeutic
opportunity if improvement of biomarkers aids in advancing the clinical efficacy of this
approach [23]. Avastin is an example of such an inhibitor, which has been investigated
in preclinical and clinical studies for its potential to delay GBM tumor growth. It is
currently approved in adult patients whose cancer has progressed after prior treatment
(recurrent or rGBM) [24]. Other VEGFRis include axitinib and lenvatinib, which have
shown success in pre-clinical studies [25,26]. A prospective phase I and II study is currently
in place to assess the effectiveness of lenvatinib in combination with pembrolizumab for
GBM (NCT05973903).

EGFRis were also repeatedly identified as efficacious for treating GBM across our
pipeline. In fact, EGFRis have had varying degrees of success against GBM. For example,
afatinib, an EGFR inhibitor that has shown effect against GBM in preclinical studies [27,28].
However, when tested in GBM patients (NCT00727506) either alone or in combination
with TMZ, only very limited efficacy was observed in unselected patients [29]. Impor-
tantly, follow-up study showed that afatinib is only effective in selected patients harboring
EGFRvIII mutation [27]. Given the heterogeneity commonly recognized for a disease like
GBM, this example highlights the need for biomarker screening as a means to direct pa-
tients to their appropriate treatment to help clinical trial design in drug development and
eventually in the combat against GBM.

In our study, multiple MEKis were repeatedly projected to show higher efficacy in
GBM samples regardless which control datasets were used. We experimentally validated all
three MEKis (trametinib, selumetinib, and PD318088) for their preferential activity in mouse
avatar samples when compared to NPC. It was worth noting that in the same experimental
validation model, we also tested two standard of care agents (TMZ and carmustine),
which show very subtle differences between GBM and NPC samples, suggesting potential
resistance towards standard of care treatment. In this case, our candidate drugs, MEKis,
showed more pronounced differences between the two groups, supporting their more
selective efficacy in the GBM cells. Surveying the literature, we found that preclinical
evidence supports the efficacy of trametinib and selumetinib in treating glioma. For
example, trametinib has been reported to exert a strong antiproliferative effect on multiple
established GBM cell lines, and its inhibitory effect on cell growth was observed even after
standard of care treatment [30]. Selumetinib was reported to stabilize disease progression
in glioma patients during a phase II clinical trial [31]. PD318088, on the other hand, is a
more novel MEKi, which has not been clinically tested against GBM [32].

Causal inferences have been employed to study disease risks, yet constraint-based
algorithms are yet to be widely used in the identification of drug biomarkers for GBM.
In this study, we integrated multiple approaches for biomarker discovery for our drug of
interest. We first apply a commonly used univariate analysis between gene expression
and drug sensitivity to narrow down the list of informative genes, then two Bayesian
causal inference tools utilizing constraint-based algorithms were employed to identify
causal genes. Through this pipeline, we nominated PHGDH as our top MEKi biomarker
and were able to experimentally validate its role in MEKi sensitivity. Specifically, we
found PHGDH expression levels as having a significant and positive correlation and causal
relationship with trametinib response. Interestingly, PHGDH has previously been proposed
as a therapeutic target for melanoma in overcoming resistance to MEKis PD0325901 and
trametinib [33,34], where suppression of PHGDH led to sensitivity in MEKi-resistant
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melanoma cells. These findings mirror the directionality predicted by our biomarker
discovery pipeline, supporting that the same biomarker for MEKi may be utilized in other
cancer settings. Indeed, we envision the same biomarker discovery pipeline can be applied
to any other drugs and/or phenotypes in the future. In addition, our biomarker discovery
pipeline identified several other genes which may directly influence MEKi response as well.
For example, SH2B was predicted to be a PC for both selumetinib and PD318088 as well as
a parental node for selumetinib, directly influencing MEKi response. It is highly expressed
in GBM, promoting progression through activating STAT3 signaling [35]. It is known to
play a critical role in promoting GBM progression and has previously been proposed as a
new therapeutic target. Therefore, our discovery also warranted studying of this gene as a
potential biomarker for MEKis.

5. Conclusions

Overall, the findings from this study support the approach to integrate computational
and experimental models as well as multiple independent cross platform and cross species
datasets, with the goal to speed up drug discovery and development for GBM. Our research
supports ongoing efforts to improve selectivity of treatments applied to patients with GBM
through applying discovery pipelines to GBM expression data, pairing drug candidates
with biomarkers indicative of drug response.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers16091723/s1, Figure S1. Drug leads identified for GBM
relative to non-HGG (TCGA-LGG and NPC); Figure S2. Standard of care agent’s measured drug
response across GBM mouse avatar samples; Figure S3. Generation of the mouse avatar bulk RNA
sequencing data; Figure S4. Multivariate method for MEK inhibitor (MEKi) biomarker discovery;
Figure S5. Linear plots displaying the relationship between PHGDH gene expression across the six
GBM datasets and measured or imputed response to trametinib; Table S1. Overview of the clinical
and avatar datasets; Data S1, S2, S3 could be accessed via this link: https://osf.io/ar9zg/ (accessed
on 18 April 2024).
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