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Abstract: Due to limited infrastructure and remote locations, rural areas often need help providing
reliable and high-quality network connectivity. We propose an innovative approach that leverages
Software-Defined Wide Area Network (SD-WAN) architecture to enhance reliability in such challeng-
ing rural scenarios. Our study focuses on cases in which network resources are limited to network
solutions such as Long-Term Evolution (LTE) and a Low-Earth-Orbit satellite connection. The SD-
WAN implementation compares three tunnel selection algorithms that leverage real-time network
performance monitoring: Deterministic, Random, and Deep Q-learning. The results offer valuable
insights into the practical implementation of SD-WAN for rural connectivity scenarios, showing its
potential to bridge the digital divide in underserved areas.

Keywords: SD-WAN; reinforcementlearning; network reliability; smart agriculture; rural connectivity

1. Introduction

Rural Networks enable the flow of information between devices, sensors, actuators,
and data centers, allowing farmers to monitor their agricultural operations remotely. This
connectivity is essential for deploying various smart agricultural technologies (precision
farming, sensor monitoring, and data analytics) that leverage the power of the Internet
of Things (IoT) and artificial intelligence (AI). The success of Smart Agriculture Services
is related to an adequate design of the Rural Network Connectivity, ensuring that even
remote and traditionally unserved agricultural areas are covered. In this scenario, Software-
Defined Wide Area Networking (SD-WAN) emerges as a key player in optimizing network
performance, ensuring a secure, scalable, and flexible infrastructure for seamless communi-
cation across vast agricultural landscapes.

In the past, connecting enterprise sites over long distances relied on dedicated leased
lines provided by network operators. However, these lines were associated with high
costs and limited speeds, prompting the exploration of alternative technologies for the
creation of inter-site connections over public Wide Area Networks (WANs) [1]. Based
on packet-switching technology, public WANs matured in the early 1980s and saw con-
tinuous development. Technologies like Asynchronous Transfer Mode (ATM) [2], Frame
Relay (FR) [3], and Multi-protocol Label Switching (MPLS) [4] were gradually adopted
to establish overlaid tunnels for interconnecting enterprise networks (ENs) across sites.
MPLS, in particular, has gained popularity due to its ability to ensure QoS through Service
Level Agreements (SLAs), which is achieved by establishing dedicated paths within the
IP (Internet Protocol) network, leveraging DiffServ (Differentiated Services) technology.
However, MPLS has drawbacks such as high bandwidth costs, configuration complexity,
and the time required to scale or upgrade paths dynamically.
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SD-WAN has emerged as a novel solution in the global enterprise networking land-
scape, with the aim of offering a low-cost solution that is at least close to the performance
of MPLS-based WANs. It leverages the advantages of Software-Defined Networking (SDN)
to enhance WANs by separating control and data planes. This approach enables the pro-
gramming of network devices from a centralized controller, as introduced in [5]. SDN
centralizes control plane functions, extracting control logic from underlying routers and
switches. This approach simplifies network management and enables innovation through
network programmability. While SDN was initially designed to meet the demands of
modern computing in data center networks, SD-WAN applies SDN technology to facilitate
end-to-end connections between users and networks across the WAN. SD-WAN effectively
combines the low cost of Internet access and guarantees a level of availability by introduc-
ing a centralized software controller. The SD-WAN overlay architecture is more adaptable
to dynamic configurations in response to network conditions than MPLS. This adaptability
is facilitated by a controller connected exclusively to edge devices, eliminating the need
for direct access to internal WAN equipment, such as providers’ routers and switches,
to operate an SD-WAN system. This feature is particularly relevant in rural scenarios,
in which the simplicity and flexibility of SD-WAN can address the challenges posed by
limited resources and infrastructure. Its centralized overlay architecture simplifies network
management, minimizing operational complexity, which is particularly advantageous in
contexts with limited resources. SD-WAN is the leading technology for many of today’s
WAN architectures because it guarantees secure, agile, and flexible connectivity among the
edge nodes [6]. This is particularly relevant in rural areas where cellular coverage is limited
and satellites, Wi-Fi mesh, and fixed xDSL may be present. Furthermore, SD-WAN’s ability
to adapt dynamically to network conditions is precious in rural areas where connectivity
may be unstable or subject to variations. Using a centralized software controller enables
dynamic configuration of the SD-WAN architecture to quickly respond to changes in net-
work availability. Its implementation can significantly enhance connectivity and network
management in rural environments, facilitating digital transformation even in settings with
limited resources.

Tunnel selection is pivotal in SD-WANs, influencing latency, bandwidth, and relia-
bility. Traditional methods often need help to dynamically adapt to changing network-
connectivity conditions, making them less effective in highly dynamic environments. The
tunnel represents an overlay link, with the CPE (Customer Premises Equipment) possessing
a number of outputs corresponding to the technology employed. The CPE is envisioned
as an experimental Virtual Network Function (VNF) deployable on generic hardware [7].
It facilitates the automated setup of encrypted tunnels, including IPSec tunnels, across
diverse network access technologies like satellite connectivity, mesh WiFi, 4G/5G, xDSL,
and fiber optics. In our scenario, a farmer has only one outgoing router, which can serve as
the CPE. However, the CPE might also be a more sophisticated device, such as a firewall or
a tool for implementing SD-WAN functionalities like connection to the provider, Traffic
Engineering (TE), security, and monitoring capabilities.

Reinforcement Learning (RL) [8] has emerged as a powerful paradigm for training
agents to make intelligent decisions in dynamic and uncertain environments. In this work,
we apply RL techniques to the challenging problem of SD-WAN tunnel selection, aiming to
improve the network performance and reliability in rural areas. We introduce a custom
SD-WAN environment, implemented using the Mininet and OpenFlow [5] frameworks, to
simulate network conditions and evaluate the performance of the RL-based link selection
algorithm. The proposed algorithm utilizes a Deep Q-Network (DQN) agent to learn an
optimal link selection policy through interactions with the SD-WAN environment.

In this paper, we delve into using SD-WAN technology to ensure comprehensive
reliability in areas where a single Long-Term Evolution (LTE) connection may fall short of
providing continuous connectivity. By integrating a Low Earth Orbit (LEO) satellite tunnel
and employing deep RL for tunnel selection, we propose a solution for rural zones.
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To the best of our knowledge, this work is the first to present SD-WAN technology
within a rural environment. Let us resume the main contribution of the paper. Firstly, we
have developed a simulator for SD-WAN, allowing for the exploration of various scenarios
involving multiple tunnels and traffic requests. Our focus lies in the rural scenario, where
both LTE and LEO tunnels are available for utilization. We also conduct simulations
employing three distinct algorithms to address the tunnel selection problem: random
selection, deterministic approaches, and RL-based strategies. The simulation confirms
that our proposed methodology shows a promising solution for guaranteeing a reliable
connection, underscoring our solution’s viability in rural settings.

The rest of the paper is organized as follows. Section 2 presents some of the most relevant
works about SD-WAN in remote areas, Traffic Engineering in SD-WAN, and Satellite Internet
in remote areas. Section 3 gives an overview of Deep-Reinforcement Learning, focusing on
the Deep-Q learning algorithm. Section 4 provides the description of the reference scenario,
and Section 5 details the three algorithms. Section 6 describes the implementation and
analyzes the results of the experiments. Finally, Section 7 concludes the work.

2. Related Work

Many works exploit poor connectivity resources to improve the QoS and reliability
of the rural network scenarios, and in Section 2.1, we present the main contributions in
this field. One of the crucial parts of SD-WAN is choosing the proper TE approach. In our
work, we exploit RL, and in Section 2.2, we present some of the main RL approaches in an
SD-WAN scenario. In Section 2.3, we illustrate satellite internet and how it can be helpful
in improving QoS and reliability in rural areas, as well as the original contribution of our
work. Finally, Table 1 summarizes the contribution of the different analyzed works.

2.1. SD-WAN in Remote Areas

In SD-WAN, various studies have been conducted to harness its potential for enhanc-
ing communication and connectivity in different scenarios. Ref. [9] conducted experiments
to evaluate system latencies and compare decentralized earthquake early warning (EEW)
design with a centralized EEW approach. These experiments included hypothetical earth-
quakes, and the results from sixty simulations showed that SD-WAN-based hole-punching
architecture with a Transmission Control Protocol (TCP) enabled ideal alerting conditions.
Additionally, the decentralized EEW system architecture outperformed the centralized
one, saving critical seconds. Another study, ref. [10], focuses on applying SD-WAN in an
emergency scenario with a lack of power communication resources. The authors empha-
sized the importance of emergency communication networks for maintaining electrical
grid functionality and highlighted the limitations of optical fiber networks during disasters.
The authors optimize the technical solution for hybrid networking, which combines optical
fiber networks with the public Internet. SD-WAN implementation significantly improved
optical fiber utilization efficiency, serving as an emergency link to restore communication
services during cable damage. The authors also provide SD-WAN integration with an
operator’s customized 4G network. In [11], an IoT-based system was proposed to guide
passengers and crew to muster stations during emergency evacuations, offering adaptabil-
ity and scalability. This system utilizes a private LTE/4G cellular sensor network and an
open-source IoT platform to ensure passenger safety during evacuations.

The development of distributed cloud environments necessitates advanced network in-
frastructure to support network automation, virtualization, high-performance data transfer,
and secure access across regional boundaries. The challenges and motivations for dis-
tributed cloud environments include cost reduction, redundancy, reliability, geo-replication,
and network virtualization. Ref. [12] explores the creation of a cloud-centric and logically
isolated virtual network environment using SD-WAN. The authors propose a logically iso-
lated and virtually converged network environment based on virtually dedicated network
(VDN) technology over SD-WAN. The scheme aims to offer secured isolation of virtual
networks with automated resource convergence, including virtual machines, data centers,
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and networks. Finally, ref. [13] discusses using technologies like Low-Power Wide Area
Networks (LP-WAN) in SD-WAN. The proposed Emergency Communication System (ECS)
combines a wireless 4G/LTE base station and LoRa network, demonstrating efficient data
transfer and reliability. LPWAN technology, specifically LoRa, is considered suitable for
IoT-based ECS.

2.2. Traffic Engineering in SD-WAN

The authors of [14] propose two TE optimization algorithms to minimize traffic dis-
ruptions and the cost related to the use of different underlay networks such as LTE, DSL
(Digital Subscriber Line), Cable, etc. On one side, they propose a monitoring algorithm
that periodically generates end-to-end probes between nodes in the overlay network to
infer link failures and performance degradation in the underlay network. Moreover, it can
also infer if two overlay paths share the same underlay congested path. Based on that,
the TE algorithms leverage this underlay awareness to re-configure the SD-WAN topol-
ogy and the overlay routing policies automatically to meet traffic demands and resiliency
requirements. The TE optimization algorithms are based on a minimum cost network
update (Min-Cost) problem. The goal is to minimize disruptions to the existing overlay
network traffic. The authors formulate the first Min-Cost problem as an integer linear
programming (ILP) problem that minimizes the network update cost (defined as the total
cost of all overlay links used to route the current flows) while satisfying the QoS constraint
(defined as the number of congested links shared by the traffic flows). Since this problem
is demonstrated to be NP-hard, the authors proposed a greedy algorithm that selects the
overlay paths with minimum cost, which approximates the optimal solution in polynomial
time. By considering an increasing number of network traffic demands, reconfiguration
cost and the number of disturbed flows are considered as performance metrics. According
to the results, this approach causes fewer flow disruptions than the baseline, in which every
source–destination pair uses the direct link.

The authors of [15] address the impact of traffic transit costs on the Operational
Expenditures (OpEx) of SD-WAN service providers, focusing on connections between Data
Centers (DCs) and Internet Service Providers (ISPs), along with inter-domain links among
ISPs. The primary objective is to introduce a mechanism to minimize these link types’
transit costs. Data Center Operators (DCOs) and ISPs typically offer multiple links for
transit purposes, such as the proposed algorithm choosing the best link that minimizes the
transit costs. Multi-homed ISP architecture involves ISPs providing transfer through several
inter-domain links, while DCs enhance resilience by establishing numerous connections
to one or more ISPs. Transfer costs vary based on the link speed, medium used, operator
agreements (peering, transit, separate for uplink/downlink), and tariff structure (volume-
based, 95th percentile-based). Ref. [16] explores the application of SDN to improve energy
transactions’ reliability, flexibility, and security in smart microgrid systems. The work
discusses challenges associated with traditional IP technology, which needs to be improved
for real-time business traffic on the Internet. MPLS is suggested as a solution, but it has
limitations, particularly in adapting to dynamic requirements. This work introduces SDN as
a technology that can offer a dynamic and programmatically efficient network configuration
for transactive energy in smart microgrid systems. SDN centralizes network management
by abstracting the control plane from the data-forwarding function in networking devices.
The paper focuses on an optimized SDN architecture to enhance transactive energy systems’
reliability, flexibility, and security within smart microgrids. It proposes the development of
such an architecture and evaluates its performance. Ref. [17] proposes an adaptive routing
approach that considers the historical performance of network links. As network links
often experience failures, effectively managing real-time packet loss between endpoints is
crucial for upholding QoS. To address this, the authors enhance a shortest-path algorithm
by considering network and reliability parameters, thereby creating intelligent routing
within the SD-WAN. This intelligent routing algorithm recommends optimal paths for
communication based on the desired latency and reliability. Experimental results show
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that their approach successfully demonstrates resilience and efficiency by applying the
programmability of SDN for WAN.

In recent research, novel approaches to optimizing network performance and service
availability have been proposed by several authors. These studies leverage RL techniques
to make intelligent path selection decisions that minimize end-to-end network delay. The
work in [18] primarily centers on enhancing SD-WAN performance, with a strong emphasis
on improving service availability. The proposed methodology involves multiple stages.
Initially, the authors evaluate the performance of baseline threshold-based path selection
algorithms. Subsequently, they introduce and implement deep-RL algorithms to address
the limitations identified in the baseline algorithms. Specifically, three types of deep-RL
algorithms, namely policy gradient, TD-λ, and deep Q-learning, are utilized to predict path
conditions regarding end-to-end delay. This predictive capability enables the algorithm to
dynamically adapt path selection based on future network conditions. Ref. [19] introduces
an innovative approach that leverages variations in Traffic Matrices (TM) as input to train a
deep RL algorithm, specifically Soft Actor–Critic. The primary goal is to efficiently extract
and encode real-time distributional TM information, especially during dynamic network
traffic fluctuations. Advanced deep neural autoencoders are used to extract and encode
distributional TM information autonomously at the network’s edge. These encoded vectors
collectively form a comprehensive Traffic Encoding Matrix (TEM), providing insights into
the traffic distribution for each network flow. Subsequently, a path selection algorithm
based on Soft Actor–Critic is developed for scalability and suitability for continuous state
spaces. In a related context, ref. [20] introduces an innovative SD-WAN framework to facil-
itate dynamic traffic management within a multi-site enterprise WAN. Real-time network
statistics monitoring and a Q-learning-based path selection algorithm are employed to min-
imize end-to-end service delays and enhance the overall service uptime. The framework is
constructed on the Ryu controller and utilizes Mininet to emulate the data plane network.
Furthermore, ref. [21,22] have explored the application of deep Q-learning in scenarios
involving two and four overlay links with a peering node. Controllers can adapt tunnel
selection strategies using deep RL based on real-time network feedback. The outcomes
of these studies demonstrate that RL, especially in scenarios with four tunnels, leads to
improvements in end-to-end delay and overall QoS.

2.3. Satellite Internet in Remote Area

The study [23] suggested using a network based on LEO satellites to support active
network management. Evaluating various IP data services over LEO networks in regular
and emergency scenarios revealed that an LEO-based network could meet the new network
management solution’s bandwidth, availability, and latency requirements. This is because
a group of satellites circling in LEO could be utilized to manage and automate a smart grid,
meeting the strict time constraints required. It is essential to consider that a geostationary
earth orbit (GEO) satellite link has a Round Trip Time (RTT) of 500 ms [24], which may
not satisfy the new requirements. Combining the potential of the SD-WAN architecture
with the new features that the 6G Satellite promises led to the design of a new architecture,
which will be illustrated below.

Ref. [25] explores the integration of SD-WAN and 6G Satellite technology. This
integration offers a novel architectural solution to enhance the network performance and
reliability of various applications, particularly in remote areas or high-latency environments.
The proposed architecture combines the speed and coverage of 6G satellites with the control
and flexibility of SD-WAN. It consists of critical components such as 6G Satellites, SD-WAN
Edge Devices, SD-WAN Orchestrator, SD-WAN Controller, Security Gateway, Cloud Data
Centers, and mobile/IoT devices.

In conclusion, ref. [26] conducts an examination using satellite communication systems
to support the IoT. The authors refer to the IoT paradigm as collecting data from sensors or
RFID (Radio Frequency ID), and control messages are dispatched to actuators. In numerous
application scenarios, sensors and actuators are distributed across extensive geographical
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and remote areas where terrestrial access networks are absent. Consequently, satellite
communication systems have become paramount for the Internet of Remote Things (IoRT).

Table 1. Summary of related work.

Work Description Results

[9]
Improved earthquake early warning
using SD-WAN-based hole-punching

architecture.

Decentralized EEW system with
SD-WAN outperformed the centralized

system, saving critical seconds.

[10]
Enhanced emergency communication
networks with SD-WAN, combining

optical fiber and public Internet.

Reliability and efficiency improved
during disasters.

[11]

IoT-based system for guiding passengers
and crew to muster stations during

emergency evacuations using a private
LTE/4G cellular sensor network.

Offers adaptability and scalability for
passenger safety during evacuations.

[12]
Creation of a cloud-centric and logically

isolated virtual network environment
using SD-WAN.

Proposed VDN technology over
SD-WAN for secure and efficient network

automation.

[13] Utilizing LPWAN in SD-WAN for
efficient data transfer ECS.

Demonstrated efficient data transfer and
reliability using LPWAN technology,

specifically LoRa.

[14]
Two traffic engineering optimization

algorithms to minimize traffic
disruptions and costs in SD-WAN.

Proposed Min-Cost problem solution for
SD-WAN network updates, minimizing
disruptions and reconfiguration costs.

[15]
Mechanism to minimize transit costs in
SD-WAN connections between DCs and

ISPs.

Algorithm selects the best tunnel to
minimize transit costs, considering

various link attributes.

[16]
Application of SDN to improve energy
transactions’ reliability, flexibility, and
security in smart microgrid systems.

Proposed optimized SDN architecture
enhances reliability and security in

energy systems.

[17]
Adaptive routing approach that

considers the historical performance of
network links in SD-WAN.

Enhancing network reliability and
efficiency by considering network and

reliability parameters.

[18] Enhance SD-WAN performance using
deep-RL algorithms.

Utilized policy gradient, TD-λ, and deep
Q-learning algorithms to predict path

conditions regarding end-to-end delay.

[19]
Leveraging variations in TM as input to

train a deep RL algorithm for path
selection.

Advanced deep neural autoencoders
extract and encode distributional TM

information.

[20]
Innovative SD-WAN framework for

dynamic traffic management in a
multi-site enterprise WAN.

Real-time network statistics monitoring
and Q-learning-based path selection

algorithm for minimizing service delays.

[21,22]
Application of deep Q-learning in

scenarios involving two overlay links
with a peering node.

Improved end-to-end delay and overall
QoS.

[23] Use of LEO satellites for network
management in smart grids.

LEO-based network meets strict time
constraints for smart grid automation.

[25]
Integration of SD-WAN and 6G Satellite

technology for enhanced network
performance and reliability.

Combines the speed and coverage of 6G
satellites with the control and flexibility

of SD-WAN for various applications.

[26] Utilizing satellite communication systems
for supporting IoT in remote areas.

Satellite communication systems are
crucial for IoT in extensive geographical

and remote areas.
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To the best of our knowledge, this work is the first to use the SD-WAN technology in a
rural scenario. In particular, the contributions of this paper are:

• We implement a simulator for SD-WAN with the ability to implement different scenar-
ios with multiple tunnels and requests of traffic.

• We focus on the rural scenario, in which an LTE tunnel and a LEO tunnel are available.
• We conduct simulations using three designed algorithms for the tunnel selection

problem: random, deterministic, and RL-based.

3. Reinforcement Learning in SD-WAN

RL [8] is a machine learning paradigm in which an agent learns to make decisions by
interacting with an environment in order to maximize a cumulative reward. RL aims to
identify optimal actions within a specified environment. This process entails the environ-
ment assigning positive or negative rewards based on the actions taken by the agent. The
agent plays a key role in decision-making and interaction with the environment, learning
from its experiences through iterative interactions with the environment.

At each time step t, the scenario unfolds as follows:

• The environment is characterized by its state st.
• The agent executes the action at.
• The environment transitions to the state st+1 and conveys the reward rt to the agent.

These observations, actions, and rewards collectively form the history, defined as
ht := a1, s1, r1, ..., at, st, rt. This cyclic process represents the core of RL, where the agent
continuously refines its decision-making based on the feedback received from the environ-
ment. RL has also found applications in trading and finance, healthcare, and gaming, such
as in the development of AlphaGo Zero [27], which learned the game of Go from scratch
using RL.

Unlike supervised learning, which uses labeled training data, or unsupervised learn-
ing, which discovers patterns without guidance, RL requires the agent to actively gather
experience about system states, actions, transitions, and rewards to take action in order to
maximize a cumulative reward function. In the context of SD-WAN, RL can offer significant
advantages in managing and optimizing network performance in dynamic environments.
The dynamic nature of network traffic and changing conditions make SD-WAN an ideal
candidate for reinforcement learning applications. Figure 1 presents a scheme of RL for the
tunnel selection problem in SD-WAN that will be analyzed in the following sections.

action at
select the optimal

tunnel 

Environment

SD-WAN

Agent

RL algorithm

State st+1

Reward rt

Figure 1. Reinforcement learning mechanism for the SD-WAN scenario

There are several RL algorithms, but analyzing the comparison carried out in [18], we
focus on Deep Q-learning because of computational time and performance.
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Deep Q-Learning (DQN)

The agent’s objective is to perform the propel actions, maximizing future rewards. We
adopt the common assumption that future rewards are discounted by a factor γ per time
step. The future discounted return at time t is defined as Rt = ∑T

t′=t γt′−trt′ , where T is the
time-step when the simulation terminates. The optimal action-value function Q∗(s, a) in (1)
represents the maximum expected return that can be achieved by following any strategy
after observing a sequence s and taking action a:

Q∗(s, a) = max
π

E[Rt|st = s, at = a, π], (1)

where π is a policy that maps sequences to actions.
The optimal action-value function in (2) is based on the Bellman equation, which is

grounded in the intuition that if the optimal values Q∗(s0, a0) for the sequence s0 at the
next time-step were known for all possible actions a0, then the optimal strategy would
be to select the action a0 that will maximize the expected value of r + γQ∗(s0, a0) in the
environment E:

Q∗(s, a) = Es0∼E[r + γ max
a0

Q∗(s0, a0)|s, a]. (2)

Many RL algorithms adhere to the basic idea of estimating the action-value function us-
ing the Bellman equation as an iterative update: Qi+1(s, a) = E[r + γ maxa0 Qi(s0, a0)|s, a].
However, this approach becomes impractical in practice, as the action-value function is
estimated separately for each sequence without generalization. Instead, a function approxi-
mator, typically a Q-network, is commonly employed to estimate the action-value function
Q(s, a; θ) ≈ Q∗(s, a), where θ represents the network weights [28].

Training a Q-network involves minimizing a sequence of loss functions
Li(θi) = Es,a∼ρ(·)[(yi − Q(s, a; θi))

2], where yi = Es0∼E[r + γ maxa0 Q(s0, a0; θi−1)|s, a] is
the target for iteration i, and ρ(s, a) represents a probability distribution over sequences s
and actions a referred to as the behavior distribution. The parameters from the previous
iteration θi−1 are fixed when optimizing the loss function Li(θi). Note that the targets de-
pend on the network weights; this contrasts with the targets used for supervised learning,
which are fixed before learning begins.

Differentiating the loss function concerning the weights, we arrive at the gradient
in (3):

∇θi Li(θi) = Es,a∼ρ(·);s0∼E

[(
r + γ max

a0
Q(s0, a0; θi−1)− Q(s, a; θi)

)
∇θi Q(s, a; θi)

]
. (3)

Rather than computing the full expectations in the above gradient, it is often compu-
tationally reasonable to optimize the loss function by stochastic gradient descent. If the
weights are updated after every time step, and expectations are replaced by single samples
from the behavior distribution ρ and the environment E, respectively, then we arrive at the
familiar Q-learning algorithm [29].

It is crucial to note that this algorithm is model-free, meaning it directly solves the RL
task using samples from the environment E without explicitly constructing an estimate of
E. Furthermore, it is off-policy, as it learns about the greedy strategy a = maxa Q(s, a; θ)
while following a behavior distribution that ensures sufficient state space exploration. In
practical applications, the behavior distribution is often selected using an ϵ-greedy strategy,
where the agent follows the greedy strategy with a high probability of 1 − ϵ and selects a
random action with a probability of ϵ.

4. Reference Architecture

We introduce the reference scenario (see Figure 2), providing a high-level, generalized
system description. The system operates within a rural environment, with N peripherals
connected with K tunnels to a central site. Each peripheral could connect M different users
with different types of traffic requests. This architecture aims to enhance efficient data
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exchange and reliable communication in rural landscapes where conventional infrastructure
might be limited. The system leverages SDN as an enabler in the SD-WAN framework.
SDN offers a centralized control mechanism, enhancing the management and orchestration
of network resources. The central controller is the focal point for decision-making, allowing
for dynamic adjustments in response to varying network conditions. A crucial element
in this system is the utilization of Tunnel Selection Algorithms (TSAs). These algorithms
are pivotal in efficiently forwarding traffic through the network tunnels. Their primary
function is to assess and select the most optimal tunnel based on specific criteria, bandwidth
availability, overall network load, tunnel availability, and traffic type. In this work, we will
consider three different algorithms, and the description of each algorithm will be presented
in Section 5.

.

CPE-1 CPE-2

TUNNEL-1

TUNNEL-2

TUNNEL-3

Satellite 
Connection

Low
Latency

Internet 
Broadband

D a t a  P l a n e

SD-WAN CONTROLLER C o n t r o l  P l a n e

Reinforcement
Learning Algorithm

Networking
Monitoring

A p p l i c a t i o n  P l a n e

R u r a l  a r e a H e a d q u a r t e r

Figure 2. An example of SD-WAN in a rural scenario that exploits three tunnels from different
technologies.

To contextualize, let us present a specific scenario (see Figure 3) where we considered
four rural sites (N = 4) connected to a central data center; this is based on the general
SD-WAN architecture. Each rural area is connected through an SD-WAN CPE and two
tunnels (K = 2), and may generate two types of traffic requests (M = 2) that we define
as type A and type B. The first tunnel is an LTE tunnel, while the other represents a LEO
tunnel. It is worth noting that when we talk about SD-WAN, the management will be at
the end-to-end level, and the underlay routing within each tunnel will not be controllable.

The LTE tunnel and LEO tunnel diverge significantly in terms of reliability and QoS.
LTE offers a terrestrial wireless communication standard known for its reliability. How-
ever, its performance may vary, especially with intermittent connectivity and fluctuating
QoS. On the other hand, the LEO tunnel provides constant connectivity, ensuring a stable
connection, but it still exhibits variable QoS based on factors such as weather conditions,
equipment quality, the satellite technology used, and the geographical location. While
generally reliable, the LTE tunnel experiences intermittent connectivity in the rural scenario
we considered. This means that the connection may not be consistently available, intro-
ducing variability in its QoS, making it crucial to assess these factors when considering
the suitability of this tunnel for specific types of traffic. In contrast, the LEO tunnel offers
constant connectivity, ensuring a reliable and stable connection. However, its QoS remains
variable, influenced by the factors listed above. The choice between LTE and LEO tunnels
depends on the nature of the traffic and the specific QoS requirements.
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Figure 3. Rural SD-WAN environment considered with LTE and LEO tunnels.

5. Tunnel Selection Algorithms

We present three different algorithms to evaluate the efficacy of the proposed solution
with a particular focus on rural areas: random, deterministic, and Deep Q-learning-based.
For all algorithms, the selection of the tunnel is exclusive, and no forms of multipath or
redundancy are allowed. In our analysis, we examined the collective traffic generated by
all CPEs, and the algorithms presented herein are intended to be applied individually to
each CPE.

5.1. Random

The first Algorithm 1 adopts a random approach to tunnel selection, reflecting the
unpredictability inherent in network conditions. A simple function that can be allocated
in the controller randomly selects an action that corresponds to the selection of a tunnel.
Traffic will be forwarded over one of the K tunnels with the same probability independently
of the tunnels’ statues and bandwidth.

Algorithm 1 Random

1: Initialize system parameters: user_traffic, available_bw, traffic_type
2: for traffic event do
3: Randomly select action ▷ Among K Tunnels
4: end for

5.2. Deterministic

As regards the deterministic algorithm, we introduce specific rules for tunnel selection
based on the user traffic and available bandwidth for each tunnel. In particular, we compare
the user traffic bandwidth with the available bandwidth in the first tunnel that corresponds
to the default tunnel. As shown in the pseudo-code of the Algorithm 2, if the default tunnel
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does not have enough bandwidth to satisfy the user traffic request, the algorithm will select
the tunnel with the highest available bandwidth.

Algorithm 2 Deterministic with K Tunnels

1: Initialize system parameters: user_traffic, available_bw, traffic_type
2: for traffic event do
3: if user_traffic ≤ available_bwtunnel1 then
4: action = 1 ▷ Default tunnel
5: else
6: max_bw = 0
7: for i = 1 to K do
8: if available_bwtunneli > max_bw then
9: max_bw = available_bwtunneli

10: action = i ▷ Select tunnel i
11: end if
12: end for
13: end if
14: end for

5.3. DQN-Based

The third Algorithm 3 introduces the RL-based approach that leverages DQN with
the aim of selecting the propel tunnel in real-time. The most important advantage of
using RL is that the algorithm will learn in real-time, as described in Section Deep Q-
Learning (DQN). In other words, it is possible to forecast the overcoming of the QoS
threshold, and it will change the tunnel not only when the instant SLA threshold is not
satisfied but also before that situation occurs. The primary objective of DQN is to learn and
adapt the tunnel selection, particularly in scenarios in which the presence or absence of a
primary connectivity becomes a critical determinant. When the existing tunnel bandwidth
is insufficient to meet traffic requirements, DQN strategically anticipates the impending
challenge and proactively recommends a tunnel change. This proactive approach enhances
the overall network performance and contributes to resource efficiency.

DQN combines Q-learning (which updates Q-values using the Bellman equation,
ensuring the model learns from historical experiences) with deep neural networks to
approximate the Q-value function, representing the expected return for a given action in a
specific state. The following parameters characterize the neural network:

Input Layer: The input layer is designed to match the environment’s state space size,
capturing the relevant features required for decision-making. In particular, the imple-
mented input layer has as many input nodes corresponding to the dimension of the state
with a dimension of K + 2 where K is the number of tunnels (we see this in our simulation
scenario K = 2, and so the input layer will have four nodes).

Hidden Layers: There are two hidden layers, each comprising 24 neurons and activated
by the Rectified Linear Units (ReLU) function. Each neuron in this layer receives inputs
from the three features previously listed. The hidden layer transforms the input information
into a higher-dimensional space through the weighted connections and activation function,
facilitating the neural network’s ability to learn and generalize from the observed states.

Output Layer: The output layer of the neural network is designed to reflect the two
possible actions that the agent can take. This layer comprises two neurons, aligning with
the count of available actions, and serves as the neural network’s interface to provide
Q-value estimates for the available actions. Furthermore, it uses a linear activation function
for the output layer to directly obtain the expected Q-values for each action without any
nonlinear transformation.

Loss Function and Optimizer: The Mean Squared Error (MSE) loss function quantifies
the difference between predicted and actual Q-values. With a learning rate of 0.001, the
Adam optimizer [30] orchestrates the iterative refinement of model parameters during the
training process.
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Algorithm 3 Deep Q-Learning with experience replay

1: Parameters: Replay Memory Size, Batch Size, MAX_EPISODES, MAX_STEPS,
Exploration Min, Exploration Decay

2: D = Replay Memory Size
3: for episode = 1 to MAX_EPISODES do
4: Reset environment to initial state s
5: for step = 1 to MAX_STEPS do
6: Select action a using ϵ-greedy policy based on current Q-values
7: Execute action a in the environment, observe next state s′ and get reward r
8: Store (s, a, r, s′) in replay memory D
9: if length(D) ≥ Batch Size then

10: Sample a random batch (s, a, r, s′) from D
11: for (s, a, r, s′) in batch do
12: Predict Q-values for state s
13: Update Q-value for action a in Q-values
14: Train the model with state s and updated Q-values
15: end for
16: ϵ× = Exploration Decay ▷ Update exploration rate
17: ϵ = max(Exploration Min, ϵ)
18: end if
19: end for
20: end for

This RL model uses experience replay, in which experiences are stored and randomly
sampled, enhancing their learning efficiency. The Q-network’s weights are updated to
minimize the disparity between predicted and target Q-values. A target network stabilizes
learning, and a mean squared error loss function quantifies the difference between predicted
and target Q-values. The DQN implementation incorporates a discount factor (γ) to balance
immediate and future rewards, emphasizing long-term gains. The general state s has a
dimension of K + 2, where K is the number of tunnels. The first element is 0 when the
default tunnel is not available; from 1 to K are 0 when the k-th tunnel does not have enough
available bandwidth with respect to the user traffic; and the last element represents the
traffic type. In Section 6, we will describe in detail the state for a specific simulated scenario.
As described previously, the agent’s objective is to maximize the cumulative sum of reward-
based learning from past experience. In this study, the reward function is designed to let
the agent learn about the tunnel’s availability and the bandwidth’s availability. The chosen
parameters play a key role in defining the behavior of the DQN agent (see Table 2).

Table 2. Parameter configuration for the algorithm.

Parameter Value

Discount factor γ 0.95

Replay memory 1000

Batch size 32

Exploration Rate starts at 1.0 and decays to 0.01

Discount Factor (γ): The discount factor, set to 0.95, emphasizes future rewards. A
high value (close to one) indicates a strategic focus on long-term gains.

Replay Memory Size: With a replay memory size of 1000, the agent leverages past
experiences to enhance learning. This memory enables the agent to draw from diverse
historical scenarios, mitigating potential biases associated with learning from consecutive
experiences and contributing to the stability of the training process.

Batch Size for Training: Training occurs in batches of 32 experiences randomly sampled
from the replay memory. This batching strategy prevents overfitting to specific experiences
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and promotes smoother learning, enhancing the agent’s ability to generalize across different
situations.

Exploration Rate: The exploration–exploitation trade-off is managed through an
ϵ-greedy strategy [31]. Exploration is gradually reduced over time, transitioning from
random exploration to exploitation of learned policies. During the action selection phase,
the agent considers two scenarios:

• Exploration (with probability ε): The agent randomly explores new actions instead of
following the current policy, generating a random number from a uniform distribution
between 0 and 1. If the random number is less than ϵ (the exploration rate), a random
action is chosen from all possible actions.

• Exploitation (with probability 1 − ϵ): The agent exploits the knowledge gained by
selecting the action with the maximum Q-value for the current state.

Starting with an exploration rate of 1.0, the rate gradually decays exponentially over time
with a decay value of 0.995, reaching a minimum value of 0.01.

6. Implementation and Simulation Results

In this section, we present the implementation of the SD-WAN architecture in a
simulated environment. Moreover, we implement and evaluate the algorithms presented
in Section 5 in a specific rural scenario. In particular, we consider a rural site where the
single LTE connection is not able to guarantee complete spatial and temporal coverage
and provide adequate reliability. An additional LEO satellite tunnel is considered. We
considered two types of traffic (Type A and B) generated as in the Section 6.1. In both cases,
ensuring reliable data transmission is critical in remote and rural areas. Losing packets can
have significant consequences, especially for critical applications like file transfers, web
browsing, and emails.

In this results section, we will show that by adding an LEO tunnel with a proper
tunnel selection allowed by SD-WAN, we can guarantee continuous coverage in space and
time, allowing uninterrupted communication compared to if we had only LTE for our type
of traffic requests. We will make a comparison with the scenario in which LTE is the only
connection solution, and we will also compare the various algorithms to see which one
performs better.

6.1. Simulated Bandwidth Generation

We consider Background Traffic (BT) and User Traffic (UT) in our simulation. Available
Bandwidth is derived by subtracting the BT from the total Tunnel Bandwidth, which is
constant. We considered BT=0 for the LEO tunnel in our simulated scenario. BT represents
the persistent flow of data over the network, which is typically attributed to long-term
connections like long-lived TCP sessions originating from peripheral sites or other users
who share the tunnel links. This traffic has been generated according to a model inspired
by [32]. Figure 4 shows the BT of one simulation.

Figure 4. Background traffic of LTE tunnel for one simulation.
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UT is a short-term traffic component that takes into account new traffic demands
coming from the end-users at the peripheral site: this traffic has been generated according
to a truncated normal distribution [33]. For traffic type ‘Type A’, the request of traffic
is generated using a normal distribution with a mean of 15 Mbps (µa) and a standard
deviation of 2 Mbps (σa). On the other hand, for traffic type ‘Type B’, the generation uses a
mean of 5 Mbps (µb) and a standard deviation of 2 Mbps (σb), reflecting common bandwidth
values and variations encountered in real-world SD-WAN environments [34]. We consider
2/3 of the traffic Type A and 1/3 Type B. The truncation is introduced so that negative
values are not considered even if the probability is very small. With a mean of 5, we have
6.2 × 10−3 probability of having negative values and 3.2 × 10−14 when the mean is 15.

6.2. Simulation Scheme

The SD-WAN simulator was fully developed in Python, allowing us to integrate some
RL libraries, which will be specified later. The implementation allows the creation of a sce-
nario with multiple types of traffic requests and multiple user sites that communicate with a
data center with multiple tunnels. In this paper, we considered a specific scenario and three
TSAs, but the simulation scenario can be easily changed and adapted to other situations.

According to the scenario previously described and the algorithms in Section 5, we per-
formed some tests to evaluate how the three algorithms behave in the simulated scenario.

We implemented a DQN agent to learn the optimal tunnel selection policy. The agent’s
neural network model uses the Keras library [35] with a TensorFlow [36] backend. For the
RL algorithm, we employed OpenAI Gym [37], a Python library designed for developing
and comparing RL algorithms. It provides a standardized API (Application Programming
Interface) for communication between learning algorithms and environments and a set of
environments that comply with the established API. The random algorithm will select, with
a probability of 0.5, one of the two available tunnels. In Figure 5, we present the general
scheme of the simulation. Let us summarize the simulation steps:

1. Select the type of traffic (Type A and Type B) and generate BT according to Section 6.1.
2. The three TSAs (Section 5) select the tunnel (LTE or Satellite LEO).
3. Generate the LTE status (present or not). In order to simulate a rural scenario, we

considered the LEO tunnel as always being present, while the LTE tunnel is present
with a probability of 0.8.

4. We update the QoS statistics, taking into account the selected tunnel and the LTE status.
5. Repeat starting from (1) until the SD-WAN simulation stops.

SD-WAN simulation
start

Yes Select Tunnel

Select type of traffic

TSA Algorithm:
1) Random

2) Deterministic
3) DQN

SD-WAN
simulation stop

Generate traffic
profile

Generate LTE status

Statistics Update

Figure 5. General scheme for the tunnel selection algorithms in the SD-WAN scenario.
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In the following sections, we present some results based on the scenario implemented
and the three different algorithms.

6.3. Tunnel Selection

Figure 6 illustrates the normalized frequency of occurrences for action 0 (LEO tunnel
selection) and action 1 (LTE tunnel selection), considering the two different traffic types
and the three algorithms.

(a) Actions for random algorithm (b) Actions for deterministic algorithm (c) Actions for DQN algorithm

Figure 6. Number of actions for each type of traffic in the three algorithms.

Figure 6a confirms that the random algorithm does not consider any criteria as con-
tributing toward best performance. We can see that the deterministic (Figure 6b) and DQN
approach (Figure 6c) present different behaviors of the selected tunnel, in accordance with
the goal of selecting the best tunnel according to the available bandwidth.

6.4. Reward Function

The design of the reward function is a crucial element of RL. By providing positive
or negative values with different absolute values, we present different situations that the
algorithm should reward or penalize. The general rule is to force the algorithm to learn the
forwarding of the traffic in order to ensure minimal loss, avoiding the LTE tunnel when it
is down and considering the bandwidth availability for both tunnels. The difference in the
values is justified by performing an action with 100% loss (LTE not present), <100% loss,
or 0% loss. For example, negative values are justified by the fact that we penalize the case
in which the chosen tunnel does not have enough bandwidth and thus is unnecessarily
occupied by taking up bandwidth for another traffic request. In Table 3, we present the
instantaneous value for the specific scenario simulated in accordance with the action taken
and the state s = [a, b, c, d], where a is 0 when the LTE tunnel is not available, b and c are
0 when the LTE and LEO tunnel, respectively, do have not enough bandwidth available
with respect to the user traffic, and d is 0 when the traffic type is Type B. We excluded
the inconsistent states [0, 1, ∗, ∗] in which the LTE tunnel is not present but has sufficient
bandwidth in accordance with the proposed simulation model.

As shown in Table 3, let us explain three examples according to the action selected in a
particular state:

• State[0, 0, 1, ∗] with action 0: In this case, the reward is highly negative (−4) because
the algorithm has selected the LTE tunnel that is not present with a consequent loss
of 100%.

• State[1, 0, 0, ∗]: In the case of action 0, the reward is slightly negative (−2) because
the algorithm has selected the LTE tunnel that does not have enough bandwidth
(loss < 100%). But on the other hand, action 1 will also have a loss. In this last case,
we assign a positive reward (+2) because, as a general strategy, the algorithm should
learn to forward to the LEO tunnel when neither of them has sufficient bandwidth.

• State[1, 1, 1, 1] with action 0: The type of traffic is considered only when both tunnels
guarantee sufficient bandwidth. In this case, we force the algorithm to forward type A
to the LEO tunnel. In this case, we assign a very high positive because not only is the
loss 0%, but the type of traffic has been forwarded to a preferential tunnel.
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Table 3. Reward States.

Reward Action States

−3 0 [0, 0, 0, ∗], [1, 0, 1, ∗]

−3 1 [1, 1, 0, ∗]

-4 0 [0, 0, 1, ∗]

+3 1 [0, 0, 0, ∗]

+4 1 [0, 0, 1, ∗], [1, 0, 1, ∗], [1, 1, 1, 1]

+4 0 [1, 1, 0, ∗], [1, 1, 1, 0]

+2 1 [1, 0, 0, ∗]

−2 0 [1, 0, 0, ∗]

+8 0 [1, 1, 1, 1]

+8 1 [1, 1, 1, 0]

6.5. Learning Trend

In order to show the learning trend of the DQN-based algorithm, Figure 7 presents
the behavior of the reward for one simulation. Analyzing reward trends offers an un-
derstanding of the adaptive learning dynamics of the network. The reward in the DQN
approach shows an upward trend over time. This phenomenon is the direct consequence
of the inherent nature of DQN, wherein the algorithm learns from its own actions with
the goal of maximizing the reward. These results underscore the effectiveness of DQN in
dynamic learning in accordance with network conditions, emphasizing the importance of
learning-based approaches in our tunnel selection scenario in SD-WAN.

Figure 7. Reward trend deep Q-learning.

6.6. Comparison with LTE-Only Scenario

As previously described, our work aims to showcase that our proposed and imple-
mented SD-WAN architecture can be effective in a rural area where an LTE connection
exhibits intermittent coverage. In Table 4, we conducted a comparison between the SD-
WAN scenario, where three algorithms (DQN, Deterministic, and Random) dynamically
select one tunnel, as outlined in the preceding sections, and a scenario featuring only LTE
connectivity. In terms of how this is implemented in our system, SD-WAN inherently
guarantees 100% coverage, since at least one tunnel is always available. In contrast, we
considered the same scenario while excluding diversion to the LEO tunnel, resulting in a
coverage of 72%. Table 4 also introduces the Traffic Excess Factor (TEF) metric, representing
the difference (in %) between the UT and the available bandwidth normalized with the
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total UT only at the steps with losses (i.e., when the difference is positive). In other words, it
serves as a kind of “pseudo-packet loss”. In this context, we compared the performance of
the three algorithms within the SD-WAN framework. The results confirm that DQN exhib-
ited the best values, leveraging its ability to learn the evolving tunnel availability over time
and predict traffic forwarding to tunnels that may soon become bandwidth-insufficient.
The lower values of TEF for DQN (8%) and deterministic (10%) show that it is possible to
control the tunnel selection in order to avoid the tunnel with limited capabilities. The point
that we would like to highlight is that the DQN algorithm is able to learn a policy in order
to achieve an improvement in terms of the metric presented, and it can reach or overcome
the performance of a ruled-based algorithm as the deterministic one.

Table 4. Comparison with LTE-only scenario.

Metrics SD-WAN (LTE and LEO) LTE (Only)

Availability 100% 72%

Traffic Excess Factor
(TEF)

8% (DQN)
19%10% (Deterministic)

16% (Random)

It is important to note that all three algorithms outperformed the LTE-only case,
where the TEF metric considers bandwidth unavailability even when the tunnel itself is
not accessible.

6.7. Ratio of Steps with Sufficient Bandwidth

We define the “ratio of steps with sufficient bandwidth” as the ratio between the
number of steps with the tunnel bandwidth that does not exceed the residual bandwidth
and the total number of steps in each episode. In other words, it quantifies the percentage
of times wherein the chosen tunnel provides adequate bandwidth. Starting from the
random algorithm, we can notice from Figure 8 (orange line) that this ratio has lower values
with respect to the other two algorithms, and this behavior reflects its random nature as
the tunnel selection is performed without following any criteria and we cannot observe
any particular advantage in using a backup tunnel. On the other hand, the deterministic
algorithm (blue line) presents higher values, with the lowest peaks always greater than the
random. As regards the DQN (gray line), it is noteworthy to observe the system’s capability
to learn and dynamically opt for the most suitable tunnel based on the previous network
conditions. This adaptive behavior highlights the effectiveness of DQN in autonomously
adjusting tunnel selection in response to varying network conditions, thereby mitigating
instances where the bandwidth requirements exceed the capabilities of the chosen tunnel
with a consequence of increasing the trend over time. Both the deterministic and DQN
algorithms reach a stable value of over 95% of the metric considered, indicating their
effectiveness. In contrast, the random approach shows a peak of 64%, which differs
significantly from the DQN and deterministic results.

Finally, Table 5 compares the throughput of the algorithms that we are considering in
this work. The throughput achieved with the DQN algorithm has been considered in two
specific episodes: the first and the last after training. As a reference, the random algorithm
achieves a throughput of 9.3 Mbps, while the deterministic algorithm achieves a value of
13.2 Mbps. In the first episode of DQN, the throughput is 8.7 Mbps, indicating that the
initial performance of the algorithm is comparable to a random selection (exploration phase
of RL). However, after only 15 episodes of training, the throughput significantly improves
to 13.7 Mbps, demonstrating the effectiveness of learning through RL, overtaking both
random and deterministic methods.
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Table 5. Comparison of the throughput.

DQN (First Episode) DQN (Last Episode after Training) Random Deterministic

8.7 Mbps 13.7 Mbps 9.3 Mbps 13.2 Mbps

Figure 8. Ratio of steps with sufficient bandwidth.

7. Conclusions

Our paper presents an innovative approach that utilizes SD-WAN architecture to
address the challenge of providing reliable network connectivity in rural areas with limited
infrastructure. Through our study and the SD-WAN simulator implemented, we examined
the efficacy of three tunnel selection algorithms (Deterministic, Random, and DQN) that
leverage real-time network performance monitoring in scenarios where resources are
constrained to solutions like intermittent LTE and LEO satellite connections. For the DQN
algorithms, we also designed a reward function for the scenario considered. The findings
show the potential of SD-WAN solutions to mitigate the digital divide in undeserved
regions. We show how different algorithms can impact the performance of the SD-WAN
system designed for rural and remote environments. In particular, we introduce the TEF
metric (less values mean better values) to compare the LTE-only scenario and the SD-
WAN(LTE and LEO scenario), achieving an improvement from 19% in the LTE scenario
to 8% in the SD-WAN scenario with DQN. Moreover, the throughput finding presents
the learning trend of the DQN algorithm and how it overcomes the other solutions after
training. Finally, we compare the metric Ratio of steps with sufficient bandwidth to obtain
a complete overview of the three algorithms. Hence, we can conclude that, by enhancing
reliability and efficiency, SD-WAN emerges as a promising solution to support connectivity
in rural and remote areas.
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Abbreviations
The following acronyms (listed in alphabetical order) are used in this manuscript:

AI Artificial Intelligence.
API Application Programming Interface.
ATM Asynchronous Transfer Mode.
BT Background Traffic.
CPE Customer Premises Equipment.
DQN Deep-Q Learning.
DSL Digital Subscriber Line.
EEW Earthquake Early Warning.
ECS Emergency Communication System.
FR Frame Relay.
GEO Geostationary Earth Orbit.
ILP Integer Linear Programming.
IP Internet Protocol.
ISP Internet Service Provider.
LEO Low Earth Orbit.
LP-WAN Low-Power Wide-Area Networks.
LTE Long-Term Evolution.
MPLS Multi-Protocol Label Switching.
MSE Mean Squared Error.
RL Reinforcement Learning.
RFID Radio Frequency ID.
RTT Round Trip Time.
SD-WAN Software Defined Wide Area Network.
SDN Software Defined Networking.
SLA Service Level Agreements.
TE Traffic Engineering.
TEM Traffic Encoding Matrix.
TEF Traffic Excess Factor.
TCP Transmission Control Protocol.
TM Traffic Matrix.
TSA Tunnel Selection Algorithm.
UT User Traffic.
VDN Virtually Dedicated Network.
VNF Virtual Network Function.
WAN Wide-Area Network.

References
1. Boger, P. Connecting Networks Companion Guide; Pearson Education: London, UK, 2014.
2. Le Boudec, J.Y. The asynchronous transfer mode: A tutorial. Comput. Netw. Isdn Syst. 1992, 24, 279–309. [CrossRef]
3. Buckwalter, J.T. Frame Relay: Technology and Practice; Addison-Wesley Professional: Boston, MA, USA, 2000.
4. Davie, B.S.; Rekhter, Y. MPLS: Technology and Applications; Morgan Kaufmann Publishers Inc.: Burlington, MA, USA, 2000.
5. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J. OpenFlow: Enabling

innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 69–74. [CrossRef]
6. Troia, S.; Zorello, L.M.M.; Maier, G. SD-WAN: How the control of the network can be shifted from core to edge. In Proceedings of

the 2021 International Conference on Optical Network Design and Modeling (ONDM), Gothenburg, Sweden, 28 June–1 July 2021;
IEEE: Piscataway, NJ, USA, 2021; pp. 1–3.

https://chat.openai.com/
http://doi.org/10.1016/0169-7552(92)90114-6
http://dx.doi.org/10.1145/1355734.1355746


Computers 2024, 13, 113 20 of 21

7. Woodyatt, J. Recommended Simple Security Capabilities in Customer Premises Equipment (CPE) for Providing Residential IPv6
Internet Service. Technical Report. 2011. Available online: https://www.rfc-editor.org/rfc/rfc6092 (accessed on 10 October 2023).

8. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285. [CrossRef]
9. Prasanna, R.; Chandrakumar, C.; Nandana, R.; Holden, C.; Punchihewa, A.; Becker, J.S.; Jeong, S.; Liyanage, N.; Ravishan, D.;

Sampath, R.; et al. “Saving Precious Seconds”—A Novel Approach to Implementing a Low-Cost Earthquake Early Warning
System with Node-Level Detection and Alert Generation. Informatics 2022, 9, 25. [CrossRef]

10. Wang, W.; Wang, H.; Wu, G.; Liang, X.; Chen, W.; Feng, Y. Research on the Application of SD-WAN Technology in Power
Communication Scenarios. In Proceedings of the 2022 Global Conference on Robotics, Artificial Intelligence and Information
Technology (GCRAIT), Chicago, IL, USA, 30–31 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 720–723.

11. Cheimaras, V.; Trigkas, A.; Papageorgas, P.; Piromalis, D.; Sofianopoulos, E. A Low-Cost Open-Source Architecture for a Digital
Signage Emergency Evacuation System for Cruise Ships, Based on IoT and LTE/4G Technologies. Future Internet 2022, 14, 366.
[CrossRef]

12. Kim, D.; Kim, Y.H.; Kim, K.H.; Gil, J.M. Cloud-centric and logically isolated virtual network environment based on software-
defined wide area network. Sustainability 2017, 9, 2382. [CrossRef]

13. Cheimaras, V.; Peladarinos, N.; Monios, N.; Daousis, S.; Papagiakoumos, S.; Papageorgas, P.; Piromalis, D. Emergency
Communication System Based on Wireless LPWAN and SD-WAN Technologies: A Hybrid Approach. Signals 2023, 4, 315–336.
[CrossRef]

14. Tootaghaj, D.Z.; Ahmed, F.; Sharma, P.; Yannakakis, M. Homa: An efficient topology and route management approach in
SD-WAN overlays. In Proceedings of the IEEE INFOCOM 2020-IEEE Conference on Computer Communications, Toronto, ON,
Canada, 6–9 July 2020; pp. 2351–2360.
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