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Abstract: An efficient stereoselective synthesis of cis-2,6-disubstituted tetrahydropyrans 14a–c has
been achieved via gold-catalyzed Meyer–Schuster rearrangement/hydration/oxa-Michael addition
sequence from bis-propargylic alcohols 13a–c. The reaction of 13a proceeds via 2,6-disubstituted
tetrahydropyran 14′a as an intermediate.

Keywords: gold catalyst; Meyer–Schuster rearrangement; hydration; oxa-Michael addition;
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1. Introduction

cis-2,6-Disubstituted tetrahydropyrans are important skeletons found in biologically
active natural products [1,2]. For example, decytosporides A [3,4], aspergillide [5,6] and
phorboxazole A [7] have important biological activities, including anti-tumor activity
against the A549 tumor cell line, potent cytotoxic activity against murine platelet leukaemia
cells, and NIC anti-cancer activity (Figure 1). Therefore, a great deal of effort has been
devoted to the development of synthetic methods for the synthesis of 2,6-cis-disubstituted
tetrahydropyrans [8–15], which remains an important topic in organic synthesis.
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Figure 1. Natural Products bearing 2,6-cis-disubstituted tetrahydropyran.

We have developed an efficient synthesis of heterocyclic compounds (cyclic ethers
4,10 [16]/piperidines 5,11 [17]/azepanes 6,12 [18]) from propargylic alcohols 1–3 by strate-
gic use of oxophilic (hard) gold (III) and π-philic (soft) gold (I) catalysts (Scheme 1). For
example, heating propargylic alcohols 1 with an oxophilic gold (III) catalyst (5 mol% AuBr3)
results in cyclization to afford cyclic ethers 4 bearing an acetylene moiety due to activation
of the propargylic position by coordination (a) of gold (III) (Scheme 1, route A) [16]. On the
other hand, in the presence of a π-philic gold (I) catalyst (2 mol% Ph3PAuNTf2), propar-
gylic alcohols 1 undergo Meyer–Schuster rearrangement [19,20] to afford α,β-unsaturated
ketones 7, which in turn undergo gold (III)-catalyzed intramolecular oxa-Michael addi-
tion [21–24] to afford cyclic ethers 10 bearing a carbonyl group [16]. In this case, the
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Meyer–Schuster rearrangement reaction involves activation of the triple bond by coordina-
tion (b) of gold (I), and the subsequent addition reaction involves activation of the carbonyl
group by coordination (c) of gold (III) (Scheme 1, route B). We have also successfully de-
veloped the methods for the synthesis of 2-substituted piperidines 5,11 and 2-substituted
azepanes 6,12 from propargylic alcohols 2,3 bearing nitrogen functionality by a similar
strategy using oxophilic (hard) gold (III) and π-philic (soft) gold (I) catalysts (Scheme 1,
routes A and B) [17,18].
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Scheme 1. Strategic use of oxophilic (hard) gold (III) and π-philic (soft) gold (I) catalysts for the
synthesis of heterocyclic compounds (Previous work).

To develop the synthetic procedure of cis-2,6-disubstituted tetrahydropyrans 14, we ex-
panded the substrate from propargylic alcohols 1–3 to bis-propargylic alcohol 13 (Scheme 2).
Bis-propargylic alcohol 13 is first catalyzed with the gold (I) complex to bring about the
dual Meyer–Schuster rearrangement reaction, forming bis-enone II via bis-enol I as an
intermediate. Then, the addition of H2O leads to a sequential oxa-Michael addition re-
action to give the desired 2,6-cis-disubstituted tetrahydropyrans 14. Here, we report a
gold-catalyzed Meyer–Schuster rearrangement followed by a gold-catalyzed oxa-Michael
addition of water for the stereoselective synthesis of cis-2,6-disubstituted tetrahydropyrans
14 from bis-propargylic alcohols 13.
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2. Results and Discussion

We began by investigating the gold-catalyzed sequential reaction with bis-propargylic
alcohol 13a as a model substrate in the presence of various gold (I) catalysts (Table 1).

Table 1. Optimization of reaction conditions in gold-catalyzed Meyer–Schuster rearrangement
followed by gold-catalyzed oxa-Michael addition.
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due to the difference in water solubility of the solvents. Thus, the solubility of water (8.60 g/L,
25 ◦C) [25] in 1,2-dichloroethane is higher than that of toluene (515 mg/L, 20 ◦C) [26], which
suggests that water is involved in the reaction in the dichloroethane to obtain the desired
product. On the other hand, the reaction with AuBr3 (10 mol%) in 1,2-dichloroethane at reflux
for 48 h gave 2,6-disubstituted tetrahydropyran 14′′a in 46% yield (cis:trans = 1:1) (entry 7).
Finally, the optimal reaction conditions for preparation of the desired product 14a from bis-
propargylic alcohol 13a were found to be Ph3PAuCl (10 mol%) and AgNTf2 (10 mol%) in the
presence of MeOH (2 eq.) and H2O (10 eq.) in ClCH2CH2Cl stirred at 50 ◦C.

From this result, the plausible reaction mechanism for the preparation of 2,6-disubstituted
tetrahydropyran 14′a was shown in Scheme 3. It is assumed that the tetrahydropyran 14′a
is formed by the Meyer–Schuster rearrangement reaction followed by the intramolecular
oxa-Michael addition reaction. First, the gold (I) catalyst is coordinated to the triple bond
and hydroxyl group on one side of bis-propargylic alcohol 13a, resulting in the addition of
methanol to the activated triple bond by gold (I) to afford the allenyl ether C (13a→A→B→C).
Then, hydrolysis of the allenyl ether C gives α,β-unsaturated ketone D, which undergoes oxa-
Michael addition to furnish the tetrahydropyran 14′a (C→D→14′a). However, it was not clear
whether the mechanism of formation for the desired cis-2,6-disubstituted tetrahydropyran 14a
was from the tetrahydropyran 14′a or some other mechanism.
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Next, to elucidate the mechanism of formation of the desired cis-2,6-disubstituted
tetrahydropyran 14a, the reaction of cis-disubstituted tetrahydropyran 14′a was performed
under optimal reaction conditions (Scheme 4). Treatment of tetrahydropyran 14′a with
Ph3PAuCl (10 mol%) and AgNTf2 (10 mol%) in the presence of MeOH (2 eq.) and H2O
(10 eq.) in ClCH2CH2Cl at 50 ◦C for 1 h furnished the desired cis-2,6-disubstituted tetrahy-
dropyran 14a in 56% yield. The yield of cis-2,6-disubstituted tetrahydropyran 14a in this
reaction was exactly the same as the yield from bis-propargyl alcohol 13a (Table 1, en-
try 5). This result most likely indicates that the reaction proceeded from bis-propargylic
alcohol 13a through the tetrahydropyran 14′a as the intermediate to cis-2,6-disubstituted
tetrahydropyran 14a. (Scheme 5).
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Scheme 5. The gold-catalyzed reaction of bis-propargyl alcohol 13a to cis-2,6-disubstituted tetrahy-
dropyran 14a.

In the study, as shown in Table 1, we confirmed the termination of the reaction by the
disappearance of bis-propargylic alcohol 13a. However, from the studies in the previous
section (Schemes 4 and 5), it was estimated that tetrahydropyran 14′a was likely to be
an intermediate in this reaction. Therefore, it was decided to change the confirmation of
the end of the reaction by the disappearance of tetrahydropyran 14′a and to examine the
reaction again (Table 2).

Table 2. Re-optimization of reaction conditions in gold-catalyzed reaction for the preparation of
cis-2,6-disubstituted tetrahydropyran 14a from bis-propargylic alcohol 13a.
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Entry Reagents Time 14a Yield

1 MeOH (2 eq.) 3 h 37%

2 MeOH (2 eq.), H2O (10 eq.) 2 h 56%

3 MeOH (2 eq.), H2O (10 eq.) 5 h 61%

4 * MeOH (2 eq.), H2O (10 eq.) 24 h 48%

5 MeOH (2 eq.), H2O (1 eq.) 24 h 41%

6 H2O (10 eq.) 24 h 25%
* The reaction was conducted with Ph3PAuCl (5 mol%) and AgNTf2 (5 mol%).

Entries 1 and 2 in Table 2 are the results shown in Table 1, entries 4 and 5. The reaction
of entry 2 (reaction time: 2 h) was extended until the disappearance of intermediate 14′a
was confirmed, resulting in an extension of the reaction time to 5 h and a slightly higher
yield of 61%. (entry 3). When the reaction was carried out with the reduction of the
catalytic amount to 5 mol% Ph3PAuCl and 5 mol% AgNTf2, the yield of the product 14a
was slightly lower, 48% (entry 4). Furthermore, when the reaction with 10 mol% Ph3PAuCl
and 10 mol% AgNTf2 was conducted with reducing the amount of water to 1 eq., the
tetrahydropyran 13a did not disappear even after 24 h, and the yield of the desired cis-
2,6-disubstituted tetrahydropyran 14a was obtained in 41% yield (entry 5). This result
indicates that additional water is essential for the reaction to proceed efficiently. On the
other hand, the reaction was conducted only with the addition of water (10 eq.) without
methanol, resulting in a low yield of the desired cis-2,6-disubstituted tetrahydropyran
14a (entry 6). Finally, the optimal reaction conditions for preparation of the desired cis-
2,6-disubstituted tetrahydropyran 14a from bis-propargylic alcohol 13a were found to be
Ph3PAuCl (10 mol%) and AgNTf2 (10 mol%) in the presence of MeOH (2 eq.) and H2O
(10 eq.) in ClCH2CH2Cl stirred at 50 ◦C for 5 h.

Next, we examined the scope of the reaction with bis-propargylic alcohols 13 bearing
other substituents of the alkyne moiety (Table 3). Treatment of bis-propargylic alcohols
13b bearing a hexyl group at the alkyne terminus with Ph3PAuCl (10 mol%) and AgNTf2
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(10 mol%) in the presence of MeOH (2 eq.) and H2O (10 eq.) at 50 ◦C in 1,2-dichloroethane
for 3.5 h afforded the corresponding cis-2,6-disubstituted tetrahydropyran 14b in 59%
(entry 2). The reaction with bis-propargylic alcohol 13c having n-Hex and Ph groups as
substituents at the alkyne terminus also furnished the corresponding cis-2,6-disubstituted
tetrahydropyran 14c in 61% yield (entry 3).

Table 3. The scope of the gold-catalyzed reaction for preparation of cis-2,6-disubstituted tetrahy-
dropyrans 14a–c bearing dicarbonylmethyl group from propargylic alcohols 13a–c.
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Entry Reactant R1 R2 Time 14 Yield

1 13a Ph Ph 5 h 14a: 61%

2 13b n-Hex n-Hex 3.5 h 14b: 59%

3 13c n-Hex Ph 3.5 h 14c: 61%

Next, the transformation of the triple bond in tetrahydropyran 14 to the carbonyl-
methyl group via hydration reaction was investigated. Treatment of tetrahydropyran 14′′a
with Ph3PAuCl (10 mol%) and AgNTf2 (10 mol%) in the presence of MeOH (2 eq.) and H2O
(10 eq.) at 50 ◦C in 1,2-dichloroethane for 1 h afforded cis-2,6-disubstitued tetrahydropyran
14a in a 23% yield (Scheme 6).
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Scheme 6. Gold-catalyzed reaction of 2,6-disubtituted tetrahydropyran 14′′a to cis-2,6-disubstituted
terahydropyran 14a.

If the hydration reaction occurred without the ring-opening reaction of the tetrahy-
dropyran ring, the product, tetrahydropyran 14a, should be a mixture of cis- and trans-forms.
In practice, however, only cis-2,6-disubstituted tetrahydropyran 14a was obtained as a
product in the reaction, so it is assumed that the ring-opening reaction occurred during the
hydration reaction.

The plausible reaction mechanism for the preparation of the cis-2,6-disubstituted
tetrahydropyran 14a from tetrahydropyran 14′′a is shown in Scheme 7. First, the first
hydration reaction occurs at one triple bond in tetrahydropyran 14′′a, forming the mixture
of cis- and trans-2,6-disubstituted tetrahydropyran 14′a bearing a carbonylmethyl group
(14′′a→14′a). Next, the second hydration reaction occurs at the other triple bond in
tetrahydropyran 14′a to form the mixture of cis- and trans-2,6-disubstituted tetrahydropyran
14a. Then, the coordination of the gold catalyst with the oxygen atom of tetrahydropyran
14a (E) and the water-induced elimination of α-hydrogen result in a ring-opening reaction
by reverse oxa-Michael addition (F→G) and a ring-closing reaction by oxa-Michael addition
(G→14a), ultimately yielding stable cis-2,6-disubstituted tetrahydropyran 14a.
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Scheme 7. Plausible reaction mechanism for the preparation of cis-2,6-disubstituted tetrahydropyran
14a from 2,6-disubstituted tetrahydropyran 14′′a.

Deuteration experiments were conducted to understand the reaction mechanism.
Treatment of bis-propargylic alcohol 13a with Ph3PAuCl (10 mol%) and AgNTf2 (10 mol%)
in the presence of CD3OD (2 eq.) and D2O (10 eq.) at 50 ◦C in 1,2-dichloroethane for
1 h afforded the desired 2,6-cis-disubstituted tetrahydropyran D-14a, showing that the
methylene groups at 2,6-positions were both 75% deuterated in the 1H NMR spectrum
(Scheme 8).
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Next, deuteration experiments were performed on cis-2,6-disubstituted tetrahydropy-
ran 14a. Treatment of the tetrahydropyran 14a with Ph3PAuCl (10 mol%) and AgNTf2
(10 mol%) in the presence of CD3OD (2 eq.) and D2O (10 eq.) at 50 ◦C for 1 h in 1,2-
dichloroethane afforded the tetrahydropyran D-14a, showing that the methylene groups at
2,6-positions were both 50% deuterated in the 1H NMR spectrum (Scheme 9). Although
the result of this deuteration experiment indicates that deuteration also occurs after the
formation of tetrahydropyran 14a, the deuteration rate is higher in the reaction from bis-
propargyl alcohol 13a (Scheme 8) than in the reaction from tetrahydropyran 14a (Scheme 9),
which suggests that MeOH and H2O are involved in the formation of tetrahydropyran 14a
from bis-propargyl alcohol 13a.
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The plausible reaction mechanism for the preparation of cis-2,6-disubstituted tetrahy-
dropyran 14a from bis-propargyl alcohol 13a is shown in Scheme 10. First, the coordination
of the gold (I) catalyst to the triple bond and hydroxyl group of bis-propargylic alcohol
13a results in a nucleophilic attack by MeOH on the activated triple bond to form vinyl
gold species A (13a→A). Next, the carbon-gold bond in vinyl gold species A is cleaved
with the elimination of water, forming the allene intermediate C (A→B→C). Subsequently,
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the addition of water transforms the allene intermediate C to α,β-enone D, completing
the Meyer–Schuster rearrangement reaction (C→D). Furthermore, the gold catalyst co-
ordinates with the carbonyl oxygen to enhance the reactivity of α,β-enone, resulting in
the intramolecular oxa-Michael addition reaction to afford intermediate 14′a (D→14′a).
Then, the gold (I) catalyst coordinates with the other triple bond and the oxygen atom
of tetrahydropyran 14′a to bring about the hydration reaction, giving the mixture of cis-
and trans-2,6-disubstituted tetrahydropyran 14a (H→I→E). The reaction mechanism for
the formation of cis-2,6-disubstituted tetrahydropyran 14a from the mixture of cis- and
trans-2,6-disubstituted tetrahydropyran is described in Scheme 7.
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Scheme 10. Plausible reaction mechanism for the preparation of cis-2,6-disubstituted tetrahydropyran
14a from bis-propargylic alcohol 13a.

The stereochemistry of cis-2,6-disubstituted tetrahydropyran 14c was confirmed by NOE
measurements (Figure 2). The stereochemical outcome of the reaction can be explained based
on transition-state structures G-I and G-II (Figure 2). During the equilibration between the
reverse oxa-Michael addition and oxa-Michael addition (Scheme 10), the bulky substituent
(α,β-enone) occupies a pseudo-equatorial position to avoid 1,3-diaxial interactions (G-II). As
the α,β-enone group is bulkier than hydrogen, it tends to take a pseudo-equatorial position
(G-I) rather than a pseudoaxial position (G-II) to avoid 1,3-diaxial interaction, resulting in
stereoselective synthesis of cis-2,6-disubstituted tetrahydropyran 14 [13,27].
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3. Materials and Methods
3.1. General Information

1H and 13C NMR spectra were recorded with a JEOL JNM-AL300 (Japan Electron
Optics Laboratory Co., Ltd., Tokyo, Japan) or BRUKER AV-300 spectrometer (Bruker,
Billerica, MA, USA) at room temperature, with tetramethylsilane as an internal standard
(CDCl3 solution). Chemical shifts were recorded in ppm and coupling constants (J) in Hz.
Infrared (IR) spectra were recorded with a Shimadzu FTIR-8200A spectrometer (Shimadzu
Corporation, Kyoto, Japan). Mass spectra were recorded on JEOL JMS-700 spectrometers
(Japan Electron Optics Laboratory Co., Ltd., Tokyo, Japan). Merck silica gel 60 (1.09385)
(Merck, Darmstadt, Germany) and Merck silica gel 60 F254 (Merck, Darmstadt, Germany)
were used for column chromatography and thin-layer chromatography (TLC), respectively.

1,9-Diphenylnona-1,8-diyne-3,7-diol (13a): Colorless oil, IR (KBr) 3319, 3055, 2947, 2864, 2228,
1599, 1489, 1443, 1026, 756, 691 cm−1; 1H-NMR (300 MHz, CDCl3) δ 7.42–7.40 (4H, m),
7.31–7.26 (6H m), 4.65 (2H, t, J = 6.0 Hz), 2.07 (2H, br s), 1.90–1.79 (6H, m); 13C-NMR
(75 MHz, CDCl3) δ 131.7, 128.4, 128.3, 122.5, 89.8, 85.1, 62.8, 37.3, 21.0; HRMS (EI) m/z calcd
for C21H20O2 [M]+ 304.1463, found 304.1452.

Henicosa-7,14-diyne-9,13-diol (13b): Colorless oil, IR (KBr) 3362, 2928, 2856, 2233, 1464, 1082,
1022 cm−1; 1H-NMR (300 MHz, CDCl3) δ 4.37 (4H, br s), 2.20 (2H, td, J = 7.1, 1.8 Hz),
1.74–1.68 (3H, m), 1.65–1.59 (5H, m), 1.53–1.48 (3H, m), 1.40–1.27 (13H, m), 0.89 (6H, t,
J = 6.6 Hz); 13C-NMR (75 MHz, CDCl3) δ 85.6, 81.1, 62.4, 37.7, 31.3, 28.6, 28.5, 22.5, 21.0,
18.6, 14.0; HRMS (FAB) m/z calcd for C21H37O2 [M + H]+ 321.2794, found 321.2740.

1-Phenylpentadeca-1,8-diyne-3,7-diol (13c): Colorless oil, IR (KBr) 3354, 3082, 2932, 2860, 2233,
1599, 1490, 1026 cm−1; 1H-NMR (300 MHz, CDCl3) δ 7.45–7.41 (2H, m), 7.32–7.26 (3H,
m), 4.62 (1H, t, J = 6.0 Hz), 4.40–4.38 (1H, m), 2.19 (2H, td, J = 7.0, 0.9 Hz), 2.07 (1H, br
s), 1.88–1.82 (3H, m), 1.79–1.69 (4H, m), 1.53–1.44 (2H, m), 1.38–1.27 (6H, m), 0.88 (3H, t,
J = 7.5 Hz); 13C-NMR (75 MHz, CDCl3) δ 131.6, 128.23, 128.16, 122.6, 90.0, 85.6, 84.8, 81.0,
62.6, 62.4, 37.5, 37.3, 31.2, 28.6, 28.5, 22.4, 20.9, 18.6, 14.0; HRMS (EI) m/z calcd for C21H28O2
[M]+ 312.2089, found 312.2076.

3.2. Synthetic Procedure of 2,6-Disubstituted Tetrahydropyran 14′a from Bis-Propargylic Alcohol 13a

MeOH (13 µL, 0.33 mmol, 2 eq.), Ph3PAuCl (8.1 mg, 0.016 mmol, 10 mol%) and
AgNTf2 (6.4 mg, 0.016 mmol, 10 mol%) were added to a solution of bis-propargylic alcohol
13a (50 mg, 0.16 mmol) in toluene (5 mL) at room temperature, and the mixture was
stirred at reflux for 3.5 h. The solvent was removed in vacuo and the crude product was
subjected to SiO2 column chromatography (hexane:CH2Cl2 = 2:1) to give the mixture of
2,6-disubstituted tetrahydropyran cis-14′a (17 mg, 34%) and trans-14a′ (20 mg, 40%).

Phenyl-2-[(2R*,6S*)-6-(phenylethynyl)tetrahydro-2H-pyran-2-yl]ethan-1-one (cis-14′a). Colorless
oil (hexane:CH2Cl2 = 2:1), IR (KBr) 3059, 2926, 2855, 2230, 1684, 1597, 1491, 1448, 1047 cm−1;
1H-NMR (300 MHz, CDCl3) δ 7.97 (2H, d, J = 7.2 Hz), 7.57 (1H, t, J = 7.4 Hz), 7.49–7.42
(4H, m), 7.30–7.27 (3H, m), 4.43 (1H, dd, J = 11.0, 2.1 Hz), 4.13–4.06 (1H, m), 3.45 (1H,
dd, J = 16.8, 5.1 Hz), 3.07 (1H, dd, J = 16.8, 7.2 Hz), 1.96–1.75 (4H, m), 1.42–1.29 (2H, m);
13C-NMR (75 MHz, CDCl3) δ 137.1, 133.2, 131.9, 128.6, 128.3, 128.2, 128.1, 122.6, 88.4, 84.4,
74.6, 68.9, 45.3, 32.5, 30.9, 23.2; HRMS (FAB) m/z calcd for C21H21O2 [M + H]+ 305.1542,
found 305.1538.

1-Phenyl-2-[(2R*,6R*)-6-(phenylethynyl)tetrahydro-2H-pyran-2-yl]ethan-1-one (trans-14′a). Colorless
oil (hexane:CH2Cl2 = 2:1), IR (KBr) 3061, 2926, 2853, 1686, 1597, 1489, 1448, 1038 cm−1; 1H-NMR
(300 MHz, CDCl3) δ 7.97 (2H, d, J = 7.5 Hz), 7.56 (1H, t, J = 7.5 Hz), 7.48–7.41 (4H, m), 7.31–7.29
(3H, m), 4.96 (1H, d, J = 4.2 Hz), 4.67–4.59 (1H, m), 3.28 (1H, dd, J = 15.6, 6.0 Hz), 3.03 (1H, dd,
J = 15.6, 6.6 Hz), 2.02 (1H, tt, J = 12.4, 3.6 Hz), 1.88–1.75 (4H, m), 1.43–1.30 (2H, m); 13C-NMR
(75 MHz, CDCl3) δ 198.1, 137.2, 133.0, 131.8, 128.5, 128.2, 122.8, 87.4, 86.8, 68.8, 65.9, 45,4, 31.6,
30.4, 29.7, 19.4; HRMS (FAB) m/z calcd for C21H21O2 [M + H]+ 305.1542, found 305.1536.
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3.3. General Procedure for Gold-Catalyzed Synthesis of 2,6-Disubstituted Tetrahydropyrans 14a
from Bis-Propargylic Alcohols 13

Ph3PAuCl (10 mol%) and AgNTf2 (10 mol%) were added to a solution of bis-propargylic
alcohol 13, MeOH (2 eq.) and H2O (10 eq.) in ClCH2CH2Cl at room temperature, and the
mixture was stirred at 50 ◦C. After complete consumption of 2,6-disubstituted tetrahydropyran
14′ (the reaction was monitored by thin layer chromatography; usually within 5 h), the solvent
was removed in vacuo and the crude product was subjected to SiO2 column chromatography
(eluents = hexane:CH2Cl2) to give cis-2,6-disubstituted tetrahydropyran 14.

2,2’-[(2R*,6S*)-Tetrahydro-2H-pyran-2,6-diyl]bis(1-phenylethan-1-one) (cis-14a). Bis-propargylic alco-
hol 13a (30 mg, 0.099 mmol), MeOH (8.0 µL, 0.20 mmol, 2 eq.), H2O (18 µL, 0.99 mmol, 10 eq.),
Ph3PAuCl (4.9 mg, 0.0099 mmol, 10 mol%) and AgNTf2 (3.9 mg, 0.0099 mmol, 10 mol%) in
ClCH2CH2Cl (5 mL) furnished cis-14a (20 mg, 61%) as a colorless oil (hexane:CH2Cl2 = 6:1).

IR (KBr) 3063, 2926, 2855, 1684, 1597, 1510, 1448, 1063 cm−1; 1H-NMR (300 MHz,
CDCl3) δ 7.92–7.89 (4H, m), 7.53 (2H, tt, J = 7.2, 1.5 Hz), 7.45–7.39 (4H, m), 4.05–3.97 (2H,
m), 3.24 (2H, dd, J = 15.9, 6.3 Hz), 2.94 (2H, dd, J = 15.9, 6.6 Hz), 1.86–1.74 (2H, m), 1.68–1.57
(2H, m), 1.35–1.27 (2H, m); 13C-NMR (75 MHz, CDCl3) δ 198.3, 137.3, 133.0, 128.5, 128.2,
74.7, 45.4, 31.4, 23.3; HRMS (EI) m/z calcd for C21H22O3 [M]+ 304.1569, found 322.1570.

The 1H-NMR and 13C-NMR data are identical with reported values [13].

1,1’-[(2R*,6S*)-Tetrahydro-2H-pyran-2,6-diyl]bis(octan-2-one) (cis-14b). Bis-propargylic alcohol
13b (30 mg, 0.094 mmol), MeOH (7.6 µL, 0.19 mmol, 2 eq.), H2O (17 µL, 0.94 mmol, 10 eq.),
Ph3PAuCl (4.6 mg, 0.0094 mmol, 10 mol%) and AgNTf2 (3.6 mg, 0.0094 mmol, 10 mol%) in
ClCH2CH2Cl (5 mL) furnished cis-14b (19 mg, 59%) as a colorless oil (hexane:CH2Cl2 = 3:1)
as a colorless oil.

IR (KBr) 2930, 2858, 1715, 1373, 1080 cm−1; 1H-NMR (300 MHz, CDCl3) δ 3.84–3.76
(2H, m), 2.59 (2H, dd, J = 15.2, 8.1 Hz), 2.43–2.33 (6H, m), 1.84–1.79 (1H, m), 1.68–1.50 (8H,
m), 1.27–1.15 (13H, m), 0.88 (6H, t, J = 6.6 Hz); 13C-NMR (75 MHz, CDCl3) δ 209.5, 74.4,
49.4, 43.6, 31.6, 31.1, 28.8, 23.5, 23.2, 22.5, 14.0; HRMS (EI) m/z calcd for C21H38O3 [M]+

338.2821, found 338.2812.

1-[(2R*,6S*)-6-(2-Oxo-2-phenylethyl)tetrahydro-2H-pyran-2-yl]octan-2-one (cis-14c). Bis-propargylic
alcohol 13c (30 mg, 0.096 mmol), MeOH (7.8 µL, 0.19 mmol, 2 eq.), H2O (18 µL, 0.94 mmol,
10 eq.), Ph3PAuCl (4.8 mg, 0.0096 mmol, 10 mol%) and AgNTf2 (3.8 mg, 0.0096 mmol, 10 mol%)
in ClCH2CH2Cl (5 mL) furnished cis-14c (19 mg, 59%) as a colorless oil (hexane:CH2Cl2 = 2:1)
as a colorless oil.

IR (KBr) 3069, 2932, 2860, 1713, 1686, 1597, 1491, 1448 cm−1; 1H-NMR (300 MHz,
CDCl3) δ 7.97–7.92 (2H, m), 7.56 (1H, tt, J = 7.5, 1.5 Hz), 7.49–7.42 (2H, m), 4.04–3.94 (1H,
m), 3.86–3.77 (1H, m), 3.26 (1H, dd, J = 15.6, 6.6 Hz), 2.89 (1H, dd, J = 15.6, 6.0 Hz), 2.58 (1H,
dd, J = 15.3, 7.8 Hz), 2.40–2.30 (3H, m), 1.89–1.60 (4H, m), 1,51–1.40 (2H, m), 1.29–1.18 (8H,
m), 0.86 (3H, t, J = 6.6 Hz); 13C-NMR (75 MHz, CDCl3) δ 209.7, 198.4, 137.3, 133.0, 128.5,
128.2, 74.7, 74.6, 49.5, 45.2, 43.5, 31.6, 31.2, 28.8, 23.4, 23.2, 22.5, 14.0; HRMS (EI) m/z calcd
for C21H30O3 [M]+ 330.2195, found 330.2202.

3.4. Synthetic Procedure of 2,6-Disubstituted Tetrahydropyran 14′′a from Bis-Propargylic Alcohols 13a

AuBr3 (4.3 mg, 0.00099 mmol, 10 mol%) were added to a solution of bis-propargylic
alcohol 13a (30 mg, 0.099 mmol) in ClCH2CH2Cl (5 mL) at room temperature, and the mixture
was stirred at reflux for 48 h. The solvent was removed in vacuo and the crude product
was subjected to SiO2 column chromatography (hexane:CH2Cl2) to give the mixture of 2,6-
disubstituted tetrahydropyran cis-14′′a (7.4 mg, 26% yield) and trans-14′′a (5.6 mg, 20% yield).

(2R*,6S*)-2,6-Bis(phenylethynyl)tetrahydro-2H-pyran (cis-14′′a). Colorless oil (hexane:CH2Cl2 = 5:2),
IR (KBr) 3080, 2947, 2922, 2850, 2360, 1599, 1491, 1379, 1072 cm−1; 1H-NMR (300 MHz, CDCl3) δ
7.46–7.42 (4H, m), 7.32–7.28 (6H, m), 4.43 (2H, dd, J = 10.8, 2.4 Hz), 2.00–1.91 (3H, m), 1.87–1.78
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(2H, m), 1.72–1.61 (1H, m); 13C-NMR (75 MHz, CDCl3) δ 131.8, 128.4, 128.2, 122.6, 87.8, 84.9,
68.9, 32.0, 29.7, 23.3; HRMS (EI) m/z calcd for C21H18O [M]+ 286.1358, found 286.1361.

(2R*,6R*)-2,6-Bis(phenylethynyl)tetrahydro-2H-pyran (trans-14′a). Colorless oil (hexane:
CH2Cl2 = 2:1), IR (NaCl) 3055, 2924, 2851, 2359, 2235, 1599, 1491, 1194, 1026 cm−1; 1H-NMR
(300 MHz, CDCl3) δ 7.49–7.45 (4H, m), 7.33–7.30 (6H, m), 5.05–5.01 (2H, m), 2.00–1.90 (4H,
m), 1.84–1.77 (2H, m); 13C-NMR (75 MHz, CDCl3) δ 131.8, 128.4, 128.2, 122.6, 87.5, 86.0, 64.6,
31.2, 29.7, 19.3; HRMS (EI) m/z calcd for C21H18O [M]+ 286.1358, found 286.1360.Meyer–
Schuster rearrangement/hydration/oxa-Michael

4. Conclusions

In conclusion, we present a gold-catalyzed addition for the synthesis of emphcis-2,6-
disubstituted tetrahydropyrans 14 from bis-propargylic alcohols 13. We are currently
applying this method to the synthesis of biologically active tetrahydropyran derivatives.
Experimental and theoretical investigations on the reaction mechanism are also in progress.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal14040228/s1, 1H, 13C-NMR spectrum.
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