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Abstract: The nature of the active sites of transition metal oxides during the oxygen evolution reaction
(OER) has attracted much attention. Herein, we constructed well-defined nickel oxide/Au (111)
model catalysts to study the relationship between the structures and their OER activity using scanning
tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), electrochemical measurements,
and density functional theory (DFT) calculations. The deposited nickel oxides on Au (111) were found
to exhibit a two-dimensional (2D)/three-dimensional (3D) structure by regulating the annealing
temperature. Combining STM, XPS and electrochemical measurements, our results demonstrated
an optimal OER reactivity could be achieved for NiOx with a 2D structure on Au and provided a
morphological description of the active phase during electrocatalysis.

Keywords: NiOx model catalysts; oxygen evolution reaction; Au (111); electrochemistry

1. Introduction

The oxygen evolution reaction (OER) stands as a pivotal cornerstone in the synthesis of
renewable fuels, acting as the primary anodic process in electrochemical CO2 reduction [1],
H2 evolution [2], and N2 reduction [3]. The intrinsic sluggishness of the OER kinetics
underscores the imperative need for exhaustive exploration into the design and application
of highly effective catalysts aimed at mitigating its overpotential [4–8]. Compared with
other precious metal catalysts such as iridium and ruthenium, nickel has the advantages
of low cost and abundant resources [5]. Thus, nickel oxides emerge as promising and
noteworthy candidates for the OER, particularly in alkaline environments. Their struc-
tural transformations during catalytic reactions play a decisive role in influencing both
reactivity and stability. Specifically, the irreversible transformation of nickel oxides into an
(oxy)hydroxide phase during the OER is identified as the predominant active phase [9–11].
The robustly reconstructed NiOOH phase takes center stage, exhibiting significantly en-
hanced mass activity and superior stability when compared to its partially reconstructed
counterpart, Ni@NiOOH [12]. Furthermore, the integration of nickel oxide with other
metal oxides, such as cerium dioxide (CeO2), serves as a catalyst for a more profound phase
reconstruction, showcasing the potential for improved catalytic performance [13]. Conse-
quently, the quest for an atomic-level elucidation of the structural transformations in nickel
oxides becomes paramount. Such an understanding holds the key to unraveling intricate
structure–property correlations, thereby propelling advancements in the development of
highly active OER catalysts.

Well-defined metal oxide catalysts could be prepared by molecular beam epitaxy
(MBE) under ultra-high vacuum (UHV) conditions, although such model catalysts have
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been less employed in electrocatalytic studies due to stringent experimental conditions.
Libuda and colleagues [14] synthesized Co3O4 (111) on Ir (100), examining its stability
under electrochemical conditions and showing that thin, well-ordered oxide films could
be maintained in electrochemical environments with their atomic surface structures intact.
In comparison, the morphological changes and dissolution of cobalt oxide nanoislands
were observed as a function of electrode potential during the OER on Au (111) using
in situ electrochemical scanning tunneling microscopy (STM) [15]. Kauffman et al. [16]
established a direct link between the number of Fe edge sites on Fe2O3/Au (111) and their
OER activity, identifying hydroxylated Fe atoms at edge sites as the principal active sites.
Subsequent experiments on NiFeOx with varying coverage on Au (111) and highly oriented
pyrolytic graphite (HOPG) [17] highlighted the impact of particle size and coverage on OER
activity, pointing to the superior performance of near-monolayer coverages over HOPG.
These findings underline the imperative of investigating NiO reconstruction through the
combined use of surface science techniques and electrochemistry.

In this study, we synthesized well-defined NiOx nanostructures (NSs) on Au (111)
and studied their morphological evolution through annealing at varying temperatures. We
investigated the structural evolution and chemical state of NiOx during the OER, using
STM, X-ray photoelectron spectroscopy (XPS), electrochemical activity measurements, and
density functional theory (DFT) calculations. Our structural characterization unveils an
evolution in NiOx structure from a disordered oxide to 2D NSs and eventually to 3D
NSs as the annealing temperature increases. The 2D NiOx NSs exhibited enhanced OER
activity over their 3D counterparts, which could be attributed to a higher conversion of 2D
structures into the active phase of NiOOH, as well as a positive effect of the Au substrate
in tuning the electronic properties of supported NiOx NSs and enhancing their intrinsic
activity. These findings offer crucial insights into the reconstruction process of NiOx/Au
(111) catalysts in the OER, contributing significantly to the development of catalysts with
enhanced OER activity.

2. Results
2.1. Preparation and Characterization of NiOx/Au (111) Surfaces

Supported NiOx NSs were prepared by depositing Ni atoms in 1 × 10−6 mbar O2 onto
Au (111) at 300 K, and the as-deposited NiOx/Au (111) surface was termed as NiOx-300.
Subsequently, the NiOx-300 was annealed in 1 × 10−7 mbar O2 at 450 K or 520 K for
10 min, and the annealed surfaces were designated as NiOx-450 and NiOx-520. These three
surfaces exhibited distinct morphological characteristics, as illustrated in Figure 1. The
NiOx-300 was characterized by disordered, small oxide islands with diameters ranging
between 4 and 6 nm (Figure 1a). The flat terrace of these islands typically exhibited an
apparent height of ~0.13 nm (Figure 1d,g), which is consistent with the height of the
NiO submonolayer (sub-ML) on Au (111) observed by Neddermeyer et al. [18] via STM,
indicative of NiO monolayer formation. Yet, the majority of these islands displayed the
onset of second-layer growth. Nonetheless, the irregularity of these island structures
precludes the determination of a definitive lattice structure from STM images.

In comparison, STM images of the NiOx-450 (Figure 1b,e) show that the NiOx islands
annealed at 450 K exhibited a smoother surface topology, with island edges exposing more
defined boundaries and the island terrace maintaining its ML height. Compared to the
NiOx-300 surface, the sizes of the NiOx islands increased on the NiOx-450 and exhibited
diameters ranging from 6 to 8 nm. The annealing at 450 K significantly enhanced the
ordering of the NiOx islands, resulting in the formation of a well-defined lattice structure.
The growth of NiOx on Au (111) was studied by Zhao et al. [19], where they observed
a rhomboid lattice and proposed the formation of NiO (111). Here, our high-resolution
STM image (Figure 1h) shows a rectangular cell for the NiOx surface on the NiOx-450.
The measured distances between bright dots in the pseudo-rectangular cell were ~0.5 nm
and ~0.4 nm along the two major vector directions, and larger than the atomic spacing
on NiO (111). We have thus attributed the observed NiOx structure to the formation of a
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reconstructed surface of NiO (111). Upon annealing at 520 K, the NiOx NSs underwent
further evolution, and the majority of the NiOx reshaped into 3D mounds (Figure 1c,f) of
approximately 0.7 nm in height (Figure 1g). The 3D islands were predominantly located
along the edges of the NiOx NSs, indicating the coarsening and three-dimensionalization
initiated from the edges of the NiOx NSs.
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Figure 1. Morphology and distribution of NiOx NSs supported on Au (111). STM images of NiOx

prepared by depositing Ni atoms in 1 × 10−6 mbar O2 onto Au (111) at 300 K are displayed in (a) and
magnified in (d). Subsequently, the as-deposited surface was (b) annealed at 450 K or (c) at 520 K in
1 × 10−7 mbar O2. The annealed surfaces are magnified in (e) for NiOx-450 and (f) NiOx-520. The
line profiles marked in (d–f) as red dotted lines are plotted in (g). The difference between the dashed
lines in (g) reflects the variation in the height of the NiOx islands. (h) High-resolution STM image of
NiOx-450. Scanning parameters for (h): Vt = 0.1 V; It = 0.96 nA.

Given the inertness of Au (111), the interaction between NiO entities is much stronger
than the that of NiO and the Au (111) substrate. Consequently, the formation of 3D NiO is
thermodynamically favored. However, the transition from 2D to 3D structures necessitates
that a fraction of NiO entities surmount the Ehrlich–Schwoebel (ES) barrier to translocate
across surface steps. As such, elevated temperatures are required to overcome this barrier
and facilitate the assembly of 3D structures. In our study, Ni atoms deposited at 300 K in
O2 at low coverage on Au (111) formed 2D-like NiOx structures dispersed randomly across
the surface. Their crystallinity improved upon the annealing at 450 K, where smaller NiOx
islands merged into larger ones. At a higher temperature of 520 K or above, the diameters
of the NiOx islands further increased, while 2D NiOx overcame the ES barrier, leading to
the nucleation of 3D NiOx structures. Similar behavior has been observed in the NiO on Rh
(111), where Zhang et al. [20] reported the three-dimensionalization of NiO particles on Rh
(111) upon increasing the annealing temperatures.

Further, the chemical state and surface species of the NiOx/Au (111) surface was
analyzed by XPS. The Ni 2p3/2 peak could be deconvoluted into two peaks, along with
their satellite peaks (Figure 2a). The dominant peak in the XPS Ni 2p3/2 spectra is located at
853.4 eV, which is between the binding energy (BE) of metallic Ni (852.4 eV) [19] and that
of bulk NiO (854.4 eV) [20]. That means the valence state of the Ni in the NiOx/Au (111)
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samples was close to the Ni2+ state. The XPS O 1s spectra of NiOx (Figure 2b) encompasses
two distinct peaks: a lower binding energy peak at 529.3 eV, ascribed to lattice oxygen (OL)
within NiOx, and a higher binding energy peak at 531.0 eV, aligned to hydroxyl groups
(OH), indicating that water molecules from background adsorption could dissociate on
NiOx to form a Ni(OH)2-like structure [21]. Correspondingly, the shoulder peak in Ni 2p3/2
spectra located at 855.2 eV could also be attributed to the Ni(OH)2-like structure, according
to the study by Al-Kuhaili et al., on the application of nickel oxide thin films in multilayer
NiO/Ag coatings [21]. However, comparing the XPS spectra on the as-deposited and the
annealed NiOx surfaces, the intensity ratio of the 855.2 eV peak over the 853.4 eV peak in
Ni 2p3/2 spectra was found to increase with the annealing temperature (Table 1), while
the intensity ratio of the OH peak over the OL peak remained close between NiOx-450
and NiOx-520. Similar growth of the 855.2 eV peak has been documented in the case of
NiO on Rh (111), studied by Zhang et al. [20], suggesting that the variation in the 855.2 eV
peak could be predominantly linked to the three-dimensionalization of NiO. As such, we
considered the assignment of the 855.2 eV peak in the Ni 2p3/2 spectra to the contributions
from both the formation of a Ni(OH)2-like structure and the morphological transition from
2D NiOx to 3D NiOx, as observed by STM.
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Figure 2. The comparison of chemical state and surface species for NiOx-300, NiOx-450, and NiOx-520
catalysts before reaction. Pre-reaction XPS spectra of (a) Ni 2p3/2 and (b) O 1s. Ni 2p3/2 and O 1s
spectra for all catalysts were normalized by Au 4f 7/2 spectra. Raw XPS spectra are presented as
the gray scatter plots and the fitting curves obtained from peak fitting by CasaXPS are marked as
red lines.

Table 1. The I(OH)/I(OL) and I (855.2 eV)/I (853.4 eV) ratio of pre-reaction for NiOx-300, NiOx-450,
and NiOx-520 catalysts, determined by XPS spectra.

Catalyst I(OH)/I(OL) I (855.2 eV)/I (853.4 eV)

NiOx-300 1.311 1.233
NiOx-450 1.191 2.093
NiOx-520 1.185 3.038

2.2. OER Activity of NiOx/Au (111) Catalysts

Following the sample transfer from the ultra-high vacuum (UHV) chamber to the
electrochemical cell, the OER activities of the NiOx/Au (111) catalysts were tested in Ar-
purged 0.1 M KOH electrolyte. All potentials in this work are referenced to the reversible
hydrogen electrode (RHE) unless noted otherwise. Achieving steady-state activity required
multiple cyclic voltammograms (CVs) cycles for all catalyst samples. To distinguish the
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OER current contribution of the Au (111) substrate, the background current of the Au
(111) substrate was assessed (Figure 3a), showing a minimal and practically negligible
background current. Linear sweep voltammetry (LSV) analysis of the catalyst samples
showed higher OER activity in the NiOx-450 compared to the other samples (Figure 3a).
The NiOx-450 exhibited an overpotential of 0.586 V for a current density of 0.5 mA cm−2,
whereas the NiOx-300 and NiOx-520 required overpotentials of 0.665 V and 0.620 V, re-
spectively. The electrochemically active surface area (ECSA) was determined through
double-layer capacitance (Cdl) measurements, with the NiOx-450 showing a greater Cdl
(0.31 mF·cm−2) compared to the NiOx-520 (0.23 mF·cm−2) and NiOx-300 (0.11 mF·cm−2)
(Figure 3b). Normalizing the current densities of the NiOx-300, NiOx-450, and NiOx-520
based on their respective calculated ECSA (as depicted in Figure 3c), the NiOx-450 catalyst
demonstrated a higher OER intrinsic activity compared to the other samples. Electrokinetic
investigations could provide key insights into the OER mechanism. The Tafel slopes of all
NiOx/Au (111) catalysts were determined. Linear dependence of the logarithmic value of
the current density (j) on the applied potential was observed (Figure 3d). The NiOx-450
catalyst exhibited a lower Tafel slope of ~91.32 mV·dec−1. The Tafel slopes for the OER
on NiOx-300 and NiOx-520 were significantly larger, indicating a slower electrochemical
kinetic process.
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Figure 3. Electrochemical characterization of NiOx/Au (111). (a) OER voltammograms of Au
(111), NiOx-300, NiOx-450, and NiOx-520 measured in 0.1 M KOH. (b) Determination of double-
layer capacitance for NiOx/Au (111) catalysts in 0.1 M KOH. (c) Normalized OER voltammograms
of NiOx-300, NiOx-450, and NiOx-520 based on corresponding calculated ECSA. (d) Tafel curves
obtained from quasi-stationary state measurements.

The processes of all catalysts from the first redox cycle to the steady state were
compared by cyclic voltammetry (CV). The sequential OER CV curves of the NiOx-300,
NiOx-450, and NiOx-520 were obtained in Ar-purged 0.1 M KOH. Figure 4a shows that
the NiOx-300 exhibited an obvious decrease in current density during the initial 10 cycles
of CVs, potentially attributed to NiOx dissolution in the electrolyte, similar to the phe-
nomenon observed by Lauritsen et al. [22]. After 10 cycles, the current density gradually
increased. In contrast, the annealed catalysts NiOx-450 and NiOx-520 displayed continuous
increases in current density. The redox current peak occurring between 1.4 V and 1.5 V
corresponds to the Ni2+/Ni3+ transformation.
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Note that the surface coverage of NiOx on Au (111), as quantified from STM im-
ages, was ~0.16 ML for the NiOx-450. Considering the atomic packing density of Ni at
1.33 × 1015/cm2 in NiO (111) and the single crystal with a round shape and 5 mm in di-
ameter, the total surface amount of Ni, nNi, on Au (111) could be calculated as 0.07 nmol.
Owing to a low surface concentration of Ni, the CV peaks of NiO oxidation are not as
obvious as conventional CV peaks observed in powder NiOx catalysts [23]. However, in
the magnified view (Figure 4d), the peaks corresponding to Ni2+/3+ can be discerned. With
the integration of these peaks, electrochemically accessible atoms can be determined. The
peak area increased with continuous scans for NiOx-450 (Figure 4b), eventually reach-
ing a maximum, indicative of NiOx transforming into an (oxy)hydroxide structure [24].
Meanwhile, the redox peak in the NiOx-520 is not as obvious (Figure 4c), but appears
discernible. The calculated numbers of electrochemically accessible atoms for the NiOx-450
and NiOx-520 were 4.92 × 1013 and 2.36 × 1013, respectively, suggesting that during the
OER, more NiOOH active species were generated at 450 K than at 520 K. Combining these
findings with structural characterizations suggested that 2D islands exhibit higher activity,
and can generate more active species during the OER process.

The post-reaction XPS of Ni 2p3/2 and O 1s spectra showed a hydroxylation of the
NiOx catalyst in the OER (Figure 5). Figure 5a shows that the peak of Ni 2p3/2 is lo-
cated at 855.6 eV, and there is a satellite peak at 861.0 eV, corresponding to the feature of
Ni(OH)2 [21,25], representing that the NiOx/Au (111) catalysts were significantly hydrox-
ylated after the OER. Since NiOOH exhibits similar binding energy to Ni(OH)2, distin-
guishing between them via XPS becomes challenging. Figure 5b presents representative
post-reaction O 1s spectra of the NiOx-300, NiOx-450, and NiOx-520 samples, where the
spectra are fit with three peaks that correspond to OL, OH, and carbonate species. Follow-
ing the OER process, since the samples were exposed to air before the XPS measurements,
which caused carbonate formation on the sample surfaces, the NiOx-450 contained 2D
structure showed a larger OH to OL peak area ratio (OH/OL) than NiOx-520. The XPS
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results are consistent with electrochemical measurements, suggesting that 2D NiOx islands
can generate more NiOOH species than 3D NiOx during the OER.
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Figure 5. The comparison of chemical state and surface species for NiOx-300, NiOx-450, and NiOx-520
catalysts after reaction. Post-reaction XPS spectra of (a) Ni 2p3/2 and (b) O 1s. Ni 2p3/2 and O 1s
spectra for all catalysts were normalized by Au 4f 7/2 spectra. Raw XPS spectra are presented as
the gray scatter plots and the fitting curves obtained from peak fitting by CasaXPS are marked as
red lines.

The trace amount of Ni on single crystal samples are difficult to measure by ICP-OES,
with a detection limit of 0.1 µg/mL. Similarly, Kauffman et al., in their OER studies
using model Fe2O3/Au (111) catalysts, also used XPS and STM to quantify surface Fe
species, rather than using ICP-based techniques [16]. Thus, quantitative XPS analysis was
employed to measure the concentration of Ni before and after the reaction. While the
Ni signal appeared different before the reaction, the difference in the Ni signal among
the post-reaction catalysts was not significant (Table 2). However, if the Ni concentration
from the XPS analysis was used to normalize the electrochemical activity of the supported
NiOx, the normalized current density appeared drastically different, which could originate
from the variation in the charge transfer between the 2D/3D NiOOH structures and the
Au substrates. Similar behavior has been observed in the Au-supported CoOx structures,
where Yeo et al. [26] proposed that electron transfer into the Au substrate could enhance
the intrinsic activity of supported CoOx thin layers.

Table 2. Surface Ni concentration and their corresponding electrochemical activity for various NiOx

catalysts. The intensity of Ni 2p3/2 was normalized by the intensity of Au 4f 7/2. The current density
of each catalyst was divided by the normalized Ni 2p3/2 signal to reflect the intrinsic activity.

Catalyst I (Ni 2p3/2)/I (Au 4f 7/2)
(Pre-Reaction)

I (Ni 2p3/2)/I (Au 4f 7/2)
(Post-Reaction)

Current Density at
1.665 V (mA·cm−2)

Normalized Current Density at
1.665 V (mA·cm−2)

NiOx-300 0.0534 0.0252 0.533 21.15
NiOx-450 0.0521 0.0305 2.390 78.36
NiOx-520 0.0412 0.0235 0.917 39.02

2.3. Computational Studies

To gain insight into the OER thermodynamics of the NiOx/Au (111) catalyst system,
we used DFT to calculate the Gibbs free energies of the four-step OER process. The details
regarding the computational methods and models are provided in the Methods section.
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We constructed the models of Au (111)-supported 2D and 3D NiO (111) before and
after reconstruction. Upon relaxation, the energy of 2D NiO (Figure 6a,b) and 2D NiOOH
(Figure 6c,d) are −327.01 eV and −487.66 eV, respectively, while the energy of 3D NiO
(Figure 6e,f) and 3D NiOOH (Figure 6g,h) are −686.23 eV and −856.32 eV. The energy
reduction in the reconstruction of 3D NiO exceeds that of 2D NiO by 9.44 eV (0.59 eV per
surface Ni atom), indicating that 3D NiO reconstruction is more likely to occur. However,
in this experiment, due to the higher number of Ni atoms on the surface of 2D NiO, there
were more hydroxyl groups on the surface of 2D NiO.
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To understand the OER mechanism in the 2D and 3D NiOOH, we used the optimized
reconstruction model to examine OER performances. Four elementary steps were involved
in each OER cycle, including HO*, O*, HOO*, and O2 [27]. In Figure 6i, the free energy
and overpotential needed in each step of the OER reaction are calculated for different
electrocatalysts, where the deprotonation of the adsorbed HO* (HO* → O* + H+ + e−) is
determined to be the potential limiting step due to the high free energy change (∆G) [28].
The 2D NiOOH NSs on Au (111) presents a lower ∆G value of 1.81 eV and a calculated
overpotential η of 0.58 V, compared to the ∆G of 1.95 eV and η of 0.72 V for 3D NiOOH
NSs, indicating the origin of the enhanced OER activity.

3. Materials and Methods
3.1. Model Catalyst Preparation and Characterization

The growth of NiOx on Au (111) substrates was performed in a UHV system with a
base pressure below 1 × 10−10 mbar, which comprises a growth chamber connected with a
vacuum anneal furnace (preparation chamber) and XPS. The Au (111) was cleaned by cycles
of Ar ion sputtering (1 keV, 10 µA) and subsequent annealing in UHV or 1 × 10−7 mbar
O2 at 700 K for 10 min to remove carbon or oxygen species on the surface. The cleanness of
the Au (111) surface was examined by STM or XPS. Supported NiO NSs were deposited
onto clean Au (111) by evaporating Ni atoms in 1 × 10−6 mbar O2, with the temperature of
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the Au (111) substrate held at 300 K, and followed by post-annealing in 1 × 10−7 mbar O2
at 450 K or 520 K [18,29].

STM experiments were carried out in a combined UHV system, equipped with low-
temperature STM (LT-STM, Createc, Berlin, Germany), and the cleaning facilities. The base
pressures of the STM and the preparation chamber were 4 × 10−11 and 5 × 10−11 mbar,
respectively. All STM images were taken at 78 K and processed with SPIP 6.5.1 software
from Image Metrology (Copenhagen, Denmark).

The XPS spectra were measured using an Al Kα X-ray source (ESCALAB 250Xi,
Thermo-Fisher, Waltham, MA, USA). The binding energy (BE) of Au 4f 7/2 at 84.0 eV was
used to calibrate each spectrum. All spectra were analyzed by CasaXPS 2.3.19 software
using a Shirley-type background. Au (111) (d = 5 mm, 99.99% purity, HF-KeJing, Hefei,
China) was selected as the substrate due to its inactivity for the OER, which simplified the
model surfaces. In our experiments, the NiOx grown on the surface of Au (111) existed as a
submonolayer with a height of 0.1–0.5 nm. As a result, the intensity of the Au 4f 7/2 signal
was employed to normalize the other XPS spectra. Four peaks could be observed when
fitting the Ni 2p3/2 spectra of the NiOx catalysts. The Ni 2p3/2 peak at 853.4 eV could be
assigned to Ni2+ in thin NiO layers [30–32], while the Ni 2p3/2 peak at 855.2 eV could be
attributed to the formation of a Ni(OH)2-like structure or 3D bulk NiO [20,32]. The satellite
peaks at 861.0 eV and 865.0 eV could also be observed [33].

The O 1s spectra of NiOx encompasses two distinct peaks: a lower binding energy
peak at 529.3 eV [19], ascribed to lattice oxygen within NiOx, and a higher binding energy
peak at 531.0 eV, indicative of adsorbed hydroxyl groups originating from the dissociation
of water molecules from background adsorption [19]. After the OER process, the addition
of a peak corresponding to carbonate species was assigned.

3.2. Electrochemical Measurements

Electrochemical investigations were conducted on NiOx/Au (111) surfaces at ambient
temperature through cyclic voltammetry and linear sweep voltammetry in an Ar-saturated
0.1 M KOH solution (99.99%, Sigma-Aldrich, St. Louis, MO, USA). Electrochemical measure-
ments were performed in a customized electrochemical cell. The NiOx/Au (111) electrode
was transferred to the electrolysis cell from the UHV chamber, with the electrode surface
protected by a drop of water. Utilizing a three-electrode configuration, the electrochem-
ical setup comprised NiOx/Au (111) and Au (111) substrates as the working electrodes,
possessing a geometric area of 0.126 cm2. The reference and counter electrodes employed
were a leak-free Ag/AgCl electrode and platinum foil, respectively. The electrode potential
was regulated via a CHI 760E electrochemical workstation (CH Instruments, Inc., Austin,
TX, USA). The electrochemical potentials were calibrated with respect to the RHE, using
the equation ERHE = EAg/AgCl + 0.197 V + 0.0591 × pH. Prior to each measurement, the
electrochemical cell underwent cleaning steps with KMnO4 (99.0%, Sinopharm Chemical
Reagent Co., Ltd., Shanghai, China) and ascorbic acid (99.0%, General-reagent) solutions
sequentially, followed by five boiling cycles and rinsing with ultrapure water. CVs were
recorded within the potential range of +0.865 V to +1.665 V at a scan rate of 50 mV s−1 until
achieving a stable activity.

The ECSA, directly correlated to the Cdl, was determined from CV curves within a
narrow non-Faradaic potential window (1.185 V–1.245 V) at various scan rates (10, 20,
30, 40, 50, 70, 90, and 100 mV s−1). The Cdl values for all NiOx/Au (111) samples were
derived by plotting the current density at 1.215 V against the scan rate. The number
of electrochemically accessible Ni atoms was estimated by integrating the peak areas of
the Ni3+/Ni2+ reduction waves, under the assumption of a one electron per Ni atom
redox process [17,34].

3.3. Computational Details

Density functional theory (DFT) calculations were carried out using the Vienna
Ab-initio Simulation Package (VASP 5.4.4) [35]. The PBE functional for the exchange-
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correlation was used [36,37]. The electron–ion interactions were described within the
projector-augmented wave (PAW) approximation [38]. The conjugate gradient algorithm
was used to relax the structures until the residual forces on the atoms became less than
0.05 eV/Å. The Brillouin zone was sampled using a 5 × 5 × 1 k-mesh with the gamma-
centered Monkhorst–Pack scheme. Without mentioning otherwise, a cutoff energy of
500 eV was used for expanding the plane-wave basis set.

The atomic structures of Au (111) and NiO (111) were chosen as the basic prototype
to construct four sets of slab models. The design details of the models were as follows:
(i) A (4 × 4) single layer of NiO (111) deposited on three layers (4 × 4) of Au (111), aligned
along the [111] crystallographic direction, named as 2D NiO NSs. (ii) A (4 × 4) single
layer of NiO (111) and an inserted O layer deposited on three layers (4 × 4) of Au (111),
aligned along the [111] crystallographic direction, hydroxylated on the upper side of the
slab, named as 2D NiOOH NSs. (iii) Three layers (4 × 4) of NiO (111) deposited on three
layers (4 × 4) of Au (111), aligned along the [111] crystallographic direction, named as 3D
NiO NSs. (iv) Three layers (4 × 4) of NiO (111) and an inserted O layer deposited on three
layers (4 × 4) of Au (111), aligned along the [111] crystallographic direction, hydroxylated
on the upper side of the slab, named as 3D NiOOH NSs. These structures mimic the surface
of catalysts at UHV and relevant OER potentials, consistent with observations via XPS and
STM. DFT calculations considered the following OER steps [39,40], where * denotes an
active surface site:

OH− + * → OH * + e− (1)

OH * + OH− → O * + H2O + e− (2)

O * + OH− → OOH* + e− (3)

OOH * + OH− → * + O2(g) + H2O + e− (4)

Among this set, the reaction step with the largest Gibbs free energy difference ∆Gmax
was identified as the so-called potential determining step (PDS) and was used to calculate
the theoretical overpotential as ηtheory = (∆Gmax/e−) − 1.23 [V].

4. Conclusions

We combined STM, XPS, electrochemical measurements and DFT calculations to study
the effect of the structures of a series of MBE-prepared sub-ML NiOx/Au(111) catalysts
on their activities in alkaline OER. STM and pre-reaction XPS studies indicate that, after
the annealing at 450 K, NiOx adopts a 2D structure, while higher annealing temperature
leads to the aggregation of NiOx islands forming 3D structures. Electrochemical and XPS
measurements show that NiOx-450 exhibits a higher amount of electrochemically active
sites and superior intrinsic activity due to the electron transfer between NiOx and Au.
Overall, 2D NiOx exhibits higher OER activity compared with 3D NiOx, which provides
essential insight into understanding the activation and optimization of NiOx for enhanced
OER catalysis.
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