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Abstract: This study presents the synthesis of Cd0.5Zn0.5Fe2−xCrxO4 nanoparticles via the sol–
gel method, along with a comprehensive characterization of their morphological, structural, in-
frared, and magnetic properties. The X-ray diffraction pattern confirms the formation of the spinel
structure, and the cation distribution is estimated using X-ray analysis and confirmed by magne-
tization measurements. The crystalline size, ranging from 152 to 189 nm, and lattice parameter,
varying from 8.51134 Å to 8.42067 Å, decrease with increasing Cr content. The saturation mag-
netization decreases from 55 emu/g to 10.8 emu/g, while the remanent magnetization increases
(3.5 emu/g ≤Mr ≤ 6.27 emu/g), and the coercivity increases (82 Oe ≤ HC ≤ 422.15 Oe) with the
addition of Cr ions. Fourier transform infrared (FTIR) spectroscopy reveals two absorption bands
at ν1 and ν2, located near 600 and 400 cm−1, respectively, which correspond to the vibrations of the
metal–oxygen bonds in the spinel structure.

Keywords: spinels; sol–gel method; XRD; FTIR; SEM; magnetic properties

1. Introduction

Ferrites with spinel structures of MFe2O4 (M = Cd, Zn, Ni, and Co) are among the
most extensively investigated oxides in recent years. Physico-chemical investigations of
these materials have drawn upon various disciplines, including magnetism, optics, elec-
tronics, and mechanics. These materials, which can exist as nanoparticles, aggregates,
and nanostructured powders consisting of grains separated by grain boundaries, offer
distinct advantages for manipulation and utilization in various applications, such as record-
ing heads, antenna rods, loading coils, microwave devices, and core materials for power
transformers in electronics and telecommunication applications [1–3].

Numerous synthesis techniques, such as electrochemical [4], hydrothermal [5], co-
precipitation [6], sol–gel [7], plasma synthesis [8], citrate precursor [9], and reverse mi-
celle [10] techniques, have been developed to produce ferrite materials. Among these
methods, the sol–gel route is an efficient technique due to its simplicity and ability to
regulate the properties of the final product, leading to a homogeneous material with a
stoichiometric composition and nanoscale grain size [11–14]. The sol–gel method enables
the adjustment of various parameters to enhance the physical and chemical characteristics
of spinel ferrites, including pH, citric acid content, calcination temperature, and grain
size [11,12].

Scientists can change ferrite materials by adding different ions or using different
processes to make them better for specific uses. For example, the substitution of Cr3+

can improve magnetic properties like remanence magnetization and coercivity, which are
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essential for technology [15]. When natural chromite materials form in an environment
with oxygen, they can mix Fe2+ and Fe3+ in different places, affecting their properties [16].
Lee and other researchers have studied how magnetic properties change when Cr3+ is
substituted and found that magnetic moment and Curie temperature decrease with this
substitution [17]. Other researchers have also looked at what happens when Fe3+ is replaced
by Cr3+ [18,19]. The effect of Al3+ and Cr3+ substitution in cobalt ferrite has also been
reported [20,21]. It was observed that substituting Al3+ and Cr3+ ions in the cobalt ferrite
lattice leads to a decrease in the saturation magnetization values due to the lower magnetic
moment of Al3+ and Cr3+ compared to Fe3+ ions.

Due to their potential applications, the Cd-Zn ferrites have gained significant atten-
tion in nanoscience and nanotechnology [22]. Various compositions of Cd-Zn ferrites
have been extensively investigated and characterized in the literature [23–27], showing
intriguing electrical, magnetic, and optical properties. Enhancing their properties is of
great interest given the numerous applications of Cd-Zn ferrites. To this end, mixed Cd-
Zn (Cd0.5Zn0.5Fe2−xCrxO4 with x ranging from 0 to 2) ferrites substituted with Cr were
examined in this work. Equal concentrations of Cd and Zn were maintained. Cr3+ ions
preferentially occupy the octahedral B-sites in Cd0.5Zn0.5Fe2−xCrxO4 ferrites, leading to
their selection. The substitution of Fe3+ ions by Cr3+ ions with a different ionic radius alters
the crystal geometry and modifies the materials’ magnetic and dielectric characteristics.
In this study, we report the synthesis of Cd0.5Zn0.5Fe2−xCrxO4 (0 ≤ x ≤ 2) samples using
the sol–gel method and their morphological and structural characterization. In addition,
the infrared and magnetic properties at room temperature were investigated. Our results
showed that the prepared Cd0.5Zn0.5Fe2−xCrxO4 materials maintained a regular spinel
cubic structure. These samples present several advantages, such as their good infrared and
magnetic properties, low cost, and, above all, their easy synthesis. These features make the
Cd0.5Zn0.5Fe2−xCrxO4 spinels a good candidate for magnetic devices and can be studied in
perspective for other potential applications.

2. Experimental Section
2.1. Materials Synthesis

Cadmium, zinc, iron, and chromium nitrates were precursors to synthesize
Cd0.5Zn0.5Fe2−xCrxO4 (0 ≤ x ≤ 2) nanoparticles. Stoichiometric amounts of the nitrates
were weighed and dissolved in distilled water, which was heated to 90 ◦C. The metal
cations were complexed with citric acid, which was added to each solution. Next, the pH
was adjusted to around seven by adding ammonia to the solutions. Ethylene glycol, a
polymerization agent, was added at this stage. After approximately 4 h, a viscous liquid
(gel) began to form. To create a soft powder, the magnetic stirring temperature gradually
increased to 250 ◦C. After grinding and annealing in the air for 12 h, the powders were
subjected to an annealing temperature range of 700 ◦C to 1200 ◦C. All characterizations of
Cd0.5Zn0.5Fe2−xCrxO4 spinels annealed at 1200 ◦C are presented in this study.

2.2. Materials Characterization Technics

The samples’ X-ray diffraction (XRD) patterns were collected using the “Panalytical
X’Pert Pro System” diffractometer, operating at a copper wavelength of 1.5406 Å. The
measurements ranged from 10◦ to 80◦ with a step size of 0.02◦ and a counting period of 18 s
per step. The morphology of the materials in the form of pellets was studied using Philips
XL 30 scanning electron microscopy (SEM) equipped with an electron gun and a 15 kV
accelerating voltage. The FTIR spectra in a wavenumber range of 400–1000 cm−1 were
recorded using a Shimadzu Fourier Transform Infrared Spectrophotometer (FTIR-8400S).

3. Results and Discussions
3.1. SEM Micrographs

The samples were characterized using scanning electron microscopy (SEM). The
resulting images and their corresponding grain size distributions are shown in Figure 1a–e.
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The microscopic structure and morphology of Cd0.5Zn0.5Fe2−xCrxO4 with Cr substitution
were also investigated. The SEM images revealed that the synthesized materials comprised
an irregularly shaped group of tailed grains with a non-uniform grain size distribution.
The particles exhibited a prismatic and pyramidal morphology.
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Figure 1. SEM micrographs and particle size distributions of Cd0.5Zn0.5Fe2−xCrxO4 spinels, elabo-
rated by sol–gel method. Images labeled (a–e) correspond to x = 0, 0.5, 1, 1.5, and 2 Cr compositions,
respectively. The inset images are the higher magnifications of micrographs.

Moreover, they were non-uniformly distributed, agglomerated, and inhomogeneous.
Some massive particles were observed, along with smaller particles and increased agglom-
eration. All samples’ average grain size values varied from 152 nm to 189 nm and were
found to be random with a high Cr content [28,29].
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3.2. Structural Properties and Cation Distributions

The XRD patterns of Cd0.5Zn0.5Fe2−xCrxO4 ferrites in Figure 2 reveal that a cubic
spinel structure occurs in one phase. All diffraction lines are indexed in the cubic spinel
structure, indicating the well-crystalline nature of the compounds. In addition, the absence
of any reflection peak related to secondary phases confirms the purity of the samples.
The cation distribution in the system was determined based on previous studies [30].
Mössbauer spectroscopic investigations have determined the cation distribution in ferrites
with the general formula AB2O4. An investigation of Cd-Zn ferrites [24] and Cr-substituted
ferrites [25] revealed that the tetrahedral A-sites were preferably occupied by Cd2+ and
Zn2+ ions. In contrast, Cr3+ ions are distributed over the octahedral B-sites, and Fe3+

ions are distributed over both sites. This cation distribution has been confirmed in other
studies [31,32]. Hence, the Rietveld refinement for Cd0.5Zn0.5Fe2−xCrxO4 samples was

performed using the
(

Cd2+
0.5 Zn2+

0.5

)
A
[Fe 3+

2−xCr3+
x

]
B

O
2−

4
cation distribution model. In this

cation distribution, the A-sites are completely occupied by both Cd2+ and Zn2+ cations
with equal concentrations (50 atom%). Hence, in the case of our samples, the Fe3+ and Cr3+

ions are distributed only over the octahedral B-sites. Furthermore, this cation distribution
model confirms the absence of the inversion phenomenon and the non-occupation of the
A-site by Fe3+ cations [33]. Figure 3 shows a typical example of the Rietveld refinement of
Cd0.5Zn0.5Fe2−xCrxO4 spinel (x = 2). Table 1 outlines the various properties of the prepared
compositions. The reliability factors (Bragg RBragg, profile Rp, experimental Rexp, and
weighted profile Rwp) are all less than 10% in all cases. Rietveld fittings tend to be good,
as shown by the χ2 = Rwp/Rexp (goodness of fit) tendency towards unity. As a result, the
refined occupancy factors for (Cd/Zn) and (Fe/Cr) at the A- and B-sites corresponded with
the nominal values, supporting the suggested hypothesis. According to Table 1 and Figure 4,
the decrease in lattice constant (a) and volume (V) appears to be caused by the replacement
of a smaller radius of the Cr3+ (r3+

Cr = 0.63Å) ion for the Fe3+ ion radius (r3+
Fe = 0.67Å) [34].

Moreover, other Cr-doped ferrites have shown similar reductions in lattice parameters [35].
Furthermore, the atomic positions of oxygen exhibit the characteristic features of the spinel
structure [13]. Alternatively, the cation–oxygen bond at the octahedral sites (dB-O) is shorter
with Cr substitution because of the decrease in the average ionic radius of the B-site <rB>.
Since the ionic radius of the A-site (<rA>) remains the same, the length of the cation–oxygen
bonds (dA-O) remains almost constant. Table 1 also shows the bond angle values (ϕA-O-B)
associated with A-O-B interactions in the produced samples. The bond angle for A-O-B
is greater than that of B-O-B, according to Table 1. Thus, A-B exchange interactions are
more potent than B-B exchange interactions [36,37]. Furthermore, the observed decrease
in the bond angle (ϕA-O-B) indicates that A-B exchange interactions become less intense
when Cr replacement is conducted. The XRD density was calculated using the following
formula [14]:

dx =
8M
Na3 (1)

where M is the molar mass, a is the cell parameter, and N is the Avogadro number
(6.022 × 1023). Table 1 (also Figure 4) shows that the XRD density increases with Cr
substitution. This finding is consistent with previous reports in the literature [38]. The in-
crease in XRD density may be due to the reduction in oxygen vacancies, which significantly
impact densification kinetics [29]. It can also be attributed to the dominant effect of the
reduction in the lattice parameter compared to the relatively small variation in molar mass
resulting from the lower molar mass of Cr3+ ions (51.996 g/mol) compared to Fe3+ ions
(55.847 g/mol).
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Figure 2. XRD patterns of Cd0.5Zn0.5Fe2−xCrxO4 spinels with (0 ≤ x ≤ 2).
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Figure 3. Typical example for the structural refinement of the XRD patterns using the Rietveld
method for Cd0.5Zn0.5 Fe2−xCrxO4 spinels with (x = 2).
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Table 1. Structural parameters for Cd0.5Zn0.5Fe2−xCrxO4 spinels with (0 ≤ x ≤ 2) obtained following
the structural refinement by the Rietveld method. a: cell parameter; V: cell volume; Biso: isotropic
thermal agitation parameter. Definitions of structural parameters are given in the text.

Cr Content 0 0.5 1 1.5 2

Space
group Fd3m

Cell
parameters

a (Å) 8.5113 (4) 8.4745 (4) 8.4586 (4) 8.4395 (4) 8.4207 (4)
V (Å3) 616.59 (4) 608.61 (5) 605.20 (4) 601.10 (4) 597.09 (4)

Atoms

Tetrahedral
A-site (Cd/Zn)

Wyckoff
positions 4c 4c 4c 4c 4c

Site
symmetry −43m −43m −43m −43m −43m

Atomic positions x = y = z 1/8 1/8 1/8 1/8 1/8
Occupancy
factors

0.50 (1)/
0.49 (1)

0.51 (1)/
0.50 (1)

0.50 (1)/
0.50 (1)

0.49 (1)/
0.50 (1)

0.50 (1)/
0.50 (1)

Biso (Å2) 1.19 1.22 1.35 1.18 1.27

Octahedral
B-site

[Fe/Cr]

Wyckoff
positions 16d 16d 16d 16d 16d

Site
symmetry −3m −3m −3m −3m −3m

Atomic positions x = y = z 1/2 1/2 1/2 1/2 1/2

Occupancy
factors

2.01 (2)/
0

1.51
(2)/0.49

(2)

1.01
(2)/1.02

(2)

0.50
(2)/1.48

(2)
0/2.02(2)

Biso (Å2) 1.46 1.14 1.22 0.94 1.34

O

Wyckoff
positions 32e 32e 32e 32e 32e

Site
symmetry 3m 3m 32e 32e 32e

Atomic positions x = y = z 0.2553 (1) 0.2551 (8) 0.2548 (8) 0.2545 (8) 0.2541 (8)
Occupancy
factors 4 4 4 4 4

Biso (Å2) 1.42 1.54 1.42 1.65 1.58

Structural
parameters

dA-O (Å) 1.905 (8) 1.903 (7) 1.901 (9) 1.898 (7) 1.896 (8)
dB-O (Å) 2.058 (9) 2.053 (7) 2.045 (8) 2.041 (7) 2.036 (7)
ϕA-O-B (◦) 124.8 (5) 124.5 (3) 123.7 (4) 123.4 (3) 123.1 (3)
ϕB-O-B (◦) 92.4 (5) 91.2 (3) 91.0 (4) 90.8 (3) 90.3 (3)

dx (g. cm−3) 5.7004 5.7331 5.7443 5.7622 5.7795

Agreement
factors

Rp (%) 6.41 5.47 5.44 5.63 5.48
Rwp (%) 8.25 7.52 7.35 7.42 7.25
Rexp (%) 7.14 7.33 7.47 7.12 7.04

RBragg (%) 3.83 3.34 3.83 2.94 2.72
χ2 (%) 1.13 1.19 1.23 1.32 1.18

The values of the crystallite size (DXRD) and the lattice strain (ε) were determined
by the Williamson–Hall method as a function of Cr content. This method, developed by
G.K. Williamson and his student W.H. Hall [39], utilizes the full width at half maximum
(FWHM) of Bragg peaks (∆θ, in radians) and the angle of peak position (θ), as well as the
X-ray wavelength (λ = 1.5406 Å), to calculate the average crystallite size (D) and lattice
strain (ε). The relationship is given by ∆θcosθ = k
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of DXRD and ε are (150 nm, 1.93 × 10−4), (120 nm, 1.12 × 10−3), (103 nm, 1.32 × 10−4),
(108 nm, 3.10 × 10−3), and (95 nm, 3.4 × 10−3) for Cd0.5Zn0.5Fe2−xCrxO4 spinels (x = 0;
x = 0.5; x = 1; x = 1.5; x = 2), respectively. These results suggest a small variation in crystallite
size due to Cr substitution, consistent with the values obtained from SEM analysis. The
lattice strain increases while the crystallite size decreases approximately with an increasing
Cr content.
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Figure 5. (a–e) Williamson–Hall plots of (Δθcosθ) vs. (4sinθ) of Cd0.5Zn0.5Fe2−xCrxO4 spinels (x = 0; x 
= 0.5; x = 1; x = 1.5; x = 2). (f) Values of the crystallite’s size (DXRD) and the lattice strain (ε) 
calculated using the Williamson–Hall methods. 

3.3. FTIR Spectra 
The infrared (IR) spectra provide valuable information about the crystal lattice’s 

valence state and vibrational modes. Table 2 presents the band positions obtained from 
the IR spectra of the Cd0.5Zn0.5CrxFe2−xO4 series. Figure 6 shows the IR spectra of this 
series, with the high-frequency band υ1 observed in the 524–586 cm−1 range and a small 
band in the low-frequency band υ2 in the 420–424 cm−1 range. These absorption bands 
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Figure 5. (a–e) Williamson–Hall plots of (Δθcosθ) vs. (4sinθ) of Cd0.5Zn0.5Fe2−xCrxO4 spinels (x = 0; x 
= 0.5; x = 1; x = 1.5; x = 2). (f) Values of the crystallite’s size (DXRD) and the lattice strain (ε) 
calculated using the Williamson–Hall methods. 
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3.3. FTIR Spectra

The infrared (IR) spectra provide valuable information about the crystal lattice’s
valence state and vibrational modes. Table 2 presents the band positions obtained from the
IR spectra of the Cd0.5Zn0.5CrxFe2−xO4 series. Figure 6 shows the IR spectra of this series,
with the high-frequency band υ1 observed in the 524–586 cm−1 range and a small band in
the low-frequency band υ2 in the 420–424 cm−1 range. These absorption bands indicate the
formation of a single-phase spinel structure. The two major absorption bands at υ1 and
υ2 are due to vibrations of the oxygen bonds with positive ions at A- and B-sites [40]. The
small band at low-frequency band υ2 is constant for all samples except for x = 2, where
it disappears. The vibrational bands υ1 and υ2 are assigned to intrinsic vibrations of the
tetrahedral and octahedral sites, respectively [41].

Table 2. Band positions (υ1 and υ2) and force constants (KO and KT) of Cd0.5Zn0.5Fe2−xCrxO4.

x ν1 ν2 KT × 105 (dyne cm−1) KO × 105 (dyne cm−1)

0 524 423 1.86 1.06
0.5 569 424 2.19 1.05
1 584 421 2.31 1.02

1.5 586 420 2.33 1.01
2 586 420 2.33 1.00
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The infrared spectra of the Cr-substituted ferrite system prepared through the ce-
ramic route exhibit similar features, as reported in the literature [42]. The intensity of
the absorption band corresponding to the tetrahedral complex (υ1) increases and shifts
towards a higher frequency with an increased Cr content, while the octahedral complex (υ2)
exhibits weaker absorption bands. This behavior can be attributed to the first selection rule,
which states that transitions between d orbitals in a complex with a center of symmetry are
forbidden. As the tetrahedral complex possesses a center of symmetry, its absorption bands
are more intense than those of the octahedral complex, which lacks a center of symmetry
and thus allows more transitions to occur between d orbitals [43].

The observed shift in the band position in the IR spectra is attributed to the change in
the Fe3+-O2

2− distance for the tetrahedral and octahedral complexes. The slight frequency
change in band υ2 and the significant shift of band υ1 towards a higher frequency are due to
the substitution of Cr3+ ions, which replace Fe3+ ions only at the octahedral B-site, leading
to no significant change in the size of the octahedral site. As the FeB

3+-O2
2− complex

numbers decrease, metal–oxygen vibrational energies increase, prompting a decrease in the
FeB

3+-O2
2− intermolecular distance. This phenomenon is observed due to the increased

number of Cr3+-O2
2− complexes [38] and the creation of Me3+O2

2− complexes at A-sites.
As Cd2+-O2− and Zn2+-O2− bonds are stretched at the A-sites and Fe3+-O2− and Cr3+-O2−

bonds are stretched at the B-sites, these bands are produced. The two bands may exhibit
different positions for various reasons, including differences in ionic radius, the average
distance between metal and oxygen, and electronegativity. It has been found that similar
results have been obtained for other ferrite systems [44–46]. Assuming that the other
independent parameters are constant, the force constant would be the second derivative
of the potential energy based on the site radius. Based on Waldron’s method [41], we
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calculated force constants for tetrahedral and octahedral sites. For each site, Waldron gives
the force constants KT and KO as follows:

KT = 7.62M1ν
2
110−3

(
dyne
cm

)
(2)

KO = 10.62
(

M2

2

)
ν2

210−3
(

dyne
cm

)
(3)

Assuming that M1 and M2 refer to the molecular weight of the cations at sites A and B,
respectively. Based on the cation distribution for the prepared samples, tetrahedral M1 and
octahedral M2 molecular weights have been calculated. Table 2 contains the force constants
KT and KO. With an increasing Cr content, force constants KT and KO increase. According
to IR studies, bond length and the force constant inversely relate [47].

3.4. Magnetic Properties

To obtain the magnetic hysteresis curves, a magnetic field (±50 kOe) is applied to the
prepared samples at room temperature (see Figure 7). Samples at low magnetic fields exhibit
nonlinear magnetization and become saturated at high magnetic fields, revealing ferromag-
netism. Table 3 summarizes saturation magnetization (Ms), remanent magnetization (Mr),
and coercivity (Hc) results. The synthesized samples have low Hc values. Therefore, the
samples could be classified as soft magnetic spinels. As a result, the Cd0.5Zn0.5CrxFe2−xO4
spinels have the potential to be applied in some magnetic applications such as recording
heads, spintronic devices, microwave devices, transformers, induction cores, telecommuni-
cation systems, electromagnetic devices, and magnetic recording field sensors [48–50]. As
the Cr content increases, the Hc also increases, indicating an increase in the resistive nature
against spin inversion. The anisotropy constant increases with an increasing Cr content
but decreases when the Cr content is more significant than 0.5. The anisotropy constant
K depends on the substituted ion concentration [51], which can be evaluated using the
corresponding relation.

Hc = 0.98
K

MS
(4)

Furthermore, saturation magnetization is related to Hc through Brown’s relation [52],
and Hc = 2K

µ0MS
, states that Hc is inversely proportional to Ms. This is consistent with our

experimental results.

Table 3. Values of the spontaneous magnetization (Ms), remanent magnetization (Mr), coercivity
(Hc), Hc magnetic field, and anisotropy constant K.

x. Mr (emu/g) Ms (emu/g) Hc (Oe) Hs K (erg/cm3)

0 3.5 55 82 4950 4602
0.5 8.2 37.8 237 4500 9141
1 9 27.45 311.35 4478 8536

1.5 10.8 17 402 4423 6973
2 6.27 10.8 422.15 4387 4652

Table 3 illustrates the decrease in the Ms value with Cr replacement, consistent with
other spinel systems [53,54]. There is a correlation between the increase in Ms values and
Neel’s theory [55] and the cations distribution between A- and B-sites. According to Neel’s
model, ferrimagnet materials interact in three ways: A-A, B-B, and A-B sublattices. A-A
and B-B interactions within the sublattice are dominated by the super-exchange interaction
between A- and B-sites. Consequently, the net magnetic moment consists of the vector sum
of magnetic moments on sublattices A and B [56]:

ncal
B = |MB −MA| (5)
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MB and MA represent B and A sublattice magnetic moments in Bohr magneton (µB),
respectively. When Cr3+ replaces Fe3+ at the octahedral site, saturation magnetization
decreases since the Cr3+ ion (3 µB) has a smaller magnetic moment than Fe3+(5 µB) [57].
Accordingly, the magnetic properties of the prepared samples are closely related to their
predicted cation distribution.
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The inset of Figure 8 shows variations in the anisotropy constant “K” and static
susceptibility ‘’χS” with Cr. The ratio Ms/Hs, named static susceptibility χS, increases
linearly with the Cr content. In contrast, the anisotropic coefficient increases with the Cr
content. It reaches a maximum when the Cr composition is equal to that of Fe and regains
the same value as the beginning ferrite when the material becomes chromite.
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4. Conclusions

Cd0.5Zn0.5Fe2−xCrxO4 (0 ≤ x ≤ 2) ferrites synthesized via the sol–gel method exhibit a
cubic Fd3m spinel structure. Substituting Cr for Fe reduces cell parameters, average grain
size, spontaneous magnetization, and conductivity compared to the parent compound
Cd0.5Zn0.5Fe2O4. The FTIR spectra reveal two principal absorption bands that increase
with Cr substitution. These materials show potential for use in various magnetic and
electronic applications. The significant findings of this work show that the examined
materials have regular spinel cubic structures and low coercive fields, allowing them to be
used in magnetic devices.
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