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Abstract: Hybrid material-derived adsorbents have shown a great applicable efficiency in various
fields, including industrial uses and environmental remediation. Herein, zinc oxide nanoparticle
modified with carbon (ZnO-C) was fabricated and utilized for wastewater treatment through the
adsorption of Zn(II), Cd(II), Co(II), and Mn(II). The surface and structural characteristics were
examined using TEM, SEM, XRD, FTIR spectroscopy, EDS, and the BET surface area. Kinetics and
equilibrium investigations were applied to optimize the adsorptive removal of Zn(II), Cd(II), Co(II),
and Mn(II) onto ZnO-C. The results indicated that the formation of ZnO-C in crystalline sphere-like
granules with a nano-size between 16 and 68 nm together with carbon matrix. In addition, the
spherical granules of zinc oxide were gathered to form clusters. FTIR spectroscopy indicated that
the ZnO-C surface was rich with OH groups and ZnO. The adsorption capacity 215, 213, 206, and
231 mg/g for Zn(II), Cd(II), Co(II), and Mn(II), respectively, at the optimal conditions pH between
5 and 6, a contact time of 180 min, and an adsorbent dose of 0.1 g/L. The adsorptive removal data
modeling for the uptake of Zn(II), Cd(II), Co(II), and Mn(II) onto ZnO-C showed agreement with the
assumption of the pseudo-second-order kinetic model and the Freundlich isotherm, suggesting a fast
adsorption rate and a multilayered mechanism. The achieved adsorption capacity using the prepared
ZnO-C was more effective compared to ZnO, carbon, Fe3O4, and Fe3O4-C. Real wastewater samples
were applied, including valley water, industrial wastewater, and rain wastewater, and evaluated for
the applicable uptake of Zn(II), Cd(II), Co(II), and Mn(II) using ZnO-C and Fe3O4-C with effective
removal efficiency.

Keywords: zinc oxide nanoparticles; carbon; iron (III) oxide nanoparticles; adsorption; wastewater;
kinetic and equilibrium studies

1. Introduction

Heavy metal polluted effluents originate from industrial activities and are a serious
environmental hazard [1]. Heavy metals such as manganese, cadmium, cobalt, and zinc
are naturally occurring elements. Small amounts of these elements are common in our
environment, and they are actually necessary for our health. But large amounts of any
of them may cause acute or chronic toxicity [2]. Heavy metals in the human body tend
to bioaccumulate, which may result in damaged or reduced mental or central nervous
function and damage to the blood composition, lungs, kidneys, or liver. For example, cobalt,
one of the common toxic metals affecting the environment, is present in the wastewater
of nuclear power plants and many other industries, such as the mining, metallurgical,
electroplating, paint, pigment, and electronic industries [3]. High levels of cobalt may cause
several health troubles, such as paralysis, diarrhea, low blood pressure, lung irritation, and
bone defects [4]. Manganese, a naturally occurring metallic element, may contaminate
groundwater as a result of weathering and the leaching of manganese-bearing rocks into
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aquifers. Aquifers in certain regions of Quebec, other portions of Canada, and other coun-
tries (including Sweden, Vietnam, Bangladesh, Morocco, and others) contain naturally high
quantities of manganese [5,6]. Although manganese is a vital trace element, it may be a
strong neurotoxin in excess. The amount of manganese in drinking water is not regulated
in the United States or Canada, since it is mostly seen as an aesthetic problem. Manganese
concentrations greater than 100 g/L encourage the discoloration of laundry and hygienic
items and provide an unpleasant flavor to drinks [7]. Zinc is extensively present in environ-
mental components, including food and water [8,9]. Zinc has a maximum recommended
value of 5.00 mg/L in drinking water, according to the European Commission Drinking
Water Directive, the World Health Organization and its Guidelines for Drinking Water
Quality, and the US Environmental Protection Agency (EPA). An over-dose exposure to
zinc leads to immediate symptoms, such as vomiting, nausea, and anemia [10]. Cadmium
is one of the most harmful non-essential heavy metals in the environment, and it comes
from many sources, including wastewater from the metal plating, nickel–cadmium battery,
phosphate fertilizer, mining, pigment, stabilizer, alloy, petroleum refining, welding, and
pulp industries, as these industries produce elevated levels of cadmium ions. Cadmium
toxicity results in kidney damage, cancer, and lung dysfunction [11]. The maximum rec-
ommended value of cadmium in drinking water is 0.005 mg/L [12]. Therefore, many
research investigations have been conducted to develop tools for wastewater purification.
The removal of heavy metal pollutants from water can be achieved using many methods,
including chemical precipitation, flotation, biosorption, electrolytic recovery, membrane
separation, and removal through adsorption onto minerals or activated carbon [13–16].
Usually, these methods are restricted by many factors, such as their processing efficiency,
operational method, energy requirements, and economic benefit. Adsorption is an effective,
straightforward, and affordable technique for removing heavy metals from water [17,18].
An effective sorbent should have a high heavy metal sorption capacity and a low cost,
and should be renewable and durable [19]. Although they are costly and ineffective for
treating water, carbon materials are reported as efficient adsorbents for heavy metals [20,21].
Carbon-incorporated materials are durable and possess physicochemical stability, which
enhances wastewater treatment applications [22].

Recently, nanostructure-based materials have demonstrated higher efficiencies in
wastewater treatment applications compared to traditional adsorbents [23,24]. Nanostruc-
ture adsorbents, such as manganese oxides, titanium oxides, iron oxides, and zinc oxides,
have shown promising results in the removal of heavy metals. Zinc oxide is reported to
be a proper adsorbent for organic and inorganic pollutants; however, the process suffers
from many technical problems related to operation and efficiency [1,25–27]. Due to their
outstanding optical, electrical, photonic, and microbiological capabilities, among others,
zinc oxide (ZnO) nanoparticles are widely employed in many new multifunctional materi-
als. Zinc oxide nanoparticle derived materials could be utilized in various manufacturing
sectors, such as those that manufacture rubber, plastics, cosmetics, pharmaceuticals, paints,
soap, batteries, electrical equipment, optoelectronics, biomedical science equipment, etc.;
the demand for zinc oxide is always rising [28,29]. In addition, zinc oxide nanoparticles
have been investigated for water treatment by adsorption various heavy metal such as
Cu(II), Cr(VI), Cd(II) and Pb(II) [30–33].

Hybrid materials, including carbon and metal oxide nanoparticles, have been reported
as a novel category of materials with enhanced properties for catalysis, adsorption, precon-
traction, and medical applications [34,35]. Various methods have been applied to fabricate
ZnO-derived hybrid adsorbent materials. For example, ultrasonic waves have been applied
to enhance the formation of cellulose-modified zinc oxide nanoparticles from sawdust
sources and investigate their capacity for methylene blue adsorption [36]. Liu et al. applied
the solvothermal method to fabricate hydrostable cesium lead bromide–titania hybrid
materials for the visible light photodegradation of tetracycline hydrochloride [37]. He
et al. prepared Ti3C2/UiO-66-NH2 using the in situ solvothermal process for the pho-
tocatalytic removal of Cr(VI) [38]. Nie et al. incorporated ZnO with Porous Carbon for
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Adsorption of Methylene Blue [39]. The combination of metal oxides with carbon produces
a hybrid material with superior properties compared to single-metal oxide or pure carbon.
In addition, hybrid nano-adsorbent materials such as zinc oxide nanoparticles modified
with graphene have shown an improved tendency to decompose organic pollutants [40].
Regeneration of adsorbent materials is necessary to assess sustainability and effectiveness
of the wastewater treatment process. The possibility to control adsorption/desorption
processes is characteristic for recyclable adsorbents, which enable saving the environment.
Diluted acid solution such as nitric acid and hydrochloric acid, as well as EDTA solutions,
are reported as effective eluents for regenerating adsorbent materials [41–43].

Research in this field is still ongoing, with the aim of improving the efficiency of
nanocomposites in the removal of pollutants, even through adsorption or photocatalytic
degradation. The novelty of this work is to combine carbon structure with ZnO nanopar-
ticles to produce an efficient extractor of pollutants from wastewater. Thus, this work
aimed to fabricate zinc oxide-anchored carbon (ZnO-C) as a hybrid adsorbent to enhance
the adsorption capacity for heavy metal uptake. In addition, the produced ZnO-C was
characterized using SEM, TEM, XRD, the surface area, and EDS. Furthermore, the achieved
adsorption capacity was compared with that of other adsorbents, including zinc oxide,
carbon, and Fe3O4-C. Moreover, wastewater samples were purified using the developed
ZnO-C hybrid adsorbent materials.

2. Experimental Section
2.1. Materials

The materials, including analytical-grade zinc acetate, polyethylene glycol, sodium
hydroxide, zinc oxide, hydrochloric acid, zinc nitrate, cobalt nitrate, cadmium nitrate,
and manganese nitrate, were purchased from Sigma, USA. Carbon and Fe3O4-C were
obtained from our laboratory, prepared according to our previously published work by
Habila et al. [44].

2.2. Fabrication of Zinc Oxide Nanoparticle Anchored Carbon (ZnO-C)

For preparation of zinc oxide nanoparticle anchored carbon (ZnO-C), 21 g of zinc ac-
etate, 10 g of polyethylene glycol, and 10 g of carbon were well mixed in a 1:2 ethanol/water
medium; then, 100 mL of NaOH (0.1 M) was added to the mixture, and it was stirred for an
hour. After that, the mixture was kept in an oven at 110 ◦C for 17 h. The formed precipitate
was then isolated using centrifugation and treated in a muffle furnace at 750 ◦C for one
hour, in inert nitrogen atmosphere. The obtained ZnO-C was ground in a mortar and
washed several times with ethanol and water, and then dried in an oven at 105 ◦C for 10 h.
The produced ZnO-C was characterized using TEM, SEM, FTIR, XRD, EDS, and the surface
area as explained in the Supplementary Materials.

2.3. Optimization of Adsorptive Removal of Zn(II), Cd(II), Co(II), and Mn(II) for
Wastewater Purification

A total of 0.02 g of the metal oxide nanoparticles, ZnO, Fe3O4, or their derived carbon
hybrid materials (ZnO-C or Fe3O4-C), was mixed with 20 mL of a mixed heavy metal
solution that included Zn(II), Cd(II), Co(II), and Mn(II). Then, the pH was optimized using
a phosphate buffer. The mixture was shaken at room temperature for 180 min. Then,
the aqueous solution was separated using centrifugation. The change in the heavy metal
ion concentration was determined using ICP-MS. The adsorptive removal capacity was
evaluated using Equation (1):

qe =
(C0 − Ce)× V

M
(1)

where qe is the adsorptive removal capacity (mg/g) for Zn(II), Cd(II), Co(II), or Mn(II)
onto the metal oxide nanoparticles, ZnO, Fe3O4, or their derived carbon hybrid materials
(ZnO-C or Fe3O4-C).

C0 is the initial concentration of Zn(II), Cd(II), Co(II), or Mn(II).



Crystals 2024, 14, 447 4 of 20

Cf is the final concentration of Zn(II), Cd(II), Co(II), or Mn(II) after adsorption.
V is the volume of the solution of the whole adsorption mixture.
M is the mass of the metal oxide nanoparticles, ZnO, Fe3O4, or their derived carbon

hybrid materials (ZnO-C or Fe3O4-C).
The previously described steps for adsorptive removal were operated several times

to assess the effects of the pH of the adsorption medium in the range 2–7, the time of
contact in the range 5–1200 min, the dose of ZnO-C in the range 0.1–0.6 g/L, and the
concentration of Zn(II), Cd(II), Co(II), and Mn(II) in the range 25–300 mg/L. Kinetic models
and equilibrium isotherms were applied to investigate the adsorption rate and predict the
adsorption behavior. In addition, wastewater samples were collected from Saudi Arabia,
filtered, and used to evaluate the adsorption under optimized conditions for the uptake of
Zn(II), Cd(II), Co(II), and Mn(II) onto ZnO-C or Fe3O4-C.

For regeneration of the ZnO-C after each desorption cycle, 10 mL of Na2EDTA (0.01 M)
was added and the mixture was exposed for ultrasonic waves for 30 s, followed by shaking
(150 rpm) for 60 min. The regenerated ZnO-C was then separated by centrifuge and washed
with deionized water and dried in an oven at 110 for 10 h, then subjected for the next use.
The recycling efficiency was calculated as a ratio based on the first application cycle from
Equation (2) [45].

REx% =

(
qx

q1st

)
× 100 (2)

where REx% is the recyclable efficiency of cycle x, qx is the adsorption capacity for heavy
metals uptake using ZnO-C of cycle number x, and q1st is the adsorption capacity for heavy
metals uptake using ZnO-C of the first cycle (x = 1).

3. Results and Discussion
3.1. Characteristics of the Developed ZnO-C Hybrid Adsorbent Materials

The morphology of the fabricated ZnO-C hybrid adsorbent materials was described
using SEM/EDS (Figure 1A–C) which revealed a sphere-like granulated structure of the
formed ZnO-C hybrid materials in the nanoscale size range of 16–68 nm. In addition,
clusters are formed from the aggregation of the spherical granules. In addition, the SEM
image (Figure 1A) showed pores between the aggregated zinc oxide nanoparticles. A
similar particles shape is reported by Fouladi-Fard et al. for the preparation of a ZnO
nanoparticle by solvothermal process. The formed ZnO structures exhibited an oval and
spherical-like structure with a particle size in the range 55–70 nm [46]. The TEM showed
that the ZnO nanoparticles are embedded in carbon matrix indicating the formation of
ZnO-C hybrid materials (Figure 2A–D). The ZnO nanoparticles are formed with particle
size about 10–20 nm, in addition to aggregated particles which are more than 300 nm
(Figure 2A). In addition, the added TEM images (Figure 2C,D) showed porous carbon
which is formed around the zinc oxide nanoparticles. The EDS analysis indicated the
presence of Zn on the granules’ surfaces, together with carbon and oxygen. The detected
ratios were 13.64, 22.15, and 64.21 for C, O, and Zn, respectively.

The BET surface area was reported as 24.84 m2/g. The total pore volume of pores was
0.097901 cm3/g and the adsorption average pore diameter was 256.124 Å as indicated from
adsorption/desorption nitrogen isotherm (Table 1). The surface area reported in this work
is slightly lower than that reported by Al-Rawashdeh et al., whose reported BET surface
area for graphene oxide-anchored zinc oxide nanoparticles (GO–ZnO) as 36.95 m2/g [47].
In addition, Gu et al. prepared ZnO nanoparticles for the removal of Cr(III) and reported a
BET surface area of 26.7 m2/g [32].
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Figure 1. SEM/EDS mapping characterization of ZnO-C. (A) low magnification SEM (B) high
magnification SEM (C) EDS mapping.
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Table 1. Correlation between surface area and adsorption capacity for ZnO, Fe3O4, carbon, ZnO-C,
and Fe3O4-C.

BET Surface
Area
(m²/g)

Total Pore Volume
of Pores
(cm³/g)

Adsorption Average
Pore Diameter

(Å)

Adsorption Capacity
(mg/g)

Mn(II) Co(II) Cd(II) Zn(II)

ZnO 16.8 0.080823 189.794 111 85 116 101
Fe3O4 14.2 0.070926 242.769 83 116 103 125

C 163.8 0.161620 94.187 90 106 91 100
ZnO-C 24.8 0.097901 256.124 196 173 180 189

Fe3O4-C 19.6 0.147731 316.588 167 165 173 177

The developed ZnO-C was characterized using FTIR spectroscopy (Figure 3e), which
indicated main peaks between 3300 and 3700 cm−1 due to the stretching vibration of the
O-H groups. The peaks around 2900 cm−1 were attributed to the aliphatic C-H, while
the peak at around 1600 cm−1 was due to carbonyl groups (C=O). The peak between
1400 and 1500 was attributed to O-H binding. The peak between 400 and 470 cm−1 was
attributed to the stretching vibration of the Zn-O bond. For comparison, the FTIR spectra
for other adsorbents are provided in Figure 3 ((a) carbon, (b) Fe3O4, (c) Fe3O4-C, and (d)
ZnO). Hydroxyl groups are detected in all adsorbent’s samples, while carbonyl groups are
detected in case of (b) Fe3O4, (c) Fe3O4-C, and (d) ZnO. In addition, Fe-O is detected in case
of (b) Fe3O4, and (c) Fe3O4-C. An Aliphatic C-H group is detected in case of Fe3O4 at about
2900 cm−1 due because the Fe3O4 nanoparticles were previously prepared with citrate
stabilization [45]. The surface functional groups play an important role in the adsorption
process for the uptake of heavy metals.
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Figure 3. FTIR spectra of (a) carbon, (b) Fe3O4, (c) Fe3O4-C, (d) ZnO, and (e) ZnO-C.

The XRD analysis (Figure 4A,B) compared the peaks related to pure zinc oxide and zinc
oxide anchored carbon hybrid materials (ZnO-C). The pure zinc oxide showed peaks at 2θ
of 31.7◦ (100), 34.4◦ (002), 36.2◦ (101), 47.6◦ (102), 56.6◦ (110), 62.9◦ (103), and 67.1◦ (112) ac-
cording to the Joint Committee on Powder Diffraction Standards (JCPDS No. 89-1397) [48],
whereas ZnO-C exhibited similar peaks with missing of the peak at 2θ of 67.1◦ (112), which
may be attributed to carbon shielding. In addition, the peaks of ZnO in the ZnO-C ad-
sorbent are shifted, and the peaks’ intensity is reduced due to incorporation of ZnO with
carbon and ZnO aggregation into larger particles as present in TEM (Figure 2). These
reasons lead to the change in the intensities of the main ZnO reflections (100, 002, 101).
The shift in the peaks’ location due to doping are previously reported in El Aakib et al.
for pure and aluminum-doped zinc oxide nanoparticles [49]. Furthermore, the C showed
a lower intensity peak between 2θ of 17◦–25◦ due to the carbon matrix in the ZnO-C
hybrid adsorbent materials [50,51]. The successful fabrication of zinc oxide nanoparticle
anchored carbon is expected to improve the application of the formed hybrid materials
for the adsorption of heavy metals. Rodríguez et al. developed a zinc oxide/graphene
nanocomposite and indicated that the removal efficiency of Al and Cu were 19.9 mg/g
and 33.5 mg/g, respectively, owing to the fact that the coating of graphene with ZnO
nanoparticles enhanced its adsorption capacity [52].
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3.2. Utilization of Developed Hybrid Materials for Adsorption Applications

The metal oxide nanoparticles, including ZnO, Fe3O4, and their derived carbon hybrid
materials (ZnO-C and Fe3O4-C), were evaluated for their ability to adsorb Zn(II), Cd(II),
Co(II), and Mn(II) from an aqueous solution, as presented in Figure 5. The adsorption
capacity of ZnO was 101, 116, 85, and 111 mg/g for Zn(II), Cd(II), Co(II), and Mn(II),
respectively, while for Fe3O4 it was 125, 101.3, 116, and 83 mg/g for Zn(II), Cd(II), Co(II),
and Mn(II), respectively. The adsorption capacity of carbon was 100, 91, 106, and 90 for
Zn(II), Cd(II), Co(II), and Mn(II), respectively. On the other hand, the metal oxide-anchored
carbon hybrid adsorbent materials exhibited a higher adsorption performance for the
removal of heavy metals due to a synergic effect. In addition, the developed ZnO-C
exhibited the highest adsorption capacity at 189, 180, 173, and 196 mg/g for Zn(II), Cd(II),
Co(II), and Mn(II), respectively, compared to Fe3O4-C, which demonstrated an adsorption
capacity of 177, 173, 165, and 167 mg/g for Zn(II), Cd(II), Co(II), and Mn(II), respectively.
These results agree with the findings indicated by Hadadian et al., who reported that the
combination of zinc oxide nanoparticles with graphene improved the adsorption capacity
for nickel removal [53].

The variation in the adsorption of Zn(II), Cd(II), Co(II), and Mn(II) onto the tested
adsorbents, including ZnO, Fe3O4, carbon, ZnO-C, and Fe3O4-C, can be attributed to
the surface area and surface functional groups. The surface areas and pore volume are
presented in Table 1. As the surface area of the metal oxide and metal oxide-derived carbon
materials increased, the efficiency of the removal of heavy metals increased. In the case
of the carbon adsorbent, the surface area and total pore volume of pores (0.161620 cm3/g)
were the highest, but the adsorption capacity and the adsorption average pore diameter
(94.187 Å) were the lower than that of metal oxide-coated carbon, which may be attributed
to the active surface site’s nature and the characteristics of the present functional groups.
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3.3. Optimizing the Most Influencing Factors

The common effective factors influencing the adsorption efficiency during wastewater
treatment were the pH, adsorbent dose, and time of contact. Therefore, various investigations
were applied to optimize the adsorptive removal of Zn(II), Cd(II), Co(II), and Mn(II) using
ZnO-C. The pH was studied in a range from 2 to 7 (Figure 6). The maximum adsorption
capacity was achieved in an acidic medium with a pH between 5 and 6. These results agreed
with previous adsorption methods using a ZnO-based adsorbent for the removal of Cu(II),
which was conducted at a pH between 4 and 4.8 [54]. In addition, the pH was reported to
be between 3 and 7 by Gu et al. for the adsorption of Cr(III) onto ZnO nanoparticles [33].
The mechanism of adsorption may include various driving forces, such as van der Waals,
electrostatic, and dipole–dipole interactions between the heavy metal ions and the active sites
on the ZnO-C surfaces, including OH groups. In the strongly acidic range, the protonation of
the functional groups on the ZnO-C adsorbent surfaces as well as the competition between
H+ and heavy metal cations led to minimal adsorption capacities at pH 2.
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The ZnO-C adsorbent dose was investigated in the range of 0.1–0.6 g/L, and the
related adsorption capacity is presented in Figure 7. The maximum adsorption capacity
was reported at a dose of 0.1 g/L, with values of 215, 213, 206, and 231 mg/g for Zn(II),
Cd(II), Co(II), and Mn(II), respectively. By increasing the ZnO-C dose, the adsorption
capacity decreased. This could be attributed to an increase in unoccupied sites resulting
from the increase in ZnO-C at a constant heavy metal ion concentration. A similar trend for
the influence of dose on the adsorption capacity was previously reported by Habila et al.
for the adsorption of arsenic and mercury onto CNT/SDS-alumina nanoparticles [55].
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Moreover, the influence of the contact time of Zn(II), Cd(II), Co(II), and Mn(II) with
the ZnO-C was investigated in a range between 5 and 1200 min. By increasing the time
from 5 to 180, a gradual improvement in the adsorption capacity was noticed (Figure 8).
Approximately, at contact time of 180 min, the steady-stage equilibrium occurs, at which
point the rate of adsorption was equal to the rate of the desorption processes. Herein, the
reported equilibrium time of 180 min was considered a fast adsorption rate, which indicates
the effectiveness of the prepared ZnO-C for the removal of Zn(II), Cd(II), Co(II), and Mn(II),
with a capacity of 189, 180, 173, and 196 mg/L, respectively.
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3.4. Kinetic and Equilibrium Modeling

Applying adsorption theories is important for studying the characteristics of hybrid
adsorbent materials to enhance their performance and develop a well-controlled process
for wastewater treatments [55,56]. To deeply assess the interaction between the developed
ZnO-C and Zn(II), Cd(II), Co(II), and Mn(II), various models were applied, such as the
pseudo-first-order, pseudo-second-order, Langmuir isotherm, and Freundlich isotherm
models, as stated in the related equations provided in Table 2.

Table 2. Kinetic and equilibrium equations for the applied pseudo-first-order, pseudo-second-order,
Langmuir isotherm, and Freundlich isotherm models.

Model Equation Constants

Pseudo-1st-order model log(qe − qt) = log qe − K1
2.303 .t

K1: the rate constant of the pseudo-1st-order model
(min−1).

Pseudo-2nd-order model t
qe = 1

K2(qe)2 +
1

qe .t
K2: the rate constant of the pseudo-2nd-order model
(min−1).

Langmuir isotherm model Ce
qe

= ( 1
Q0

max
) Ce +

1
Q0

maxKL

Q0
max (mg/g): maximum adsorption capacity.

KL (L/mg): a constant associated with the affinity of
ZnO-C and the adsorbed heavy metal ions.

Freundlich isotherm model log qe = log KF +
1
n Ce

KF (mg/g)/(mg/L)n: Freundlich constant.
n (dimensionless): Freundlich intensity parameter.

The pseudo-first-order kinetic model (Figure 9) (Table 3) revealed a calculated ad-
sorption capacity of 19.9, 233.1, 42.4, and 19.6 mg/g for Zn(II), Cd(II), Co(II), and Mn(II),
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respectively, which significantly differed from the experimental capacity (189, 180, 173, and
196 mg/L for Zn(II), Cd(II), Co(II), and Mn(II), respectively). The pseudo-second-order
kinetic model (Figure 10) (Table 3) revealed a calculated adsorption capacity of 196.1, 188.7,
181.8, and 200.0 mg/g for Zn(II), Cd(II), Co(II), and Mn(II), respectively, which was close to
the experimental adsorption capacity (189, 180, 173, and 196 mg/L for Zn(II), Cd(II), Co(II),
and Mn(II), respectively). Therefore, the pseudo-second-order model was the more suitable
model for describing the adsorption process. These results indicate that the adsorption
process onto the developed ZnO-C occurred over three steps: migration of Zn(II), Cd(II),
Co(II), and Mn(II) in the adsorption solution; arrangement at the ZnO-C surfaces; and
migration through the pores [57]. By applying the Langmuir isotherm plot (Figure 11) for
the adsorption of Zn(II), Cd(II), Co(II), and Mn(II) onto ZnO-C, the calculated constant
(Table 4) and the related correlation coefficient indicated that this model was not applicable
for describing the adsorption process. When plotting the Freundlich isotherm (Figure 12),
the calculated constants (Table 4) indicated a strong correlation, which confirmed the
multilayer adsorption and heterogenous surfaces according to the Freundlich assumptions.
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Table 3. The pseudo-first-order and pseudo-second-order constants for adsorption of Zn(II), Cd(II),
Co(II), and Mn(II) onto ZnO-C (pH: 6 and adsorbent dose: 0.15 g/L).

Pseudo-First-Order Pseudo-Second-Order

qe,exp
(mg/g) K1 (min−1) qe,cal (mg/g) R2 K2

(g/mg·min) qe,cal (mg/g) R2

Zn(II) 183.0 0.000738 19.9 0.37 0.000198 196.1 0.99

Cd(II) 180.0 0.003821 233.1 0.93 0.000131 188.7 0.99

Co(II) 163.0 0.001259 42.4 0.71 0.000124 181.8 0.99

Mn(II) 196.0 0.000825 19.6 0.41 0.00022 200.0 0.99
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Table 4. Equilibrium isotherm constants for adsorption of Zn(II), Cd(II), Co(II), and Mn(II) onto
ZnO-C.

Adsorbate
(Heavy Metal Ion)

Langmuir Constant Freundlich Constant

KL Q0
max R2 KF n R2

Zn(II) 0.029 212.8 0.88 3.21 0.54 0.95
Cd(II) 0.040 161.3 0.83 2.55 1.97 0.93
Co(II) 0.012 370.4 0.46 2.55 1.42 0.90
Mn(II) 0.001 5000.0 0.006 2.07 1.03 0.94

3.5. Purification of Wastewater Using Deviled Hybrid Adsorbent Materials

As a result of environmental pollution, various water resources have been contam-
inated with toxic metals. In order to reduce the negative impacts of these heavy metals,
the treatment of effluents with a high contaminate ratio is applied prior to them reaching
natural water systems [58,59]. Various wastewater samples were brought from Riyadh
City, Saudi Arabia. The developed adsorption process utilized ZnO-C and Fe3O4-C for
the adsorption of Zn(II), Cd(II), Co(II), and Mn(II) from a real wastewater matrix (Table 5).
The removal efficiency was not less than 91% for the tested samples. This level of the
achieved adsorptive removal performance confirmed that the developed hybrid materials
were effective for wastewater treatment in real field situations, with a high added value.
By comparing the obtained results with results in the literature [60–81] (Table 6), it was
observed that most of the applied materials exhibited the maximum adsorption capacity
in a low-acidic medium and in a neutral medium. In addition, the performance efficiency
of the evaluated hybrid martials in this work, including ZnO-C and Fe3O4, was superior
compared to that of most of the tabulated adsorbents from the literature. However, a few
adsorbent materials exhibited a higher adsorption capacity, such as ZnO nanoparticles [68],
a hydroxyapatite/pectin hybrid material [78], and a zinc oxide/graphene oxide composite
(ZnO/GO) [81].

Table 5. Utilization of ZnO-C and Fe3O4-C hybrid materials for real wastewater purification.

Adsorbent Wastewater

Initial Concentration
before Treatment (mg/L)

Detected Concentration
after Treatment (mg/L) Removal Efficiency %

Mn Co Cd Zn Mn Co Cd Zn Mn Co Cd Zn

Carbon–Fe3O4

Valley Water 3.56 5.85 4.16 8.81 0.14 0.11 0.23 0.21 96 98 95 98
Industrial

Wastewater 15.64 21.04 17.04 11.81 0.43 1.40 1.14 0.79 97 93 93 93

Rain Wastewater 1.50 2.51 1.91 3.43 0.06 0.00 0.08 0.30 96 100 96 91

Carbon–ZnO
Valley Water 3.56 5.85 4.16 8.81 0.05 0.18 0.10 0.14 99 97 98 98

Industrial
Wastewater 15.64 21.04 17.04 11.81 1.05 0.08 0.09 1.07 93 100 99 91

Rain Wastewater 1.50 2.51 1.91 3.43 0.06 0.05 0.01 0.11 96 98 99 97

Table 6. Comparison of the adsorption performance of the ZnO-C and Fe3O4-C hybrid materials
with materials from the literature.

Adsorbent Adsorbate Optimum qe Ref.

Acid modified
carbon-based adsorbents Cd(II) ion pH = 7

Contact time = 120 min

M-CNTs = 2.02 mg/g
M-AC = 1.98 mg/g

M-CNFs = 1.58 mg/g
M-FA = 1.22 mg/g

[60]

Alumina coated multi-walled
carbon nanotubes (MWCNTs)

Cd(II) ion
trichloroethylene

(TCE)

pH = 7
Contact time = 240 min

Cd(II) ion = 27.21 mg/g
TCE = 19.84 mg/g [61]
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Table 6. Cont.

Adsorbent Adsorbate Optimum qe Ref.

Natural kaolinite clay

Pb(II),
Cd(II),
Ni(II),

and Cu(II)

pH = 5.5–7
Contact time = 30 min

Pb = 2.35 mg/g
Cd = 0.88 mg/g
Ni = 0.90 mg/g
Cu = 1.22 mg/g

[62]

Functionalized carbon nanotubes
and magnetic biochar Zn(II) pH = 10

Contact time = 120 min
Functionalized CNT = 1.05 mg/g
Magnetic biochar = 1.18 mg/g [63]

Poly(acrylic acid) multi-walled
carbon nanotubes

(MWCNT-g-PAAs)
Co(II) pH = 6

Contact time = 300 min 3.55 × 10−4 molg−1 [64]

Natural and modified clay Mn(II)
Cd(II)

pH = 1–6
Contact time = 60 min

NT-25/Cd(II) = 11.2 mg/g
NT-25/Mn(II) = 6.0 mg/g [65]

Natural phosphate (NP) Cd(II) pH = 5 26 mg/g [66]

Straw biochar (WSB) and acid
treated wheat straw biochar

(AWSB)
Cd(II)

pH = 6
Contact time = 5–180

min

WSB = 31.65 mg/g
AWSB = 74.63 mg/g [67]

ZnO nanoparticles
Zn(II)
Cd(II)
Hg(II)

pH = 5.5
357 mg/g for Zn(II)
387 mg/g for Cd(II)
714 mg/g for Hg(II)

[68]

TiO2 nanoparticles Pb, Cd, Cu, Ni, Zn pH = 8 - [69]

Sugarcane leaves (SCLs)
Ni2+

Cr3+

Co2+
pH = 8 for Cr3+

51.3 mg/g for Ni2+

62.5 mg/g for Cr3+

66.7 mg/g for Co2+
[70]

Graphene oxide bovine serum
albumin (GO-BSA) Co(II) pH = 6 184 mg/g [71]

Activated Saudi clays Co(II) -

12.9 mg/g for treated
Tabbuk clay;

12.55 mg/g for treated
Bahhah clay

[72]

Intact and modified Ficus carica
leaves (FCLs) Co(II) pH = 6 33.9 mg/g [73]

Polyaniline/sawdust composite Mn(II) pH = 10
Contact time = 30 min 58.824 mg/g [74]

Poly(sodium acrylate) graphene
oxide (PSA-GO) double network

hydrogel

Mn(II)
Cd(II) pH = 6 Mn(II) = 165.5 mg/g

Cd(II) = 238.3 mg/g [75]

Surfactant modified alumina
(SMA) Mn(II) pH = 4.04–8.05

Contact time = 30 min 2.04 mg/g [76]

Activated carbon from bean
pod waste

Mn(II)
As(III)

pH = 5–6
Contact time = 30 min

Mn(II) = 23.4 mg/g
As(III) = 1.01 mg/g [77]

Hydroxyapatite/pectin
hybrid material Zn(II) pH = 5 330.4 mg/g [78]

Polyaniline nanocomposite coated
on rice husk (PAn/RH) Zn(II) pH = 3

Contact time = 20 min 24.3 mg/g [79]

Dendrimer conjugated
magnetic nanoparticles Zn(II) pH = 7 24.3 mg/g [80]

Zinc oxide nanoparticles
(ZnO-NPs) Cr3+ pH = 3–7

Contact time = 20 min 88.547 mg/g [32]
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Table 6. Cont.

Adsorbent Adsorbate Optimum qe Ref.

Zinc oxide/graphene oxide
composite (ZnO/GO) Pb(II) pH = 5

Contact time = 160 min 909.09 mg/g [81]

ZnO-C

Zn(II),
Cd(II),
Co(II),
Mn(II)

pH = 6
Contact time = 180 min

Mn(II) = 196,
Co(II) = 173,
Cd(II) = 180,

Zn(II) = 189 mg/g

This
work

Fe3O4-C

Zn(II),
Cd(II),
Co(II),
Mn(II)

pH = 6
Contact time = 180 min

Mn(II) = 167,
Co(II) = 165,
Cd(II) = 173,

Zn(II) = 177 mg/g

This
work

3.6. Regeneration Study for ZnO-C Recycling

Recycling the adsorbent materials serves environmental safety and supports the cost-
effective wastewater treatment [82,83]. The fabricated ZnO-C hybrid adsorbent martials
is investigated for multi-usage by regenerating it with a Na2EDTA solution. The ZnO-
C exhibited high reuse efficiency for adsorption of Zn(II), Cd(II), Co(II), and Mn(II). As
presented in Figure 13, after four usage, the recycling efficiency is above 90%. These
results reveal that the effectiveness of ZnO-C for sustainable applications as eco-friendly
adsorbents.
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4. Conclusions

Zinc oxide nanoparticle anchored carbon (ZnO-C) hybrid adsorbent materials were
prepared with a sphere-like granulated structure in the nanoscale size range of 16–68 nm.
The EDS analysis indicated the presence of Zn on the granules’ surfaces, together with car-
bon matric and oxygen. The prepared structure of ZnO-C had a surface area of 24.84 m²/g.
The optimized conditions for Zn(II), Cd(II), Co(II), and Mn(II) uptake were at a pH between
5 and 6, a contact time of 180 min, and a ZnO-C dose of 0.1 g/L. Real wastewater samples,
including valley water, industrial wastewater, and rain water, were successfully treated
through the adsorption of Zn(II), Cd(II), Co(II), and Mn(II) onto ZnO-C, indicating a high
removal efficiency (more than 91%) for the evaluated samples. The results achieved in
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this work suggest the need for further investigations to develop novel transition-metal-
oxide-nanoparticle-coated carbon as a hybrid adsorbent material for enhanced wastewater
treatment applications. In addition, the developed ZnO-C materials in this work could be
investigated for additional applications, such as the photocatalytic degradation of organic
pollutants and/or the removal of various pollutant categories such as radioactive waste
and greenhouse gases.
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