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Figure S1 1H NMR spectrum of TC1 
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Figure S2 1H NMR spectrum of TC2 

 

 

 

Figure S3 1H NMR spectrum of TC3 

 



  

4 
 

 

Figure S4 1H NMR spectrum of TCP1 

 

 

Figure S5 1H NMR spectrum of TCP2 
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Figure S6 1H NMR spectrum of TCP3 

 

 

 

Figure S7 1H NMR spectrum of OTCP1 
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Figure S8 1H NMR spectrum of OTCP2 

 

 

Figure S9 1H NMR spectrum of OTCP3 
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Figure S10 13C NMR spectrum of TC1 

 

 

Figure S11 13C NMR spectrum of TC2 
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Figure S12 13C NMR spectrum of TC3 

 

 

 

Figure S13 13C NMR spectrum of TCP1 
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Figure S14 13C NMR spectrum of TCP2 

 

 

 

Figure S15 13C NMR spectrum of TCP3 
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Figure S16 13C NMR spectrum of OTCP1 

 

 

 

Figure S17 13C NMR spectrum of OTCP2 
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Figure S18 13C NMR spectrum of OTCP3 

 

 

Figure S19 EI-HRMS spectrum of TC1 
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Figure S20 EI-HRMS spectrum of TC2 

 

Figure S21 EI-HRMS spectrum of TC3 
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Figure S22 Comparative FTIR spectrum of TCP1 (up) and OTCP1 (down) 

 

 

 

Figure S23 Comparative FTIR spectrum of TCP2 (up) and OTCP2 (down) 
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Figure S24 Comparative FTIR spectrum of TCP3 (up) and OTCP3 (down) 

 

Figure 25 High-resolution XPS spectra of C1s, O1s, Fe2p, N1s, S2p and B1s of TCP1 
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Figure S26 High-resolution XPS spectra of C1s, O1s, N1s, S2p, Fe2p and B1s of TCP2 
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Figure S27 High-resolution XPS spectra of C1s, O1s, N1s, S2p, Fe2p and B1s of TCP3 
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Figure S28 High-resolution XPS spectra of C1s, O1s, N1s, S2p, Fe2p and B1s of OTCP1 
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Figure S29 High-resolution XPS spectra of C1s, O1s, N1s, S2p, Fe2p and B1s of OTCP2 
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Figure S30 High-resolution XPS spectra of C1s, O1s, N1s, S2p, Fe2p and B1s of OTCP3 
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Figure S31 Normalized GPC chromatogram of TCP1 

 

 

Figure S32 Normalized GPC chromatogram of TCP2 
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Figure S33 Normalized GPC chromatogram of TCP3 

 

 

 

 

Figures S34 Normalized GPC chromatogram of OTCP1 
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Table S1 Summary of the Li+ (200 mg L-1) adsorption by copolymers TCP1-3, OTCP1-3 

 

 

 

 

 

 

 

 

 

 

 

 

Table S2 Comparison of adsorption capacity of OTCP2 with published adsorbents for Li+ 

Entry Adsorbents Adsorption 
Capacity (mg g-1) 

Reference 

1 Li/Rb-IHPS 0.166 [1] 

2 MWCNT–HDB14C4–COOH 2.11 [2] 

3 SG/GO composite 1.1 [3] 

4 OTCP2  2.31 This work 
 

 

Entry Polymer Co (mg L
-1

) Ce (mg L
-1

) qe (mg g
-1

) 

1 TCP1 200 196.07 3.93 

2 TCP2 200 190.88 9.12 

3 TCP3 200 194.89 5.11 

4 OTCP1 200 186.78 13.22 

5 OTCP2 200 182.12 17.88 

6 OTCP3 200 185.54 14.46 
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Table S3 Comparison of adsorption capacity of OTCP2 with published adsorbents for MEB 

Entry Adsorbents Adsorption  
Capacity (mg g-1) 

Reference 

1 ZIF-67-0.2 HPW 446 [4] 

2 CS/GO aerogel 437 [5] 

3 Graphene aerogel materials  221.77 [6] 

4 Composite graphene 

oxide/nanocellulose aerogel  
111.2 [7] 

5  OTCP2 480.77 This work 
 

 

 

Figure S35 Nonlinear Langmuir isotherm (a) and nonlinear Freundlich isotherm (b) models of 
Li+ on OTCP2 
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Figure S36 Nonlinear Langmuir isotherm (a) and nonlinear Freundlich isotherm (b) models of 

MEB on OTCP2 

 

 

 

 

 

Figure S37 Nonlinear Pseudo first-order (a) and nonlinear Pseudo second-order (b) models of 
MEB on OTCP2 
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Figure S38 Graphical representation of regeneration capacity of OTCP2 for the adsorption of 
methylene blue 
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