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Abstract: In this work, thioether-amide ligands featuring a combination of hard amide groups with
soft donor groups have been employed to develop new zinc catalysts for the ring-opening poly-
merization of cyclic esters. All complexes were prepared in high yields through alkane elimination
reactions with diethyl zinc and characterized using nuclear magnetic resonance (NMR) spectroscopy.
Density functional theory (DFT) characterization provided insight into the parameters that influence
catalytic activity, such as steric hindrance at the metal center, Lewis acidity and electronic density of
thioether-amide ligands. In the presence of one equivalent of isopropanol, all complexes were active
in the ring-opening polymerization of rac-β-butyrolactone. Quantitative conversion of 100 monomer
equivalents was achieved within 1 h at 80 ◦C in a toluene solution. Number-average molecular
weights increased linearly with monomer conversion; the values were in optimal agreement with
those expected, and polydispersity index values were narrow and relatively constant throughout
the course of polymerization. The most active complex was also effective in the ring-opening poly-
merization of ε-caprolactone and L-lactide. To propose a reliable reaction path, DFT calculations
were undertaken. In the first step of the reaction, the acidic proton of the alcohol is transferred to
the basic nitrogen atom of the amide ligand coordinated to the zinc ion. This leads to the alcoholysis
of the Zn-N bond and the formation of an alcoholate derivative that starts the polymerization. In
subsequent steps, the reaction follows the classical coordination–insertion mechanism.

Keywords: polyhydroxyalkanoates; zinc catalyst; ring-opening polymerization

1. Introduction

Polyhydroxyalkanoates (PHAs), a class of naturally occurring polyesters, are attracting
remarkable research attention due to their sustainability and potential applications [1,2].
One of the most extensively studied PHAs is poly(3-hydroxybutyrate) (PHB). When ob-
tained from bacterial fermentation, it is a perfectly isotactic polymer with semi-crystalline
and thermoplastic behavior. Its mechanical and thermal properties are very similar to
those of isotactic polypropylene; thus, it could serve as a green alternative to conven-
tional petroleum-derived plastics [3]. In comparison with starch-derived plastics, PHB
displays good resistance to UV light and hydrolytic degradation. However, its application
is hindered by several reasons including the high cost of fermentative production, lim-
ited scalability of this process and processing difficulties stemming from its high melting
temperature [4]. One way to overcome these drawbacks and further its applications is the
chemical synthesis of PHB. Undoubtedly, the most promising approach is the ring-opening
polymerization (ROP) of β-butyrolactone (β-BL) promoted by a coordination metal com-
plex, as it allows for the effective control of the polymer architectures which, in turn, affect
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the polymer’s physical properties [5]. Catalytic performance strongly depends on the
metal used, as well as on the ancillary ligand coordinated to the metal center. Among
the different metals, zinc is advantageous as it is non-toxic, colorless, inexpensive and
non-redox-active [6]. Due to these characteristics, many zinc catalysts have been reported
for the ROP of lactides and other cyclic esters [7–11]. Worth mentioning are the dinuclear
macrocyclic zinc complexes examined by Williams and co-workers as they are the most
efficient catalysts for lactide polymerization performed in solution at room temperature
(Turnover frequencies (TOFs) up to 60,000 h−1) [9].

Despite the great interest in zinc-based catalysts, to date, only few zinc catalysts have
been developed for the ROP of β-BL [12–20]. One of the first relevant reports was by Coates
and co-workers. They found that a β-diiminate zinc alkoxide polymerizes β-BL at high
rates under mild conditions: with a [β-BL]/[Zn] ratio of 200, this complex led to a 90%
conversion in one hour at room temperature [12]. Rieger and co-workers succeeded in
further incrementing the activity of this complex by introducing an electron-withdrawing
group on the ligand skeleton [16]. More recently, Rieger and co-workers described a series
of aromatic aminotroponiminate zinc complexes and showed that these complexes are able
to convert 600 equivalents of β-BL in three hours when combined with 10 equivalents of
isopropanol [18]. Du and co-workers reported a series of amido-oxazolinate zinc complexes
that were able to convert β-BL in cyclic or linear polymers in the absence or presence of an
alcohol [19].

As part of our research interests [21–24], we have developed a series of group 4 and
aluminum metal complexes featuring tetradentate thioether-amide ligands (NSSNs) and
studied their activity in the ROP of cyclic esters [25–27]. Since these ligands present an
intriguing combination of hard and soft donor groups, we thought that they could match
the “borderline” soft Lewis acid character of zinc ions, influencing their reactivity positively.
In this work, we report the synthesis and characterization of three novel zinc complexes
supported by these ligands and their application in the ring-opening polymerization of
BBL. These complexes are devoid of labile ligands that can start the polymerization process
and are active only in combination with isopropanol, which acts as an activating agent.
To shed light on the role of the alcohol and propose a polymerization mechanism, DFT
calculations were carried out.

2. Results and Discussion
2.1. Synthesis and Characterization

The ligands utilized in this work comprise two N-alkyl-aniline linked by a di-thio-
ethyl bridge and differ in the substituents bonded to the nitrogen atoms, i.e., isopropyl
(NSSN-iPr), cyclohexyl (NSSN-Cy) or mesityl groups (NSSN-Mes). They were synthesized
according to procedures found in the literature [25].

The corresponding zinc complexes 1–3 (1 = (NSSN-iPr)Zn, 2 = (NSSN-Cy)Zn,
3 = (NSSN-Mes)Zn) were prepared by an acid–base reaction between the ligand and one
equivalent of diethyl zinc in refluxing benzene, as reported in Scheme 1. The compounds
were isolated in high yields (90–98%) as off-white solids. All complexes were characterized
using mono- and bidimensional NMR spectroscopy (see Supporting Information).
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In the proton spectra, a single set of resonances was observed, indicating that the
complexes exist in solution as single isomers. The resonance pattern revealed that all have
C2-symmetric structures: the aniline moieties of the ligands were equivalent, while the
protons of the ethyl bridge appeared diastereotopic and gave rise to an AB quartet. No
broadening or coalescence of these resonances was observed in the temperature range of
25–80 ◦C, suggesting that the structures are rigid on the NMR time scale (see Figure S9
in the Supporting Information). Interestingly, the chemical shift difference in the quartet
increased as we moved from 1 to 3, indicating that the rigidity of complexes increases with
the bulkiness of the substituents at the nitrogen atoms.

Despite several attempts, we were unable to obtain single crystals suitable for X-ray
characterization. To propose reasonable structures, DFT calculations were carried out. In
all cases, the binding of the ligands introduced a distortion of the tetrahedral coordination
geometry around the zinc center. The values of the computed angles and bond distances are
reported in SI. The sulfur and the nitrogen atoms exhibit trigonal pyramidal and trigonal
planar geometries, respectively. The C2-symmetric environment was achieved through the
gauche conformation of the SCH2CH2S bridge.

Lewis acidity and steric hindrance around the zinc metal center are considered two
important factors that influence the catalytic activity. The Lewis acidity was assessed by
estimating the partial charge of the zinc atom using natural population analysis (NPA).
Steric hindrance resulting from the coordinated ligands for 1–3 was determined based on
the percentage of the total volume occupied by the ligand within a sphere of a 3.5 Å radius
centered on the metal core. These calculations were performed using the SambVca 2.1
package, which is freely available and developed by Cavallo et al. [28]. The results are
reported in Table 1 (see Supporting Information for more computational result details). The
partial charges at the zinc atom are in the range of 1.23–1.39 atomic units (au). These data
suggest that the NSSN-iPr and NSSN-Cy ligands transfer a very similar charge density to
the metal atom and complex 3 exhibits the lowest acidity in the series. As expected, the
ligands occupy a relatively large volume around the metal center, which limits the access to
the catalytic pocket (see Figure 1). The %VBur for 1–3 increases as the steric encumbrance
of the substituents on the nitrogen atoms increases.

Table 1. Summary of DFT results.

Complex Zn Charge (a) %VBur (b) Zn-N (c) S-Zn-N (d)

1 1.39 74.3 1.94 86.1
2 1.39 78.4 1.93 86.0
3 1.23 83.2 1.93 85.2

(a) Charge of the zinc atom determined through NPA (au). (b) Percent buried volume. (c) Bond length (Å). (d) Angle
of bond (◦).
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2.2. Polymerization Studies

Complexes 1–3 were assessed as catalysts for the ring-opening polymerization of rac-
β-butyrolactone under various experimental conditions. All polymerization experiments
were carried out in the presence of one equivalent of isopropanol as an activating agent.
Complex 1 was inactive in THF or CH2Cl2, while moderate activity was observed in hexane
or chloroform at 60 ◦C. The highest activity was achieved in a toluene solution at 80 ◦C; the
main results are reported in Table 2. Under these conditions, after 30 min, the monomer
conversion reached 84%, resulting in a turnover frequency (TOF) of 167 h−1. Complexes
2 and 3 displayed lower activities with TOFs of 155 and 128 h−1, respectively. It is worth
noting that, under these experimental conditions, complex 1 was inactive in the absence
of isopropanol.

Table 2. Ring-opening polymerization of rac-β-butyrolactone promoted by 1–3/iPrOH.

Entry (a) Catalyst Time
(min)

Conv. (b)

(%)
TOF (c)

(h−1) Mn(th)
(d) Mn(expt)

(e) PDI (e)

1 1 30 84 168 7.2 7.2 1.17

2 2 30 77 154 6.6 6.0 1.13

3 3 30 64 128 5.5 5.2 1.21

4 1 60 97 97 8.3 8.2 1.22

5 2 60 90 90 7.7 7.5 1.23

6 3 60 90 90 7.7 7.3 1.91
(a) All reactions were carried out in 2.0 mL of toluene as solvent, [cat]0 = 6.9 mM, [β-BL] = 0.69 M, [β-
BL]0/[iPrOH]0/[cat]0 = 100/1/1. (b) Molecular conversion determined by 1H NMR spectroscopy (CDCl3, 298 K).
(c) TOF = molB-BL/(molZn h). (d) Calculated molecular weight using Mn(th) (kg mol–1) = (86.09 × ([β-BL]0/[iPrOH]0)
× conversion)/1000. (e) Experimental molecular weight Mn(expt) (kg mol–1) and polydispersity index (PDI) deter-
mined by GPC in THF using polystyrene standards and corrected using the factor 0.54.

To gain further insight into the kinetics of the reactions, the polymerizations promoted
by 1–3/iPrOH were monitored at regular time intervals, and the corresponding kinetic plots
were determined. As shown in Figure 2, in all cases, the polymerization starts instantly,
and the reactions proceed with a reaction order of one with respect to the monomer
concentration. The apparent propagation rate constants (kapp) were 0.060 ± 0.001 min−1,
0.047 ± 0.001 min−1 and 0.035 ± 0.001 min−1 for 1, 2 and 3, respectively. These values
follow the same order as observed for the TOFs and confirm that the increase in steric
hindrance of the substituent bound to the nitrogen atom has a detrimental effect on the
catalytic activities.

The isolated polymers were subjected to gel permeation chromatography (GPC) to
determine the number-average molecular weight (Mn(exp)) and the polydispersity index
(PDI). The Mn(exp) values for the polymers obtained by 1–3/iPrOH closely matched those
calculated assuming the growth of one polymer chain for one added alcohol equivalent.
The PDI values exhibited a monomodal and narrow distribution with values in the range
of 1.16–1.31. In the case of the polymerization promoted by 1/iPrOH, the relationship
between the Mn(exp) and monomer conversion was investigated. As reported in Figure 3,
the Mn(exp) increased linearly with conversion, and the values were in excellent agreement
with those expected. The PDI values were narrow and relatively constant during the
polymerization, suggesting that the propagation step was minimally affected by intra- or in-
termolecular transesterification side reactions. All the data indicate that the polymerization
by 1–3/iPrOH proceeds as a controlled ROP process.
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Figure 3. Plot of number-averaged molecular weight Mn(exp) vs. monomer conversion with theoretical
Mn(th) (dashed line) using 1/iPrOH as initiator. Conditions: [βBL]0 = 0.69 M; [βBL]0/[1]0 = 100,
[iPrOH]0/[1]0 = 1, T = 80 ◦C, toluene (2.0 mL) as solvent.

Complex 1 was also tested in the ring-opening polymerization of L-lactide (LA) and
-caprolactone (εCL), with the main results reported in Table 3. Under the same experimental
conditions, the polymerization of LA and εCL proceeded with higher rates consistent with
the fact that β-BL, despite its high internal strain, is significantly less reactive. Almost
quantitative conversions of LA and εCL were obtained in 30 min and 5 min, respectively.
The corresponding TOFs were 182 and 1200 h−1. For a better comparison between β-BL
and LA, the conversion of LA was monitored during the reaction, and the corresponding
kinetic plot was determined (see supporting information). Also in this case, the plots
of ln([LA]0/[LA]t) versus time were linear with the intercept at the origin, indicating
that the reaction is first-order in monomer concentration, and no induction period is
required before the start of the polymerization. The apparent propagation rate constant
was 0.076 ± 0.002 min−1, a higher value than that found for the polymerization of β-BL.
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Table 3. Ring-opening polymerization of L-lactide (LLA) and ε-caprolactone (εCL) promoted by
1/iPrOH.

Entry (a) Monomer [mon]/[1] Time
(min)

Conv. (c)

(%)
TOF (d)

(h−1) Mn(th)
(e) Mn(expt)

(f) PDI (f)

LLA 100 30 90 180 13.0 11.9 1.19

7 (b) LLA 250 120 95 406 34.2 30.3 1.25

8 εCL 100 5 99 1200 11.3 9.8 1.15

9 εCL 300 10 99 1930 33.8 31.1 1.28

10 εCL 600 15 99 2600 67.7 62.5 1.32
(a) All reactions were carried out in 2.0 mL of toluene as solvent, [1]0 = 6.9 mM, [1]0/[iPrOH]0 = 1/1, temperature
= 80 ◦C. (b) [1]0 = 2.8 mM. (c) Molecular conversion determined by 1H NMR spectroscopy (CDCl3, 298 K). (d) TOF
= molmon/(molZn h). (e) Calculated molecular weight using Mn(th) (kg mol–1) = (144.13 × ([mon]0/[iPrOH]0)
× conversion)/1000. (f) Experimental molecular weight Mn(expt) (kg mol–1) and polydispersity index (PDI)
determined by GPC in THF using polystyrene standards and corrected using the factor 0.58 for PLA and 0.56
for PCL.

Increasing the monomer-to-initiator ratio required a longer reaction time to achieve
high monomer conversion. In the case of the εCL polymerization, the catalyst system
required fifteen minutes to quantitatively convert 600 monomer equivalents.

Regarding the control of polymerization, the experimental molecular weights of
the isolated polymers were in good agreement with those calculated; the polydispersity
index values were close to 1. Even for these monomers, the ROP catalytic activity is
well-controlled, allowing the production of well-defined polymers.

To gain insights into the reaction mechanism, low-molecular-weight samples of PHB
and PLA were prepared by converting 20 monomer equivalents using 1. In the case of the
oligomers of β-BL, the analysis of the 1H and 13C NMR spectra clearly revealed the presence
of signals attributable to isopropoxy and hydroxybutyrate-end groups. Specifically, in the
aliphatic region of the 13C NMR spectrum, in addition to the four intense peaks due to the
main chain repeating butyrate units, two less intense series of peaks were observed (at
69.2/23.1 ppm and at 65.01/43.91/23.0) and assigned to the carbons of the isopropoxyl
group and hydroxybutyrate chain end groups, respectively. Minimal or no crotonate
end groups were observed in the oligomers. The structure of these oligomers was also
supported by MALDI-TOF analysis; the series of peaks were attributable to linear oligomers
with the following composition: iPrO[C(=O)CH2CH(CH3)O]nH.

Regarding the terminal groups of the LA oligomers, the 1H NMR spectrum showed
two quadruplets at 5.04 and 4.33 ppm, assigned to the methine hydrogens of the iso-
propoxy and to lactyl end groups, respectively. The analysis of the MALDI-TOF spectrum
further supported the presence of these end groups. The signals were interspersed by
72 uma, indicating that the propagation step is affected by inter- and intra-transesterification
side reactions.

The end group analysis confirms that the reaction starts with the nucleophilic attack
of the isopropoxy group on the carbonyl carbon of the monomer and proceeds through the
classical coordination–insertion mechanism.

2.3. Mechanism of β-BL Polymerization by Zinc Complexes

A detailed analysis of the electronic structure of 1 revealed that the highest occupied
molecular orbital (HOMO) and the HOMO-1 are mainly localized on the lone pairs at the
nitrogen centers, as shown in Figure 4.
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Figure 4. Plot of HOMO and HOMO-1 molecular orbitals of 1. Hydrogen atoms were hidden
for clarity.

The presence of electronic density at the amido ligands provides some useful hints
to predict that the most plausible first step of the reactivity of complex 1 should be the
interaction with the isopropanol species. This aligns with the experimental observation
of isopropyl groups as a terminal moiety in the produced polymers. Figure 5 shows the
adduct, denoted as 4, formed between 1 and alcohol with the O-H linkage parallel to the
Zn-N bonding. The alcoholic proton seems to be involved in a somewhat weak interaction
with the nitrogen center, although the N-H distance is as large as 2.52 Å. The formation of
adduct 4 is estimated to occur with a free energy cost of +7.4 kcal mol−1. After 4, the system
proceeds through the transition state TS4–5, as shown in Figure 5, with a free energy cost of
+4.4 kcal mol−1. In TS4–5, the alcoholic proton lies between the oxygen and the nitrogen
centers (O-H and N-H distances are 1.23 and 1.29 Å, respectively) with a NHO angle of
152◦. The activation of the O-H bonding leads to the cleavage of the original Zn-N linkage,
elongated by 0.23 Å compared to its value in complex 1. The transition state nature of TS4–5
is confirmed by the detection at −1054 cm−1 of a single imaginary frequency for the N-H
and O-H shortening and lengthening, respectively. The greater the steric encumbrance at
the nitrogen ligand, the more hindered the activation of the O-H linkage of isopropanol in
the adduct 4, as occurs for the compound with cyclohexyl and mesythyl substituents.
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atoms, except the involved one, were hidden for clarity.

Intermediate 5 in Figure 5 features a formed Zn-O and N-H linkage with the pro-
ton engaged in H-bonding with the oxygen. The free energy gain from TS4–5 has been
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estimated to be −11.0 kcal mol−1. Once formed, the oxygen O1 of the alkoxide ligand
can act as a nucleophile toward the carbon center, specifically C1, of the β-butyrolactone,
activating it for the polymerization process. An adduct, 6 shown in SI, between 5 and
β-butyrolactone has been isolated with a free energy cost of +3.8 kcal mol−1; after that, the
process evolves through the transition state TS6–7 (shown in Figure 6) with a free energy
barrier of +21.4 kcal mol−1. The transition state features a O1-C1 of 1.72 Å and an imagi-
nary frequency at −173 cm−1 associated with the C1-O1 shortening. Then, intermediate 7,
shown in SI with an already-formed C1-O1 linkage (C1-O1 1.3 Å), is formed with a free
energy gain of −13.5 kcal mol−1.
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atoms, except the involved one, were hidden for clarity.

Intermediate 7 still retains the intact four-membered ring of the β-butyrolactone.
Therefore, to promote the polymerization process, a change in coordination to the metal
is required. A relaxed scan for the approach of O2 to Zn pointed out the presence of
an energy barrier. Consequently, the transition state TS7–8, shown in Figure 6, has been
optimized with a free energy barrier of +4.7 kcal mol−1 and a single imaginary frequency
at −102 cm−1. TS7–8 is characterized by the lengthening of one Zn-S linkage with a length
difference between the two Zn-S bonds of ca. 0.24 Å. The O2 coordination to the metal
allows the cleavage of the four-membered ring and the formation of intermediate 8 (see
Figure 6) with the formation of an open chain and the O2 center able to perform a further
β-butyrolactone activation. The formation of 8 starting from transition state TS7–8 has been
estimated to be as large as −25.7 kcal mol−1. The formation of 8 from 1 and isopropanol
and β-butyrolactone has been estimated to be exergonic by −3.7 kcal mol−1, as shown in
the free energy pathway of Figure 7. The highest free energy barrier of ca. 30.0 kcal mol−1 is
encountered for the obtainment of intermediate 7 and is in line with the requirement of an
experimental temperature not lower than 80 ◦C. Similar reaction pathways, denoted with
a subscript “L”, have been obtained for the activation of L-lactide with comparable free
energy barriers, as shown in SI. However, the reactivity of 5 with lactide to provide a similar
compound 8 appears somewhat hindered being slightly endergonic by 1.0 kcal mol−1.
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3. Conclusions

In this work, three novel zinc complexes featuring thioether-amide ligands were
prepared and characterized using NMR spectroscopy. The k4-coordination of the ligands to
the metal ion afforded complexes with a distorted tetrahedral geometry whose structures
were quite rigid on the NMR time scale.

In the presence of one equivalent of isopropanol, all complexes were able to promote
the ring-opening polymerization of rac-β-butyrolactone with good activity. The polymeriza-
tion proceeded in a controlled manner, resulting in polymers with predetermined molecular
weights and narrow polydispersities. The most active complex, featuring the least sterically
hindered ligand, was also tested in the ring-opening polymerization of ε-caprolactone and
L-lactide.

End group analysis indicated that the polymerization follows a coordination–insertion
mechanism. To propose a reasonable reaction pathway and elucidate the role of the alcohol,
DFT investigations were carried out.

The results achieved in this study demonstrate that thioether-amide ligands are a
good platform for the development of effective catalysts for the polymerization of low-
reactive cyclic esters, such as β-butyrolactone. The versatility of the ligands permits easy
modifications of catalysts’ structures that may improve their activity and lead to ROP
catalysts with higher performance.

4. Experimental Section

Materials and methods. All preparations and subsequent manipulations of air- and/or
water-sensitive compounds were carried out under a dry nitrogen atmosphere using a
Braun Labmaster drybox or standard Schlenk line techniques. Glassware and vials used in
the polymerization were dried in an oven at 120 ◦C overnight and exposed three times to
vacuum-nitrogen cycles. All solvents and reagents used were dried and purified before use.
Toluene (Sigma-Aldrich, 99.5%), hexane (Sigma-Aldrich, 99%) were preliminarily dried
over CaCl2, while THF (Sigma-Aldrich, 99%) was preliminarily treated with potassium
hydroxide. Then, all solvents were purified by distillation from sodium under a nitrogen
atmosphere. Ligands used for the synthesis of complexes were anhydrificated in vacuum
with P2O5. Rac-β-butyrolactone and ε-caprolactone were dried over CaH2 one night and
freshly distilled under reduced pressure. Lactide was purified by crystallization from dry
toluene and then stored over P2O5. All other chemicals (Sigma-Aldrich) were commercially
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available and used as received unless otherwise stated. The ligands NSSN-iPr, NSSN-Cy
and NSSN-Mes were prepared in accordance with the literature [20].

Instruments and Measurements. The NMR spectra were recorded on Bruker Avance
400.13 or Bruker Avance 600 spectrometer at 25 ◦C, unless otherwise stated. Deuterated
solvents were purchased from Cambridge Isotope Laboratories, Inc., degassed and dried
over activated 4Å molecular sieves prior to use. Chemical shifts (δ) are listed as parts
per million and coupling constants (J) in hertz. 1H NMR spectra are referenced using
the residual solvent peak at δ 7.16 for C6D6, δ 7.27 for CDCl3 and δ 5.32 for CD2Cl2.
13C NMR spectra are referenced using the residual solvent peak at δ 128.39 for C6D6,
δ 77.23 for CDCl3 and δ 53.84 for CD2Cl2. The molecular weights (Mn and Mw) and
the molecular mass distribution (Mn/Mw) of polymer samples were measured by gel
permeation chromatography (GPC) at 30 ◦C, using THF as solvent, flow rate of eluent
1 mL/min, and narrow polystyrene standards as reference. The measurements were
performed on a Waters 1525 binary system equipped with a Waters 2414 RI detector using
four Styragel columns (range 1000–1,000,000 Å). Every value was the average of two
independent measurements.

4.1. Synthesis of (NSSN-iPr)Zn (1)

A solution of [NSSN-iPr] (0.52 g, 1.44 mmol) in benzene (2.5 mL) was added to a stirred
benzene solution of Zn(C2H5)2 (0.18 g, 1.44 mmol in 2.5 mL of benzene). The resulting
yellow solution was refluxed for 24 h, after which the volatile byproducts and the solvent
were removed under vacuum. The crude product was washed with hexane (10 mL) to give
1 as a yellow solid (0.55 g, 90%). 1H NMR (400.13 MHz, C2D2Cl4, 25 ◦C): δ 6.27–7.31 (m, 8H,
ArH), 3.73 (m, 2H, CH), 3.10 (m, 2H, S-CH2), 2.77 (m, 2H, S-CH2), 1.31 (m, 12H, 4 × CH3).
13C NMR (100.62 MHz, C2D2Cl4, 25 ◦C): δ 24.48, 25.67, 38.98, 46.85, 109.14, 111.07, 111.66,
132.09, 136.16, 156.66.

4.2. Synthesis of (NSSN-Cy)Zn (2)

Complex 2 was prepared from [NSSN-Cy] (0.47 g, 1.07 mmol) and Zn(C2H5)2 (0.13 g,
1.07 mmol), as described above for 1. Yield: 0.53 g (98%). 1H NMR (400.13 MHz, C2D2Cl4,
25 ◦C): δ 6.26–7.32 (m, 8H, ArH), 3.29 (m, 2H, CH), 3.10 (m, 2H, S-CH2), 2.21 (m, 2H, S-CH2),
1.28–2.07 (m, 20H, CH3+CH2 cyclohexyl group). 13C NMR (100.62 MHz, C2D2Cl4, 25 ◦C): δ
25.65, 25.87, 26.13, 35.36, 36.42, 39.05, 55.58, 109.12, 110.91, 111.55, 132.02, 136.25, 156.38.

4.3. Synthesis of (NSSN-Mes)Zn (3)

Complex 3 was prepared from [NSSN-Mes] (1.03 g, 2.01 mmol) and Zn(C2H5)2 (0.25 g,
2.01 mmol), as described above for 1. Yield: 1.10 g (95%). 1H NMR (400.13 MHz, CD2Cl2,
25 ◦C): δ 5.88–7.41 (m, 12H, ArH), 3.86 (m, 2H, S-CH2), 2.40 (m, 2H, S-CH2), 2.25 (s, 6H,
2 × CH3), 2.11 (s, 6H, 2 × CH3), 1.42 (s, 6H, 2 × CH3). 13C NMR (100.62 MHz, CD2Cl2,
25 ◦C): δ 17.48, 18.83, 20.97, 41.37, 110.83, 112.81, 112.88, 129.23, 129.50, 132.59, 133.58,
134.91, 135.69, 136.57, 144.04, 156.04.

4.4. Typical Procedure for Cyclic Ester Polymerization

In a glovebox, a Schlenk flask (10 cm3) was charged sequentially with the monomer
(rac-β-butyrolactone or L-lactide), catalyst and solvent (2 mL). The mixture was heated
thermostatically at the required temperature. At specified time intervals, a small amount
of the polymerization mixture was sampled by using a pipette and quenched in wet
CDCl3. This fraction was subjected to monomer conversion determination, which was
monitored by the integration of monomer versus polymer methine resonances in the 1H
NMR spectrum (CDCl3) at 25 ◦C. After the required polymerization time, the reaction
mixture was quenched with wet n-hexane. The obtained polymer was collected by filtration
and dried in a vacuum at 40 ◦C for 16 h.
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4.5. Computational Details

All the obtained structures were isolated using the B97D [29] functional within the
Gaussian 16 package [30] and were validated as minima or transition states by the vibra-
tional frequency calculations. The experimental solvent, toluene, was taken into account
within the CPCM model [31]. The Stuttgart–Dresden pseudo-potential was used for the
zinc center, while the Triple Zeta def2tzvp basis set was adopted for all the other atomic
species. The atomic charges were calculated within ATP theory [32]. The coordinates of all
the optimized structures as well as their main energetic features are available on request.
The buried volume calculations were performed with the SambVca 2.1 package, a piece of
software free of charge developed by Cavallo et al. [28]. The radius of the sphere around
the metal center was set to 3.5 Å, while we adopted the Bondi radii scaled by 1.17 for the
atoms, and a mesh of 0.1 Å was used to scan the sphere for buried voxels.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/polym15224366/s1, Figures giving NMR spectra of proligands
and complexes. Figures giving NMR spectra of oligomers of PBL and PLA. Relative free energy
pathway for the formation of 8L starting from 1 together with isopropanol and LLA. Cartesian
coordinates and free energies of all the structures optimized in the computational analysis.
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