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Abstract: The mass transfer process of binary esters of acetic acid in polyethylene terephthalate (PET),
polyethylene terephthalate with a high degree of glycol modification (PETG), and glycol-modified
polycyclohexanedimethylene terephthalate (PCTG) was studied. It was found that the desorption
rate of the complex ether at the equilibrium point is significantly lower than the sorption rate. The
difference between these rates depends on the type of polyester and temperature and allows the
accumulation of ester in the volume of the polyester. For example, the stable content of acetic ester
in PETG at 20 ◦C is 5 wt.%. The remaining ester, which has the properties of a physical blowing
agent, was used in the filament extrusion additive manufacturing (AM) process. By varying the
technological parameters of the AM process, foams of PETG with densities ranging from 150 to
1000 g/cm3 were produced. Unlike conventional polyester foams, the resulting foams are not brittle.

Keywords: polyethylene terephthalate copolyesters; sorption properties; mechanical properties;
foaming; additive manufacturing

1. Introduction

Low-molecular-weight organics are commonly used as solvents in a variety of indus-
trial applications. Their ability to dissolve organic material is very valuable, but solubility
is not always desirable, especially when material resistance or permeation properties are
involved [1]. The interaction of polymeric materials with solvents may have some impor-
tant applications [2]. Solubilization of low-molecular-weight polymers is a common basis
for coatings [3]. For high-molecular-weight polymers, interaction with solvents is usually a
problem of chemical resistance and stability or permeation under the influence of certain
media [4].

For high-polymer solvents, the extent of compatibility may vary. Depending on the
chemical and molecular structure, solvent diffusion may or may not be limited. When dif-
fusion is not limited, the polymer and solvent form a solution; in contrast, limited diffusion
can produce a wide range of structures, such as gel-like structures and plasticized systems.
Polymeric materials consist of long molecules organized in some form under the molecular
structure, which is a result of the manufacturing process of the thermochemical history
of the material. Low-molecular-weight solvents can penetrate the molecular structure by
diffusion processes and affect the sub-molecular structure of the polymer [5]. The influence
of the solvent on the polymer can be summarized in terms of solubility parameters, thermo-
dynamic compatibility, and intermolecular bonds that refer to specific chemical groups. In
general, diffusion without influence on material properties can be described as permeabil-
ity properties [6], diffusion with influence on intermolecular distance—as plasticization,
diffusion with influence on the sub-molecular structure—as solvent crystallization and
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solvent cracking. The sorption of low-molecular-weight molecules affects the dimensional
stability of the material [7].

Polyesters are a widely used and industrially important class of high-molecular-
weight polymers. Members of the polyester family include polyethylene terephthalate
(PET), polybutylene terephthalate, and polylactide, which are the most important polymers
nowadays [8]. From a historical perspective, PET was one of the first industrial polymers
and is now one of the most important standard polymers [9]. During the decades of in-
dustrial use of PET, polyester has been modified and improved for various end uses [10].
Containers made of PET polyester represent a revolution in the field of liquid foodstuffs, as
they have exceptional properties and are easy to manufacture [11]. Moreover, the impor-
tance of packaging applications has changed the manufacturing technology of polyester
from homopolymers to copolymers, which is now the common name for PET polyester.
Further development of PET polyester is aimed at further influencing the crystallization
behavior through more complex chemical modifications, leading to the creation of polymers
of the PET copolymer family. PET polyester with a high degree of glycol modification, or
PETG, is the second member of the family to exist as a stand-alone polymer [12]. PETG
polymers with low crystallization rates are the ideal choice for thick-walled transparent
packaging. The low crystallization rate is the result of the inhomogeneity of the molecular
structure, which affects the folding of long molecules into thermodynamically stable struc-
tures. Low crystallization ability leads to amorphous structures with low glass transmission
temperature, which is responsible for the thermal stability of the material during the ap-
plication [13]. Another important member of the PET polyester family is glycol-modified
polycyclohexanedimethylene terephthalate (PCTG) [14].

The interaction with volatile organic compounds (VOC) can be a key factor in the
final application of the article made from a particular polymer material [15]. Contact
sorption and vapor-phase sorption are common types of VOC interaction in real industrial
applications [16]. Mass transfer analysis is the most reliable and rapid method to investigate
possible interactions between polymer and VOC [17].

Additive manufacturing (AM) is a modern manufacturing approach and an important
element of the fourth industrial revolution that is changing traditional manufacturing
principles [18]. Adding or patterning materials layer by layer in a programmable manner is
an evolutionary approach in many manufacturing industries. Polymeric materials were one
of the first applications for additive manufacturing technology, which is now spreading to
all industries [19–21]. Additive manufacturing is a modern application of PETG that takes
advantage of certain material properties. The low melting point and amorphous structure
create ideal conditions for cohesion between layers and low shrinkage of parts. Polymer
AM uses different materials in different physical forms—liquids, filaments, powders, and
granulates [22]. The most widely used process is material extrusion, specifically, melt
extrusion and its most widely used type—fused filament fabrication. The main advantages
of fused filament fabrication are its wide availability and the simplicity of equipment [23].

AM consists of a physical and programmable technology layer. A unique future
of AM is programmable shape transformation into a core-shell structure, which enables
the creation of new structures and materials with new property combinations [24]. Pro-
grammable transformation offers myriad possibilities for material distribution in the space
of the final product and provides a background for new materials and technologies such
as metamaterials, shape-memory materials, and smart materials. New AM technologies
are emerging and gaining the attention of researchers, such as 4D printing, multi-material
printing, controllable shape transformation materials, and many others [25–29]. At the
current stage of development of AM technology, there are already so many ways to in-
fluence material properties that it is difficult to imagine how to investigate and evaluate
all of them. One of the most important possibilities for a programmable part in an AM
process is the infill structure or programmable distribution of the material in the volume.
The volume of the part can be completely or partially filled with material, allowing control
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of the direction and distribution of the material flow and the creation of a cellular structure
similar to conventional foam.

Foaming is a technology for the production and application of polymer composites
with the goal of density reduction, insulation, etc. Generally, foaming technologies are
classified according to the method of pore formation. There are two main types of foaming
agents to form bubbles: physical and chemical. The most common is a chemical foaming
agent, in which the blowing gas is formed as a result of the reaction, e.g., heat-induced
decomposition of the chemical substance at the process temperature. Physical foaming
agents, classified as either atmospheric gases (such as argon and helium) or as volatile
liquids (e.g., propanes or heptanes), are metered directly under pressure into the polymer
melt to generate bubbles [30].

In additive manufacturing, foaming technology can be applied as follows: (1) in a
programmable way as a filling pattern, and (2) by using materials that can foam during the
AM process. Foaming technology for extrusion AM is available as commercial filamentary
material with a premixed chemical blowing agent [31–33]. The decomposition temperature
of the blowing agent is in the same temperature range as material extrusion.

For PET polyester, industrial foaming technology is available as physical foaming with
carbon dioxide or fluoro-organic compounds injected under pressure into the polymer melt.
The application of supercritical carbon dioxide to PET polyester with extended sorption is
used to foam materials [34]. Currently, physical foaming has not been developed for the
AM process. In the current study, a special type of foaming is proposed for a series of PET
polyester polymers. The application of polymer material with equilibrium VOC can also be
used for other polymers. Polymer additive manufacturing uses interaction with solvents
and VOC to smooth and bond the surface of parts [35–40].

The aim of the present study is to investigate the influence of binary acetic acid esters
on the long- and short-term properties of common and modern PET polyesters. The
investigation of the long-term mass transfer properties of polyester materials leads to the
identification of a specific material property and its perspective application in a common
additive manufacturing process.

2. Materials and Methods
2.1. Materials

Acetic esters—ethyl acetate and butyl acetate—were supplied by Telco LLC, Kyiv,
Ukraine as commercial purity solvents. Glycol-modified PET polyester Skygreen® KN100—
PETG, PCTG Skygreen® JN100, and PET copolymer Skypet® BR were supplied by Biester-
feld Special Chem, Kyiv, Ukraine.

2.2. Experimental Setup

Sorption of acetic acid esters in the polyester polymers was carried out in saturated
vapor and in direct liquid contact under stabilized temperature conditions in a temperature-
controlled chamber. Vapor sorption was carried out in a closed glass exicator in a saturated
vapor medium directly under the liquid phase.

The polyester polymers were converted into films and monofilaments using laboratory
extrusion equipment. Prior to extrusion, the material was dried in a Memmert ULP
500 convection oven.

PET copolymer—drying time 10 h, drying temperature −160 ◦C. PETG and PCTG
polyesters—drying time 8 h, drying temperature 60 ◦C.

The tape samples were extruded through a flat slit die into a hot water bath in the
vertical direction. The samples were cooled in the hot water bath to achieve the fastest
possible cooling. The water bath temperature was 70 ◦C. The extrusion rate of the ma-
terial was 1.8 kg/h. Before further experiments, the tapes were measured with a contact
micrometer to check the uniformity of the thickness with reasonable tolerances in the range
of ±1.5%. The spinneret draw ratio of 200% was kept constant for all extruded materi-
als. The temperature profile of the extrusion line was constant for all materials and was
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240–275–260–265 ◦C from the first heating zone to the die head. A single screw extruder
with a diameter of 27 mm and a ratio of 30 L/D was used with a speed of 22 to 26 rpm
depending on the bulk density of the material and constant mass productivity.

Monofilament extrusion was carried out in the horizontal direction with the same
extruder setup and a round spinneret head. The melt was extruded through a 2.5 mm
round die with an L/D ratio of 10. The draw ratio of the spinneret was kept in the range of
200 to 250% to obtain the desired filament diameter. The melt was cooled in a horizontal
water bath with forced hot water circulation. Water bath temperature 70 ◦C. The extrusion
rate of the material was 1.2 kg/h. The extruded samples were wound onto a plastic spool
with as little tension as possible.

The film specimens were used for punching out standard specimens for tensile testing.
Samples and cutting blade were preheated to 60 ◦C before the cutting procedure in order to
minimize edge cracking.

2.3. Characterization

The samples of polyester material were prepared by melt extrusion and cooling. The
sample was cooled at a high cooling rate to obtain an amorphous structure. The material
density was measured by hydrostatic weighing.

Sorption and desorption of acetic acid esters were studied by weighing the samples
over a time scale. Samples for sorption were cut to a size of 20 × 20 mm with a thickness of
0.5–0.6 mm.

Liquid-phase sorption was performed by immersing the polyester sample in a glass
containing ester, which was placed in a temperature-controlled chamber. The jar containing
the ester and the sample was sealed with a lid to prevent evaporation of the ester and heat
absorption. To observe the sorption kinetics, the samples were accurately weighed after
exclusion from the liquid phase.

The desorption was carried out under ambient conditions, elevated temperature, and
reduced pressure in the vacuum-drying chamber LMM LP40412. The desorption of acetic
ester was performed under a normal atmosphere in a temperature-controlled chamber.
Forced desorption was carried out in a forced-air oven at an elevated temperature and
in the vacuum-drying chamber at reduced pressure. Polyester samples were studied at
different stages of sorption and desorption. Mechanical properties—tensile strength and
elongation at the break—were measured on standardized specimens according to ISO
527-2:2012 [41]. Shore D hardness was measured on the same specimens with a thickness
of 4 mm ISO 7619-1:2010 [42]. Material density was measured by hydrostatic weighing in
water ISO 1183-1:2019 [43]. The relative error in the determination of density was not more
than 2%. The melt flow rate was measured according to ISO 1133 [44] using a capillary of
2.095 mm diameter and weight of 2.16 kg.

The material samples were analyzed by surface FTIR using Perkin Elmer Spectrum
3 infrared spectrometer according to ASTM D5477—18 [45]. Thermal analysis was con-
ducted using DSC TA devices, such as DSC 2920 according to ISO 11357-1:2009 [46]; the
heating rate was 5 ◦C per minute. The material structure was evaluated by SEM JEOL JSM
−5500 LV.

3. Results and Discussions
3.1. Liquid-Phase and Vapor-Phase Sorption of Ethyl Acetate for Polyesters

Acetic ester is a common ingredient in industrial solvents and some detergent formu-
lations. When developing product packaging, the chemical formulation of the product
must be tested for short- and long-term compatibility with the polymer material of the
packaging. In routine compatibility testing of PETG polyester, the authors observed that
limited sorption of ethyl acetate occurs in liquid phase contact sorption after a prolonged
period of time. This limited sorption leads to swelling of the material and changes in
hardness and flexibility. Acetic acid esters of different molecular weight—ethyl acetate and
butyl acetate—were used as sorption media in the liquid and vapor phases.



Polymers 2023, 15, 1138 5 of 15

Liquid-phase sorption of ethyl acetate is concentration-limited and has a stable max-
imum extent that is temperature dependent. At 20 ◦C sorption extent reaches 19.2% for
PETG, 18.04 wt.% for PCTG, and 16.0 wt.% for PET. Temperature increase from 20 ◦C to
40 ◦C results in increasing the sorption extent to 25%. The PETG exhibits the highest value
of consumed ester for both temperature set points, probably due to the higher content of
amorphous phase among the polyesters studied.

An important observation in liquid-phase sorption is an intense cohesive bonding of
the material surfaces, which is probably due to the self-healing effect of the surface and the
plasticization effect. This effect is known for most semi-crystalline polyesters when reaching
or exceeding the glass transmission temperature [47]. The main reason for cohesive bonding
is molecular mobility at the surface, which may be favored by temperature or sorption of
low-molecular-weight substances.

Another observed effect is a change in sample color and light transmission, with trans-
parent samples changing their base color to opalescent white due to possible propagation
of the solvent-induced crystallization process (Figure 1).
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Figure 1. The appearance of PETG polyester sample before and during sorption of acetic ester.

The sorption of ethyl acetate in the vapor phase at 20 ◦C is shown in Figure 2a. The
sorption maximum in the vapor phase is lower by 12–14% than in the liquid phase for all
the polyesters studied. An increase in temperature from 20 ◦C to 40 ◦C leads to an increase
in the maximum extent sorption for PETG by 14%, for PET by 1%, and for PCTG by 3%.
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Figure 2. Sorption in the vapor phase: (a)—ethyl acetate, (b)—butyl acetate.
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To describe the influence of the molecular weight of the acetic acid ester, the acetic
acid ester with a higher molecular weight such as butyl acetate was used for comparison
(Figure 2b). Butyl acetate exhibits different kinetics and extent. The sorption of butyl acetate
has a two-step equilibrium behavior, the sorption rate is lower compared with ethyl acetate,
but the maximum sorption extent at equilibrium is much higher. Butyl acetate has a higher
molecular weight than ethyl acetate; however, both have a high maximum sorption degree.
This observation may be related to molecular conformation and compatibility.

Due to the condensation production process, polyesters are known for their affinity for
water vapor sorption [48]. The influence of initial water content in polyester was studied
in the vapor sorption of ethyl acetate and polyester samples in the ambient and dried
conditioned state. The water content was determined by weighing the samples before and
after the vacuum-drying process at 40 ◦C and 10 mbar pressure, and it was 0% and 0.32%.

Dried samples show higher maximum sorption and sorption rate: for PETG by 15%,
for PET by 1.6%, and for PCTG by 3.5% higher than for standard samples. These results
can be explained by the higher affinity of the solid molecular structure of the polyester for
the smaller water molecules and the same type of polar intermolecular interaction. The
increase in the maximum sorption range for dried samples is significantly higher than the
water content in conditioned samples. Thus, water has some simultaneous sorption with
polyesters and influences the extent of sorption of acetic acid esters.

The rate and extent of sorption are the highest in the first 24 h of the sorption process
(Figure 3). There is little change with respect to sample weight during the first two hours,
and the rapid mass transfer begins after this induction period. This behavior can possibly
be explained by the surface penetration of acetic ester.
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3.2. Desorption of Acetic Esters from Polyesters

Limited sorption of acetic esters in the saturated vapor is reversed by evaporation
when the sample is stored at ambient conditions. Desorption of acetic esters was carried
out under ambient conditions and at elevated temperatures in a temperature-controlled
chamber with natural air circulation.

It was found that the desorption of acetic esters from polyester under ambient con-
ditions and at elevated temperature is partial or incomplete, which is called incomplete
desorption (Figure 4a). The desorption rate is significantly lower than the sorption rate
for all polymers and esters studied. Butyl acetate shows a twofold desorption curve
(Figure 4b). The desorption does not reach its full value for all the polyesters studied and
shows a stable equilibrium value over time. The extent of residual equilibrium desorption
is temperature-dependent for all polyesters and esters studied.
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A long-term study of the residual ester content shows a very slow decrease in ester
content over time. At 20 ◦C and ambient pressure, the ester content can decrease to 0.9% by
weight after one year of desorption. The slow rate of desorption in the equilibrium zone is
significantly affected by temperature. At 60 ◦C, complete desorption for PETG and ethyl
acetate can be achieved after 27 days. At 60 ◦C and vacuum (pressure 10 kPa), complete
desorption for the same system is achieved in 36 h. For other polyesters, complete desorp-
tion can be reached in a similar way but within a different time period. The desorption of
esters from polyesters is relatively slow, which offers the possibility to control the residual
ester content by choosing specific conditions for the desorption process.

3.3. Influence of Sorption of Acetic Acid Esters on Material Properties

The process of sorption of selected acetic acid esters is accompanied by dramatic
changes in the material physical properties (Figures 5 and 6). Sorption is found to be
accompanied by swelling of the polyesters and a decrease in their hardness, which is due
to the plasticizing effect of the esters on the polyesters. The behavior of density correlates
with the behavior of hardness.
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The tensile properties of polyesters at different stages of sorption and desorption of
acetic ester were studied on tape and filament samples. The following measurements were
carried out on the samples: under steady-state conditions—initial condition, conditions
of maximum sorption extent; and under stable conditions—incomplete desorption and
conditions of complete desorption. The results are listed in Table 1.

Table 1. Mechanical properties of polyesters under stable sorption conditions (the table shows
average values).

Polyesters Tensile Strength,
MPa

Tensile
Elongation, %

Tensile Modulus,
MPa Density, kg/m3 Hardness,

Shore D Scale

Initial
PETG 68 ± 2 32 ± 2 2160 ± 108 1264 60 ± 3
PCTG 70 ± 2 48 ± 2 2060 ± 103 1245 62 ± 2
PET 72 ± 2 56 ± 1 2240 ± 112 1340 61 ± 3

Maximum
sorption

PETG 38 ± 2 158 ± 8 240 ± 22 1234 25 ± 1
PCTG 22 ± 1 370 ± 18 150 ± 13 1220 25 ± 2
PET 34 ± 2 320 ± 16 230 ± 21 1331 30 ± 2

Incomplete
desorption

PETG 53 ± 4 54 ± 3 1350 ± 130 1299 54 ± 3
PCTG 48 ± 3 220 ± 11 1450 ± 142 1224 57 ± 3
PET 51 ± 4 200 ± 10 1540 ± 150 1380 56 ± 3

Full
desorption

PETG 56 ± 4 14 ± 1 2050 ± 200 1269 61 ± 3
PCTG 62 ± 5 27 ± 2 2110 ± 210 1253 63 ± 3
PET 61 ± 5 21 ± 1 2360 ± 205 1356 64 ± 3

The mechanical properties at the maximum sorption level are characterized by a
significant increase in tensile elongation and a decrease in tensile strength and tensile
modulus, which can be attributed to the plasticization effect. Samples with incomplete
desorption of the ester show similar behavior, indicating a moderate decrease in mechanical
properties. Compared with the original properties, the level of properties of materials with
incomplete desorption is suitable for some functional applications.

Materials after complete desorption of the ether have a low tensile elongation and a
higher tensile modulus than the original material. The change in the current properties
can be explained by the crystallization caused by the ether. All polyesters used in the
current study are semi-crystalline polymers, so sorption of the ester and swelling may
cause an increase in molecular mobility, which may facilitate the crystallization process at
elevated temperatures.

FTIR spectroscopy and DSC studies were performed for PETG. The FTIR spectra of
PETG polyester under stable sorption conditions are shown in Figure S1 (in Supplementary
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Materials). Compared with the initial sample, sorption of the ester resulted in a decrease in
absorbance at the 3400 cm−1 band, which can be attributed to the terminal hydroxyl group
of the polyester. One possible explanation for this behavior is hydrogen bonding between
the ester and polyester. No other discernible changes in the spectrum were observed.

To investigate the effects of ester mass transfer on the amorphous and crystalline
phases of the materials, thermal analyses by DSC were performed on the initial samples
and on the samples after the complete desorption of the ester (Figure 7).
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The DSC heating curves of the original PETG and PETG after the complete desorption
of the ester show an increase in the glass transition temperature from 73 to 78 ◦C. The
increase in glass transition temperature and the appearance of a more pronounced melting
peak can be explained by the contribution of ester mass transfer through the material to the
formation of a crystalline structure in PETG.

3.4. Melt Processing and Additive Manufacturing

The melt index was measured on samples of polyesters in the initial state and the
state of complete desorption after appropriate drying. The results shown in Table 2 indi-
cate that there is essentially no change in melt viscosity after the desorption of the ester
from the polyester.

Table 2. Melt flow index of polyester samples at 260 ◦C, 2.16 kg.

Polyester Type Initial Sample After Full Desorption of Ester

PETG 16.4 16.8
PCTG 17.2 17.6
PET 9.5 9.2

Melt index measurement experiments performed on polyester in the incomplete
desorption state show that the material can physically foam during melting and extrusion.
By filling such material into the heated chamber, fine foam can be extruded from the
capillary nozzle of the melt indexer. This experiment was the starting point for the idea
of using ester sorption for physical foaming. Filament samples were introduced into a
standard 3D printer and passed through an extruder device. The results obtained in this
way confirm the general possibility of the proposed idea.

PETG polyester was selected because of the high degree of equilibrium desorption
at room temperature. Ethyl acetate was chosen primarily because its odor is relatively
acceptable for indoor use, while the odor of butyl acetate is irritating. Filaments of PETG
polyester were extruded with a diameter of 1.62 mm. The PETG filament was wound
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on a metal spool and dried at 60 ◦C for 8 h in a forced-air chamber. Sorption of acetic
ester was performed in a glass exicator in the vapor phase. The sorption temperature
was set at 20 ◦C to reduce the sorption rate. Sorption at room temperature and higher
temperatures is associated with intense cohesive bonding of the material. For filamentary
material wound on a spool, this leads to complete adhesion of the filament in many places
and difficulties in unwinding. Experimental work provides several ways to eliminate these
problems—e.g., by reducing the sorption rate and using a surface treatment of the filament.
Surface treatment with potassium soap, silicone oil, and talcum powder is used with some
results. The use of a very low winding tension along with a low sorption temperature is
the simplest solution to the bonding problem. Filaments with an initial diameter of 1.62
mm absorb 5.5% ethyl acetate after 9 h of sorption at 20 ◦C and swell to 1.77 mm diameter.
The process diagram and parameters for filament fabrication are shown in Figure 8 and
Table S1 (in Supplementary Materials).
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Figure 8. Principal process diagram of AM with PETG foaming: 1—initial material drying,
2—filament extrusion, 3—sorption of acetic acid ester, 4—additive manufacturing.

Additive manufacturing with the filament PETG (ethyl acetate) was performed on a
standard Prusa 3D printer, model I3, without any modification. The model of the article
with the specific shape was prepared for the AM process in the slicing software Utilmaker
Cura 4.1.

The most successful (from the authors’ point of view) process and slicing parameters
determined during numerous experimental trials are listed in Table 3.

Table 3. AM and slicing process parameters for PETG foaming.

Process Parameter Value

Nozzle diameter, mm 0.4
Extrusion width, mm 2.5

Layer height, mm 1.5
Infill rate 100

Extrusion rate, % 80
Nozzle temperature, ◦C 260

Built platform temperature, ◦C 60
Printing speed, mm/min 4000

First layer speed, % 50
Air cooling 100%

Retraction, mm 1

It was experimentally found that the physical foaming of PETG is accompanied by
high swelling of the extrudate, which can reach 500–800% of the original die diameter. The
AM process can be carried out at a relatively high printing speed and high temperature.
At a low printing speed, most of the ester can escape from the melt zone of the extruder.
Compared with the AM process with normal filament, a very high extrusion height and
width are used. Nevertheless, width values are able to maintain adequate interlayer
cohesion and article consistency. Foam density can be regulated by printing speed (material
residual time), die temperature, and extrusion feed coefficient. Extrusion height and width
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can also significantly affect material density and structure due to the mechanical action of
the heated die on the over-expanded foam.

At ambient conditions and the type of material used, the equilibrium desorption value
is 6%. This value is sufficient for the foaming process. Experimental tests have shown
that ester content of at least 3% is required for successful foaming during the AM process.
Regulation of the ester content can be easily achieved by desorption in a vacuum chamber.

It was found that filaments with ethyl acetate can be successfully melted in the extruder
die without significant evaporation of ester. Molten polyester with ethyl acetate is physically
formed during extrusion through the orifice of the spinneret. The expansion of the foam at
the spinneret is significant and suitable for additive manufacturing of foam articles. It is
possible to produce foam articles with low density. The polyester foam stream has strong
cohesion between layers and streams. The structure of the foam still contains sorbet ester,
even after being produced in the molten state. Compared with other foamed materials,
PETG foam is not brittle and can be bent to a high degree without cracking.

The foam specimens were tested for tensile strength in two conditions—as printed
and after complete desorption of the ester residues in the vacuum chamber. Complete
desorption significantly affects the complex properties of the material (Table 4). The
specimens for tensile testing were 3D-printed with two material flow orientations (Figure 9),
which is a standard procedure for such specimens in many scientific papers. The specimens
were 3D-printed with three different density values (Table 4) by adjusting extrusion height
and width, extrusion coefficient, and speed with one material and the same ester content.
The material properties are listed for general information and cannot be directly compared
due to the different printing settings. By changing the pressure parameters, it is possible to
achieve a wide range of material density.

Table 4. Typical properties of PETG foam.

Property

Value for PETG Ester Modified Foam Sample

1 2 3

a b a b a b

Material density, kg/m3 124 118 325 315 650 643
Tensile strength X direction, MPa 4.0 ± 0.3 4.0 ± 0.4 9.0 ± 0.6 8.0 ± 0.4 11.0 ± 0.6 10.0 ± 0.7
Tensile strength Y direction, MPa 5.0 ± 0.3 6.0 ± 0.5 12.0 ± 0.7 13.0 ± 0.7 17.0 ± 1.1 16.0 ± 1.1

Tensile elongation X, % 9.0 ± 0.6 3.0 ± 0.2 12.0 ± 0.7 4.0 ± 0.3 16.0 ± 1.0 4.0 ± 0.3
Tensile elongation Y, % 12.0 ± 0.9 4.0 ± 0.3 16.0 ± 1.2 5.0 ± 0.3 21.0 ± 1.3 4.0 ± 0.3

Ester content, % 1.46 0 1.56 0 1.87 0

a—as a printed sample; b—after full desorption under vacuum.
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The appearance of the surface of foamed PETG in the optical observation camera is
shown in Figure S2 (Supplementary Materials). Scanning electron microscope images are
shown in Figure 10.
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3.5. Process Limitations and Drawbacks

The most important process limitation is material cohesion or sticking. For filamen-
tary material wound under tension, this results in strong cohesive bonding and limited
possibility of demolding. Another special material property is cracking, which occurs after
contact with the ester. The filament material shatters at irregular intervals, especially at
high winding tension.

A possible solution to this limitation is the goal of further investigation. A possible
solution, already found by the authors, is the influence on material orientation during
filament production or post-orientation in the solid state.
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4. Conclusions

Sorption of esters on polyesters causes plasticizing effect and promotes structural
transformation by crystallization. The desorption of ethyl acetate and butyl acetate has
a stable equilibrium state, the extent of which depends on temperature, and the rate of
desorption is extremely low under these conditions. The sorption of acetic ester affects
the complex physical and mechanical properties of materials in a manner typical of plasti-
cization. The sorption equilibrium conditions are stable over a long period of time, which
opens the possibility of the practical application of this material property.

PETG polyester with ethyl acetate in the equilibrium state of sorption was used for
the extrusion based additive manufacturing process. The remaining ester acts as a physical
foaming agent during melt formation and deposition. The conversion of PETG—ethyl
acetate in the melt, which is accompanied by foaming, does not result in the complete
evacuation of the ester from the polyester. The desorption of the ester from the polyester
is relatively slow even in the molten state, allowing the foaming process to occur. The
properties of PETG foam are determined by the presence of ester residues. The printed
foam samples are soft and not brittle. Foam samples after the complete desorption of the
ester show typical brittle foam properties.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/polym15051138/s1, Figure S1: FTIR spectrum of PETG
polyester; 1—initial sample; 2—sample after incomplete desorption; 3—sample after 1 year of in-
complete desorption; Table S1: Process parameters for the production of PETG filaments; Figure S2:
Appearance of the surface of the 3D-printed PETG foam: a—view of the surface from above; b—view
of the surface of the built platform.
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