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Abstract: In advancing the transition of the energy sector toward heightened sustainability and
environmental friendliness, biopolymers have emerged as key elements in the construction of tribo-
electric nanogenerators (TENGs) due to their renewable sources and excellent biodegradability. The
development of these TENG devices is of significant importance to the next generation of renewable
and sustainable energy technologies based on carbon-neutral materials. This paper introduces the
working principles, material sources, and wide-ranging applications of biopolymer-based tribo-
electric nanogenerators (BP-TENGs). It focuses on the various categories of biopolymers, ranging
from natural sources to microbial and chemical synthesis, showcasing their significant potential
in enhancing TENG performance and expanding their application scope, while emphasizing their
notable advantages in biocompatibility and environmental sustainability. To gain deeper insights into
future trends, we discuss the practical applications of BP-TENG in different fields, categorizing them
into energy harvesting, healthcare, and environmental monitoring. Finally, the paper reveals the
shortcomings, challenges, and possible solutions of BP-TENG, aiming to promote the advancement
and application of biopolymer-based TENG technology. We hope this review will inspire the further
development of BP-TENG towards more efficient energy conversion and broader applications.

Keywords: biopolymers; triboelectric nanogenerator; energy harvester; self-powered sensor

1. Introduction

With the escalating demand for clean and alternative energy sources, researchers
have investigated various technologies, including photovoltaic systems [1], piezoelectric
devices [2], and thermoelectric transducers [3], aimed at converting diverse renewable en-
ergy forms from the ambient environment into electrical power. Among these, mechanical
energy is considered to be abundant and omnipresent in daily life [4,5]. The triboelec-
tric nanogenerator (TENG), an emergent technology in energy harvesting, demonstrates
the capability to ubiquitously transform environmental mechanical energy into electrical
power across various contexts and temporal settings [6–10]. This includes applications
in flow-driven triboelectric generators for the autonomous powering of wireless sensor
nodes [11–13], as well as in triboelectric generators designed for the simultaneous collection
of diverse energy forms [14–17]. Their applications are not limited to power generation,
as they also realize self-powered sensing by improving device structures, rough surfaces,
and the incorporation of nanomaterials; for instance, arrays of TENG enhanced with elec-
tret films have been developed for self-powered, instantaneous tactile imaging [18], and
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temperature-sensitive TENGs [19,20]. However, most research efforts focus on study-
ing and developing high-performance TENGs, with little attention given to renewable
materials or devices. For example, the polymers most widely used in TENGs, such as
polypropylene [21], polyvinyl chloride [22], polystyrene [23], nylon [24], Teflon [25], and
polyurethane (PU) [26], usually come from petroleum, are not fully degradable, and can
release harmful chemicals into the environment. Therefore, there is significant interest in us-
ing biodegradable, renewable, and easily prepared biopolymer materials for the sustainable
and proper application of TENG [27–29].

Currently, researchers have explored a range of biopolymers such as cellulose, lignin,
chitin, chitosan (CHS), fish gelatin (FG), silk fibroin (SF), and alginate (Alg), which have
been selected as core components for TENGs due to their unique chemical and physical
properties. In particular, polysaccharides like cellulose and chitin [30,31], as well as certain
specific proteins such as collagen, keratin, and SF secreted by organisms like silkworms and
spiders, have demonstrated complex structural patterns and biological functionality, pro-
viding new directions for the design and functionality of TENGs [32]. These carbon-neutral
biopolymers from plants and animals offer advantages unattainable by petroleum-based
materials [33]. For example, Kim et al.’s study showcased how SF could be transformed
into films through electrostatic spinning techniques [34], further used as the triboelectric
layer in BP-TENG, demonstrating not only the direct application of biopolymers in energy
applications but also highlighting their advantages in terms of environmental friendliness
and renewability. The use of these materials has facilitated the realization of a variety
of self-powered applications, especially showing remarkable performance in the field of
self-powered medical and diagnostic sectors. From smart electronic devices to health
monitoring systems, BP-TENGs will influence our future way of life.

This paper delves into the working principles, material selection, and application
fields of BP-TENG, showcasing a wide range of categories from natural sources to microbial
synthesis and chemically modified biopolymers. The application of these biopolymers not
only demonstrates advantages in biocompatibility and environmental sustainability but
also shows great potential in enhancing TENG performance and expanding application
scenarios. Additionally, the paper reveals the challenges and future prospects faced by the
development of BP-TENG, emphasizing the importance of interdisciplinary collaboration
in advancing biopolymer-based TENGs towards more efficient energy conversion and
broader application fields (Figure 1).
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Figure 1. Recent progress of TENG based on biopolymer, including polysaccharide, reprinted with
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Copyright 2023, Elsevier. Chemical synthetic source, reprinted with permission from Ref. [37].
Copyright 2022, Elsevier. Natural source, reprinted with permission from Ref. [38]. Copyright 2022,
Elsevier. Microbial source, reprinted with permission from Ref. [39]. Copyright 2023, Wiley Online
Library. Energy harvesting, reprinted with permission from Ref. [40]. Copyright 2021, Elsevier.
Reprinted with permission from Ref. [41]. Copyright 2023, Elsevier. Medical and health, reprinted
with permission from Ref. [42]. Copyright 2021, Elsevier. Environmental monitoring, reprinted
with permission from Ref. [43]. Copyright 2022, Elsevier. Reprinted with permission from Ref. [44].
Copyright 2023, the Royal Society of Chemistry.

2. Basic Principle and Working Modes of TENGs

In 2012, Zhong Lin Wang’s team introduced the world’s first TENG. Since then, appli-
cations based on TENG have been emerging in various fields, offering new possibilities for
harvesting and reusing physical or physiological energy that was previously challenging
to utilize. This discovery has greatly sparked researchers’ enthusiasm for further explo-
ration [45]. This technology leverages the triboelectric effect and electrostatic induction,
two ancient and familiar natural phenomena, to provide clean energy solutions for various
applications [46]. Essentially, when two different materials come into contact, the transfer
of electrons between them generates charges. These charges lead to the generation of
a potential difference when the two objects separate, which forms the basis for TENG’s
electricity generation. Through repetitive contact and separation, along with the relative
motion between electrodes, TENG can produce periodic electrical current pulses, powering
a variety of devices [47]. Over time, researchers have progressively developed and refined
the four principal operational modes of the TENG, grounded on the principle of contact
electrification. These include the vertical contact/separation mode, lateral sliding mode,
single-electrode mode, and freestanding triboelectric layer mode [48,49].

In the vertical contact/separation mode, the TENG consists of two different triboelec-
tric material layers, which contact and separate from each other in the vertical direction
(Figure 2a). When these two layers come into contact, charges are exchanged between the
two contact surfaces due to friction, and a potential difference is generated as they separate,
causing a current to flow through the connected external circuit. This cyclical contact and
separation process produces alternating current [50,51].
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Figure 2. The four core operational configurations of TENG encompass (a) the vertical con-
tact/separation mode; (b) the lateral−sliding mode; (c) the single−electrode mode; and (d) the
free−standing triboelectric layer mode.

The lateral sliding mode is similar to the vertical contact/separation mode, but the
difference lies in the relative movement of the triboelectric layers, which occurs in a parallel
direction (Figure 2b). This leads to periodic changes in charge related to changes in the
contact area, thereby generating a potential difference and current [52,53].

The single-electrode mode has a simpler structure, where only one triboelectric layer
is associated with a grounded reference electrode (Figure 2c). In this mode, the moving
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object contacts the triboelectric layer to generate charges, and the change in potential causes
a current to flow towards the grounded reference electrode. This mode allows for more
freedom of object movement and is suitable for irregular or random motions [54,55].

The freestanding triboelectric layer mode includes a freely movable triboelectric layer
corresponding to two fixed electrodes (Figure 2d). The movement of the object changes its
relative position to the electrodes, thereby generating a potential difference and current.
This mode is particularly suitable for applications requiring higher device integration and
durability [56,57].

Each mode has its unique advantages and application scenarios, allowing TENG
to flexibly harvest energy according to different environments and needs. The compre-
hension and implementation of these operational modes have significantly advanced the
development of TENG technology within the realms of energy harvesting and
autonomous devices.

3. Recent Progress in BP-TENGs
3.1. BP-TENG Based on Natural Polymers

Most TENGs are constructed based on synthetic polymers that lack biocompatibility,
limiting their applications in biomedicine and implant scenarios. Employing naturally
abundant materials, previously deemed as waste, for the harvesting of unutilized me-
chanical energy, is pivotal not only for fundamental scientific inquiry but also for meeting
practical societal demands. When selecting materials for TENGs, researchers need to
consider the biocompatibility, low cost, flexibility, and durability of the materials.

3.1.1. Polysaccharide-Based BP

To achieve a greener environment, polysaccharide-based biopolymers such as cel-
lulose [58], lignin [59], and starch [60] have been utilized as the dielectric materials for
BP-TENGs.

For example, cellulose, sourced from wood and a variety of green plants, represents
one of the Earth’s most prevalent organic polymers. Owing to its rich oxygen atom con-
tent, cellulose manifests distinct physicochemical characteristics that promote electron
detachment. Therefore, in previously reported studies, cellulose was often chosen as
the friction-positive material for eco-TENGs [61]. Yao et al. were pioneers in introduc-
ing cellulose-based eco-TENGs [35]. They constructed a TENG device by combining a
flexible, transparent cellulose nanofiber (CNF) film with fluorinated ethylene propylene
(FEP), resulting in a performance that rivals that of synthetic polymers, as depicted in
Figure 3a. Additionally, the CNF-based TENG was integrated into a fibrous board made
from recycled cardboard fibers using a chemical-free cold-pressing method. This fibrous
board is capable of generating up to 30 V and 90 µA under human footstep, as shown in
Figure 3b,c, indicating potential for large-scale and environmentally sustainable applica-
tions. Taking into account the properties of CNF and other natural wood-derived materials,
this research provides new opportunities for developing eco-friendly flooring, packaging,
and infrastructure with unique mechanical energy-harvesting capabilities.

Lignin, the most abundant aromatic biopolymer in nature, provides structural support
to plants, enhancing their biomechanical strength. Benefiting from its biodegradability and
biocompatibility, lignin offers valuable opportunities for low-cost TENG applications in
biomedical devices. Nutshells, typically discarded as waste, contain a high amount of lignin.
Saqib and others demonstrated the potential of lignin-based WFSs (Waste from Shells) as
the friction-positive material for TENG [38]. The study focused on WFS from almonds (As),
walnuts (Ws), and pistachios (Pis), with a detailed examination conducted on pistachio
WFS, as illustrated in Figure 3d. TENG devices were designed by combining WFS with
materials such as polytetrafluoroethylene (PTFE) and polyethylene terephthalate (PET), as
shown in Figure 3e, where Pi-WFS exhibited the best output performance, including the
maximal open-circuit voltage, short-circuit current, and peak power density, as highlighted
in Figure 3f. These WFS-based TENGs were also successfully applied to charge commercial
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capacitors, illuminate LEDs, power stopwatches, and electronic calculators. This research
presents a promising approach to generating electrical energy from discarded biomaterials
in eco-friendly, efficient, and sustainable energy utilization systems, with broad applications
in self-powered wearable electronics and the Internet of Things.
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Figure 3. (a) Manufacturing flowchart for TENG fiber board; (b) VOC and (c) ISC outputs when TENG
fiber board is repeatedly stepped on by a person of normal weight; reprinted with permission from
Ref. [35]. Copyright 2016, Elsevier. (d) A photograph of the lignin powder derived from discarded
biomaterials; (e) the schematic diagram of the TENG device based on wood fiber substrates; (f) the
output power of the Pi-WFS-based device under different external load resistances, ranging from
100 Ω to 100 MΩ; reprinted with permission from Ref. [38]. Copyright 2022, Elsevier. (g) Manu-
facturing flowchart for the FSFG−TENG; (h) the output performance of the TENG across different
frequencies; (i) FSFG−TENG powering various electronic devices. Reprinted with permission from
Ref. [40]. Copyright 2021, Elsevier.

Additionally, polysaccharides contain a large number of hydroxyl (-OH) groups,
which can form hydrogen bonds with water molecules, endowing polysaccharides with
excellent water solubility and hydrophilicity. Starch represents an accessible, natural,
edible, and biodegradable polymer. Nevertheless, the intrinsic hydrophilic property of
raw starch presents challenges in the context of TENG applications. Khandelwal and
colleagues developed a starch/seaweed-TENG [62]. They introduced edible seaweed
as a filler to enhance the hydrophobicity of starch while maintaining its edibility. The
developed TENG did not degrade in phosphate-buffered saline (PBS) for 30 days. Moreover,
compared to raw starch, the TENG output increased by four and nine times (voltage and
current), respectively.

3.1.2. Protein-Based BP

Natural biopolymers based on proteins obtained from animals and plants, such as silk,
gelatin, plant proteins, egg whites, peptides, etc., can be used as the triboelectric layer in
TENGs. Due to the rich amide groups (electron-donating groups) on the protein backbone,
these triboelectric materials typically exhibit strong electron transfer capabilities. Moreover,
these proteins can quickly degrade in environments with microbes and proteases and
possess good biocompatibility.

For example, SF is an animal-derived degradable material extracted from domestic
silkworms, occupying a top position in the triboelectric series due to its abundance of
carboxyl groups [63], and exhibits excellent electron donation capabilities. Given its bio-
compatibility and transparency in the visible region, it has broad application prospects in
the biomedical field. Candido and others adopted a simple and fast method to incorporate
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SF into polyvinyl alcohol, creating a PVA/SF-based TENG [36]. This impregnation process
affects all polarization processes and directly impacts the dielectric properties of the device.
However, pure SF has not reached commercial standards in terms of mechanical properties
and chemical stability; pure silk materials are prone to fracture and exhibit poor stability
under high temperatures, high humidities, and strongly acidic or alkaline conditions. Xu
and colleagues developed a flexible, stretchable, and fully bioabsorbable TENG for harvest-
ing biomechanical energy outside or inside the body [64]. They introduced mesoscopic
doping to promote the secondary structure transformation of regenerated SF. The doped
silk film exhibited an excellent chemical stability (withstanding temperatures of 100 ◦C
and pH values of 3–11) and outstanding mechanical stability (∼250% stretchability and
1000 bending cycles at a radius of 2 cm), making them broadly applicable in human health.

Gelatin, typically derived from the connective tissues of animals (such as fish, cattle,
etc.), forms a gel under incomplete hydrolysis by proteases. Sun and others manufactured
a flexible, transparent, fully sustainable, and high-performance FG-based TENG [40]. By
modifying the friction layers with dopamine and fluorosilane, a triboelectric pair was
formed, as illustrated in Figure 3g. This TENG demonstrated notable output characteristics,
including an open-circuit voltage reaching 500 V and a short-circuit current of 4µA, accom-
panied by a power density of 100 µW·cm2, as highlighted in Figure 3h. This innovation not
only provides direct or indirect power to small electronic devices but is also applicable in
fields such as human motion energy harvesting and human/machine interaction, offering
a new sustainable solution for green, cost-effective, and wearable electronic products, as
demonstrated in Figure 3i.

Plant proteins, exemplified by rice protein (RP), commonly emerge as by-products
in the starch industry and are frequently utilized as boiler fuel and animal feed, resulting
in considerable resource wastage. Jiang and colleagues used recovered plant protein
rice gluten (RG) from starch industry by-products as a model to study the mechanism
of triboelectric charge behavior related to protein structure [65]. Through simple pH
cyclic interface engineering techniques, they discovered that the secondary structure of
RG significantly impacts its triboelectric performance, proposing and validating possible
mechanisms. They successfully achieved a ~16-fold increase in the output power density
of the BP-TENGs and were able to manipulate the triboelectric performance of proteins.
This work not only made significant progress in resource recovery but also highlighted the
tunable properties of proteins as soft materials, providing potential biopolymer solutions
for sustainable applications in next-generation intelligent packaging, wearable technology,
and implantable medical devices.

Given the diversity of protein structures and the ease of modification and improve-
ment through biological and chemical methods, new biopolymer-based TENGs can be
engineered. For instance, prior research has demonstrated the utilization of recombinant
spider silk protein to augment triboelectric performance via genetic engineering tech-
niques [66]. However, the extraction and purification processes for these biopolymers are
complex and time-consuming [67,68]. Therefore, exploring new biopolymers that are sim-
ple and economical in processing and manufacturing is crucial for successful application in
TENG devices.

3.2. BP-TENG Based on Microbial Synthetic Polymers

Under controlled conditions, microorganisms such as bacteria, fungi, and algae can
serve as factories, transforming various carbon and nitrogen sources into a variety of
intracellular and extracellular biopolymers. The biopolymers produced by microbial
systems are rich in various functional groups, which can be further utilized to modify the
polymers for use in green and environmentally friendly energy-harvesting technologies.

3.2.1. Bacterial BP

Polymers synthesized by bacteria, such as polyhydroxyalkanoates (PHAs), polysac-
charides, and polyamine acids, offer a sustainable option for biodegradable materials, with
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significant environmental benefits including reduced dependence on fossil fuels and the
decreased impact of plastic waste on the environment.

Currently, scholars have identified over 150 different monomeric structures of
PHAs [69]. Among these, polyhydroxybutyrate (PHB) is characterized by its simple
and uniform structure, serving as a prototypical member of PHAs [70]. In environments
controlled for nutrients such as nitrogen, oxygen, phosphorus, and mineral ions, certain
bacteria produce large amounts of PHB internally during fermentation. For example,
Halomonas boliviensis can produce PHB using carbon sources such as fructose, xylose, fu-
marate, itaconate, propionate, and lactate [71]. Due to its short degradation cycle, excellent
biocompatibility, and good triboelectric performance, PHB holds significant advantages
and potential applications in transient bioelectronic devices [72].

For instance, Wang and colleagues constructed a bio-TENG based on high-pressure
crystallized polyhydroxy butyrate (HP-PHB) [70]. Compared to PHB crystallized at nor-
mal pressure (NP-PHB), HP-PHB exhibited a unique wrinkled spherulite and dual-scale
crystalline structure, significantly improving its triboelectric generation performance. The
voltage and current outputs of HP-PHB-based single-electrode TENGs were found to be
approximately fivefold and twelvefold greater than those of NP-PHB-based TENGs, respec-
tively, achieving peak values of 25.6 V cm−2 and 550.2 nA cm−2. Additionally, the study
clarified the intrinsic relationship between the multiscale dense state structure of HP-PHB
and the surface charge transfer and output performance of BP-TENGs. This research of-
fers a new perspective for designing and manufacturing high-performance TENGs and
environmentally friendly transient energy devices.

Bacterial cellulose (BC), a natural nanofiber polymer material belonging to the polysac-
charide category, is mainly produced by bacteria such as Gluconacetobacter xylinus from
the Acetobacter genus through a biosynthetic pathway. It is biodegradable, and Gluconace-
tobacter is considered one of the strongest microbial producers of cellulose. Its unique
physical and chemical properties, such as high strength, high purity, good biocompatibility,
and biodegradability, make it an excellent material for flexible electronics and TENGs.
For example, Zhang and others developed an environmentally friendly, biodegradable
energy-harvesting and interaction device based on BC suitable for TENG [73]. Enzymatic
hydrolysis experiments proved that the active materials in the device could completely de-
grade within 8 h and demonstrated good electrical energy output performance. The TENG
could not only power commercial electronic devices but also serve as a wearable sewn
interface to control an electronic piano. This study provides a new method for fabricating
degradable energy-harvesting devices, contributing to the advancement of eco-friendly
electronics and wearable devices.

As shown in Figure 4a, Chen and colleagues introduced a novel environmentally
friendly superhydrophobic fabric-based triboelectric nanogenerator (SF-TENG) [39], woven
from superhydrophobic electroconductive bacterial cellulose (SEBC fibers). To construct
durable superhydrophobicity, an ingenious biomimetic method was employed to form a
shell/core structure. The SEBC fibers with the biomimetic shell/core structure exhibited
excellent electrical conductivity, mechanical properties, biodegradability, and enduring
superhydrophobicity. The SF-TENG demonstrated a maximum open-circuit voltage of
266.0 V, a short-circuit current of 5.9 µA, and an output power of 489.7 µW, as depicted in
Figure 4b, successfully powering devices such as stopwatches and calculators, as shown in
Figure 4c. Its self-cleaning and anti-contamination capabilities ensured the stable output
performance of the SF-TENG under harsh environmental conditions such as liquid spillage.
This provides a new biomimetic manufacturing strategy for the design and preparation of
superhydrophobic conductive fibers and demonstrates the practicality and stability of the
SF-TENG in adverse environmental conditions.

The direct application of polyamine acids in the TENG field is relatively rare. Typi-
cally, polyamine acids can be used as materials for TENGs’ power-generating layers by
introducing specific functional groups or combining them with other conductive materials
(such as metal nanoparticles, conductive polymers, etc.) to improve their conductivity and
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triboelectric properties. For example, Suktep and others developed a hybrid organic piezo-
electric/triboelectric nanogenerator (HO-P/TENG) using natural SF (SF) and γ-glycine
(γ-gly) composite films [74]. By altering the content of γ-gly, optimal conditions were
identified to achieve maximum output efficiency. At a 15% γ-gly concentration, the com-
posite film showed the highest output voltage and current (VOC of 81 V, ISC of 121 µA).
This HO-P/TENG device, due to its cost-effectiveness, simple preparation process, and
good performance characteristics, demonstrated a great potential for future electronic
energy-harvesting devices.

Khandelwal and colleagues researched and developed one-dimensional nanofibers
constructed from aspartic acid and copper ions (Cu-Asp NFs) for creating a new type of
TENG [75]. Utilizing a straightforward coating method, these nanofibers demonstrated
superior stability and adhesion. Furthermore, improved ionic deposition techniques signifi-
cantly enhanced the electrical performance of the TENG. The research was also successfully
applied to self-powered sensors and powering portable electronic devices, showcasing the
potential application value of aspartic acid in energy-harvesting fields.
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Figure 4. (a) Morphology of the SEBC fibers; (b) the contact angles of SEBC fibers with water, HCl,
NaOH, NaCl, and PBS solutions; (c) output performance of the SF-TENG; reprinted with permission
from Ref. [39]. Copyright 2023, Wiley Online Library. (d) The schematic diagram of the TENG
device based on the BSF biolayer/PTFE structure; (e) the alpha and beta structures of CHS; (f) the
short-circuit current and power of the TENG; reprinted with permission from Ref. [76]. Copyright
2023, Wiley Online Library. (g) TENG based on SA and Ag NWs/SA; (h) the analysis of peak
power and voltage in the SA-TENG across varying resistances; (i) the evaluation of degradability
and antibacterial efficacy in the SA-TENG apparatus. Reprinted with permission from Ref. [77].
Copyright 2023, Elsevier.

3.2.2. Fungal BP

Fungi, as widely distributed microorganisms on Earth, are not only vital for the
balance of ecosystems but also important biological resources for producing various useful
polymers. Chitin is one of the most typical polymers synthesized by fungi, being a major
component of fungal cell walls. The presence of hydroxyl, carbonyl, α-chitin, and β-chitin
functional groups endows chitin with good electron-donating capabilities. Moreover,
the presence of non-centrosymmetric β-sheets describes the piezoelectric characteristics
of chitin. These properties pave the way for chitin’s applicability in advanced energy-
harvesting and sensing technologies.
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For instance, Patil and colleagues proposed a CHS biofilm derived from black soldier
fly (BSF), used to manufacture high-performance triboelectric and piezoelectric nanogener-
ators (Figure 4d) [76]. Through a detailed physicochemical analysis, it was demonstrated
that the CHS biolayer exhibits significant positive triboelectricity and piezoelectric proper-
ties due to the presence of hydroxyl groups, α-CHS, and β-CHS, as illustrated in Figure 4e.
Experimental results showed that the TENG based on BSF/PTFE could generate a volt-
age of 121 V and a current of 15 µA, as depicted in Figure 4f. According to the results
presented, CHS derived from BSF sources is a strong candidate for developing flexible,
environmentally friendly energy-harvesting and self-powered energy storage systems.

Petchnui and others utilized chitosan nanofibers (ChNFs) extracted from shrimp shells
mixed with natural rubber (NRL) to create an environmentally friendly TENG material [78].
ChNF was extracted from shrimp shells using a simple mechanical method and incor-
porated into NRL to form an NRL/ChNF composite material. This composite material
not only displayed improved mechanical and dielectric properties but also significantly
increased the output voltage to 106.04 ± 2.3 V in TENG applications, demonstrating ex-
cellent energy conversion efficiency. This work showcases an environmentally friendly
and efficient method of transforming biological waste into high-performance materials for
energy-harvesting devices.

Overall, polymers synthesized by fungi play multiple roles in nature and human
society. They are not only fundamental for the survival of fungi but also precious resources
for modern biotechnology and industry. With further research into fungal biology and the
development of bioengineering techniques, the potential for developing and utilizing novel
polymers from fungi remains immense.

3.2.3. Algae BP

Algae, as a bioresource with rapid growth characteristics and environmental friend-
liness, have been proven to be a platform with enormous potential for biopolymer pro-
duction. These organisms not only can perform photosynthesis using CO2 as a carbon
source, thereby providing oxygen for the planet, but their growth does not consume food
resources or require arable land and freshwater. Algae can synthesize a variety of polymers
through biotransformation processes and are widely used in multiple fields due to their
renewable source, biodegradability, and biocompatibility, including food, pharmaceuticals,
agriculture, water treatment, and biomedicine. The main polymers synthesized by algae
include Alg, agar, and carrageenan, and their production is rapid, providing potential
alternatives for different polymers such as PHA.

Sodium alginate (SA), a polysaccharide copolymer derived from brown seaweeds,
has gained increasing importance due to the over-exploitation of terrestrial resources and
the advancement of global marine resource utilization. SA is composed of (1–4)-linked
β-D-mannuronic acid and α-L-guluronic acid and is abundant in hydroxyl groups, which
serve as electron donors, rendering it an effective positive triboelectric material for TENG
applications [79]. Furthermore, SA’s excellent film-forming capabilities and the high degree
of transparency render it an ideal material for the development of flexible, transparent, and
transient wearable electronic devices.

Li and colleagues reported a biodegradable, transparent, and antibacterial SA-based
TENG for mechanical energy harvesting and self-powered tactile sensing (Figure 4g) [80].
The flexibility and adhesiveness of the SA were enhanced by adding glycerol, rendering the
Ag NWs/SA electrodes highly transparent and conductive. The output voltage, transferred
charge, and peak power of the TENG were measured to be 53 V, 18 nC, and 4 µW, respec-
tively, demonstrating adequate capacity to energize small electronic devices, as depicted in
Figure 4h. Moreover, this TENG also demonstrated good antibacterial and biodegradable
properties, as illustrated in Figure 4i. This work successfully enhanced the performance
and eco-friendly characteristics of TENG by employing SA/glycerol composite films and
Ag NWs, offering new strategies for developing sustainable self-powered devices and
transient electronic products.
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Similarly, Xia and others proposed a novel multifunctional triboelectric nanogenerator
(AMC-TENG) based on alginate-metal complexes, tuning electrical output through Alg
compounded with different metal ions [81]. Experimental results showed that AMC-TENG
exhibited excellent electrical output, especially the output from alginate-copper (Alg-Cu).
Moreover, the study also developed a self-powered sensing array, showcasing its potential
in practical applications. This research contributes novel insights and methodologies to the
study of triboelectric materials and their implementation in autonomous sensing systems.

κ-Carrageenan and agar are naturally sourced, cost-effective, edible polysaccharides,
primarily composed of galactose linked by secondary bonds [82]. They are typically ex-
tracted from red seaweeds or other plants, displaying high intrinsic biocompatibility [83].
Moreover, they are degraded and absorbed into the body through microbial hydrolysis or
enzymatic hydrolysis. κ-Carrageenan-agar composites have potential as excellent tribo-
electric materials; for instance, Kang and colleagues developed a biodegradable composite
made of carrageenan and agar, used as materials for effective biomechanical energy harvest-
ing [77]. These polysaccharides extracted from red algae, by forming a three-dimensional
network structure, significantly enhanced the triboelectric performance. The composite
possesses high biocompatibility and degradability, suitable for in-body applications, and
the TENG it produced could power LEDs and capacitors without an external power source,
demonstrating its potential application in the biomedical field.

3.3. BP-TENG Based on Chemically Synthesized/Modified Biopolymers

The process of synthesizing polymers in the laboratory involves various chemi-
cal methods, covering ring-opening polymerization (ROP), condensation reactions, free
radical polymerization, copolymerization, and enzyme-catalyzed reactions, as well as
chemical modifications. Although some of these methods are also used for the synthe-
sis of non-biological polymers, here we focus specifically on those pathways capable of
producing biopolymers.

3.3.1. Ring-Opening Polymerization

ROP is a technique commonly used for synthesizing biopolymers, primarily involving
the polymerization of cyclic monomers. Biopolymers synthesized through this method
mainly include polylactic acid (PLA) and polycaprolactone (PCL).

PLA is one of the most promising biobased polyesters for food packaging. It is a
biocompatible thermoplastic with a melting temperature of 175 ◦C and a glass transition
temperature of 60 ◦C, produced as a byproduct of corn wet milling during the fermentation
process of corn starch. It has good mechanical properties, transparency, ease of processing,
and barrier properties. However, its use in food packaging is somewhat limited due to
poor ductility, thermal barrier, and oxygen barrier properties compared to starch and
cellulose [84]. Compared to starch and cellulose, PLA is a highly durable biobased polymer.

Zhao and colleagues engineered a helix-shaped triboelectric nanogenerator (H-TENG)
utilizing PLA [85], aimed at effective energy collection, as depicted in Figure 5a. Fabricated
through 3D printing techniques, this apparatus can, upon manual compression, deliver an
impressive open-circuit voltage reaching 395 V and a short-circuit current of 28 µA, pow-
erful enough to illuminate 300 LED lights, as demonstrated in Figure 5b. Exhibiting high
energy conversion efficiency, the H-TENG is capable of autonomously powering devices
such as digital wristwatches and calculators, as showcased in Figure 5c. Its outstanding
capability to gather energy and superior output make it a promising candidate for use in
portable electronic gadgets and interactive technologies between humans and machines.

PCL is a biodegradable polyester synthesized through ROP reactions. PCL is an-
ticipated for TENG technology due to its good biocompatibility, biodegradability, and
mechanical properties. For instance, Luo and colleagues developed a novel self-healing
TENG utilizing a combination of PCL and silver nanowires (Ag NWs) [86], enhancing
the durability of TENGs in long-term energy harvesting. The study found that softening
the PCL by heating could effectively repair damage to the TENG’s friction surface and
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the conductive layer underneath. After several cut/heal cycles, the TENG maintained
stable high output performance, reaching an output voltage of 800 V and short-circuit
current of 30 µA, capable of lighting 372 LEDs. Moreover, the TENG was also modified
into a self-powered vibration sensor for real-time monitoring and diagnosing mechanical
equipment malfunctions. This work provides effective strategies for extending the lifespan
and practical application of TENGs.

Additionally, Li and colleagues proposed a novel temperature-responsive liquid/solid
TENG based on PCL, achieving tunable triboelectricity [87]. The structure of the PCL was
adjusted by changing temperatures, thereby controlling the triboelectric effect between
the liquid and solid phases. This PCL-based TENG showed significant electrical output
changes with temperature variations, proving its effectiveness as a real-time monitor-
ing interface state. Furthermore, the study also explored the reversibility and stability
of PCL material, offering new control strategies for triboelectric performance at liquid/
solid interfaces.
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Figure 5. (a) Schematic representation of the H−TENG architecture; (b) the electrical output perfor-
mance of the H−TENG; (c) electronic devices powered by the H−TENG; reprinted with permission
from Ref. [85]. Copyright 2023, Elsevier. (d) Flowchart for the synthesis of CD−MOF-based TENG
via the ultrasonic method; (e) the comparison of output voltages for A-TENG, B-TENG, and G-TENG;
(f) CD−MOF-based TENG powering various low−power electronics; reprinted with permission
from Ref. [88]. Copyright 2021, Wiley Online Library. (g) The schematic illustration of the TENG
configuration utilizing PDMS and CANF; (h) the output power of the TENG with pyramid-shaped
microstructures under different load resistances; (i) the schematic diagram and sensing curve of the
electric sewing machine device. Reprinted with permission from Ref. [89]. Copyright 2022, Elsevier.

3.3.2. Enzyme-Catalyzed Polymerization

This is a newer method where enzymes catalyze the polymerization of monomers.
For example, CHS can be synthesized from chitin through enzymatic means. This process
involves using specific enzymes, such as chitinase, to remove acetyl groups from chitin.

CHS is an abundant natural biopolymer derived from the shells of marine crustaceans,
offering exciting opportunities for low-cost, biocompatible TENG applications [90]. In terms
of electrostatic properties, CHS tends to lose electrons as a positively charged material, de-
grades into smaller molecules in the environment, and degrades slowly in the human body,
exhibiting good biocompatibility and bioabsorbability. Additionally, CHS has excellent
antimicrobial action and impressive gelation properties, making it an exemplary material
with broad applications. For instance, Menge and others prepared biopolymer films based
on CHS and Alg through layer-by-layer self-assembly methods, used to construct an an-
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tibacterial TENG [91]. The TENG showed the highest electrical output performance with
voltages reaching 474 V and current densities of 36.9 mA/m2, attributed to the highest
surface potential and lowest work function, respectively, at 239.4 mV and 4.2 eV. This novel
TENG demonstrates application potential in health monitoring and portable electronic
devices due to its low cost, environmental friendliness, and excellent electrical output.

Cyclodextrins (CDs) are a class of cyclic polysaccharides formed by glucose units
linked by α-1,4-glycosidic bonds. Their cyclic structure grants CDs unique physical and
chemical properties, especially their hydrophobic inner cavities and hydrophilic outer
surfaces, enabling them to form inclusion complexes by embedding various small molecule
guests into their hydrophobic cavities. β-CD is obtained from starch through the action
of microbial enzymes like cyclodextrin glycosyltransferase (CGTase), which can break
down and rearrange starch into CD. CDs are frequently employed to enhance the electrical
output of TENG. In a notable example, Hajra et al. fabricated a metal/organic framework
(MOF), employing sodium as the metal ion and CD as the organic ligand, referred to
as CD-MOF. This was achieved using an ultrasonic synthesis approach, specifically for
integration within TENGs [88], as represented in Figure 5d. The output performance of
various CD-MOF-based TENGs varied, with the hierarchy being α-CD MOF/Teflon >
γ-CD MOF/Teflon > β-CD MOF/Teflon, as illustrated in Figure 5e. The devices produced
were capable of powering multiple low-power electronic devices through capacitors and
bridge rectifiers, as shown in Figure 5f. Utilizing biocompatible CD-MOFs (α, β, γ) for
energy harvesting and triboelectric series marks a novel research direction in the realms of
environmental sustainability and self-powered technologies.

3.3.3. Chemical Modification

Cellulose acetate (CA) is prepared through the chemical reaction of modifying natural
polymers, classified as a type of esterification reaction. In this process, natural cellulose
reacts with acetic anhydride, and in the presence of a catalyst, the hydroxyl groups of cellu-
lose are substituted by acetyl groups to form CA. Due to its non-toxicity, non-irritability,
good processability, film-forming ability, cost-effectiveness, biodegradability, and biocom-
patibility, it is considered an attractive material for triboelectric applications. Typically, CA
biomaterials are spun into electrospun nanofiber films using electrospinning technology
for constructing green wearable TENGs.

Bai and others developed a nanofiber composite material consisting of cellulose acetate
(CA) and carbon nanotubes through electrospinning technology [92]. This material not only
exhibits multi-responsive shape memory capabilities but also functions as a self-powered
pressure sensor. The application of electrospinning technology allowed the CA nanofiber
composite material to exhibit excellent mechanical and thermal performance while also
having a heavy load capacity and high-sensitivity sensing performance. The study of CA
nanofiber composite materials with multi-responsive shape memory and self-powered
sensing performance significantly broadens its application prospects.

Similarly, Varghese et al. explored a TENG based on CA nanofibers and surface-
modified PDMS [89], depicted in Figure 5g, designed to power small electronic devices
and serve as a self-powered vibration sensor. By incorporating microstructures such as
microcones and microdomes into the PDMS surface, they significantly enhanced the output
performance of the TENG, with a power density increase of approximately 180 times, as
demonstrated in Figure 5h. Moreover, the authors transformed this TENG into a self-
powered sensor capable of detecting mechanical vibrations, successfully monitoring the
vibration patterns of devices such as electric sewing machines, and predicting malfunctions
in computer fans and hard drives ahead of time, as shown in Figure 5i. This work illustrates
the potential of CA nanofibers in enhancing energy collection and sensing technologies.

PU is typically not classified as a biopolymer since most are synthesized chemically
from petrochemicals. However, PU can also be “bio-based,” meaning some or all of its
components come from biological resources, such as soybean oil or castor oil. PU elastomers,
known for their excellent mechanical properties, aging resistance, good compatibility, and
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easy modification, are also hotspots in scientific research, especially in the TENG field. For
example, Cheng and others significantly improved the self-healing ability and durability
of a TENG by incorporating disulfide bonds and metal coordination bonds into PU [93].
The PU elastomer demonstrated a self-healing efficiency of 85.5% and notable toughness,
facilitating the TENG’s attainment of a short-circuit current of 12 µA, an open-circuit
voltage of 120 V across a 2 cm × 2 cm area, and a power density of 2.1 W·m–2. Even
after self-healing, its electrical performance remained at 95%. This research advances the
application of PU in human/machine interaction and self-powered sensing fields.

Cellulose paper, as a material for electronic devices, has been used to construct TENGs,
offering advantages such as low cost, lightweight, flexibility, environmental friendliness,
and disposability. However, traditional papers utilized in fabricating TENGs, including
cardstock, printing paper, cardboard, rice paper, and crepe paper, are commercially avail-
able but lack antibacterial properties, constraining the utility of P-TENGs due to their
reduced flexibility and the absence of antibacterial characteristics. Furthermore, the sur-
face modification of cellulose fibers, essential for the preparation of cellulose paper, is
frequently neglected in the P-TENG manufacturing process. Consequently, the fabrication
of the P-TENGs employing composite paper made from surface-modified cellulose fibers
is essential.

For example, Piwbang et al. proposed a method to enhance the power output of
TENG by the dye modification of cellulose paper [94]. The dyes used include chlorophyll,
anthocyanin, and curcumin, among which the chlorophyll-modified TENG demonstrated
the best performance, with a power density reaching up to 3.3 W/m2. This superior perfor-
mance is attributed not only to the photosensitivity of the dyes but also to the molecular
structure of the dyes, which promotes the electron-donating properties of cellulose.

Through these methods, researchers can design and synthesize an array of different
biopolymers that not only play crucial roles in medical, drug delivery, food industry, and
environmental sciences but also provide new directions and possibilities for sustainable
development and green chemistry. As research deepens and technologies advance, these
synthetic pathways will continue to offer innovative materials and solutions to meet societal
needs and challenges.

4. Possible Applications of BP-TENG
4.1. Energy Harvesting

BP-TENG, as an innovative energy-harvesting technology, is opening new chapters in
the field of sustainable energy. It combines the green attributes of biopolymers with the
efficient energy conversion capabilities of TENG, offering an eco-friendly way to harvest
energy from daily activities and natural phenomena. This unique energy-harvesting
technology not only reduces reliance on traditional energy sources but also heralds the
arrival of a new era that can harmonize more closely with the natural environment while
meeting modern technological demands.

For example, Dai et al. engineered a crack-effect-based triboelectric nanogenerator
(CE-TENG) optimized for the efficient harvesting of wind energy, which was subsequently
applied in autonomous wind direction and speed monitoring systems (Figure 6a) [95]. By
using transparent degradable hydroxyethyl cellulose films, the CE-TENG could generate
an output voltage of up to 600 V at a wind speed of 7 m/s, as shown in Figure 6b. The
paper also presents an omnidirectional wind energy harvester (OWEH), composed of eight
CE-TENG units, capable of accurately monitoring wind speeds and directions ranging
from 0.5 to 10 m/s, as illustrated in Figure 6c. This system not only significantly enhances
the sensitivity of wind speed monitoring but also supplies its own power to drive agri-
cultural sensors, offering an effective and green approach to wind energy utilization and
monitoring for smart agriculture, demonstrating the potential of converting wind energy
into a sustainable energy supply.
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Figure 6. (a) Schematic of the HEC−TENG for self-powered wind direction and velocity monitoring;
(b) the output voltage of the HEC−TENG at different temperatures, with a wind speed of 7 m/s;
(c) the linear fitting graph of wind speed and wind pressure measured by an array of 8 CE−TENGs;
reprinted with permission from Ref. [95]. Copyright 2022, Elsevier. (d) The schematic diagram
of the W−TENG device; (e) the schematic and photograph of a G−TENG array with three units;
(f) the schematic illustration of the relationship between triboelectric output and surface roughness,
with wrinkling range from 1.4 to 4.6 mm. Reprinted with permission from Ref. [41]. Copyright
2023, Elsevier.

As depicted in Figure 6d, Ding and others developed a green wrinkled paper-based
TENG device for collecting and converting water wave energy (i.e., blue energy) [41]. By ad-
justing the wavelength and amplitude of the wrinkled paper and utilizing metal balls rolling
inside the channels of a grid device (G-TENG) with the motion of the waves, the device effi-
ciently converts water wave energy into kinetic energy, as shown in
Figure 6e. Additionally, by employing superhydrophobic cellulose micro/nanostructures
and biodegradable materials produced through electrospinning, the contact area and tribo-
electric charge density were enhanced, thus improving the efficiency of the charge transfer,
as illustrated in Figure 6f. Compared to flat structures, this wrinkled structure’s TENG
unit demonstrates a better adaptability and output performance in converting water wave
energy. This study provides new insights into improving the efficiency of sustainable
TENG arrays in collecting and converting water wave energy.

4.2. Medical and Health
4.2.1. Human Health Diagnosis

Breathing is not only a fundamental sign of life but also an important reflection of
metabolic status and health condition. By analyzing the respiratory signals or biomarkers
in a breath, such as acetone, nitric oxide, and carbon dioxide, various diseases such as
diabetes, asthma, and chronic obstructive pulmonary disease (COPD) can be monitored
and diagnosed non-invasively.

For example, Wang and others developed a biodegradable water-soluble triboelectric
nanogenerator (WS-TENG) [96], made using recycled biodegradable paper and water-
soluble graphite electrodes. By extracting cellulose nanocrystals (CNCs) from the paper and
mixing them with methyl cellulose (MC), a CNC/MC composite film was formed, serving
as the positive electrode material. This cost-effective, lightweight, and biodegradable
WS-TENG has been innovated as a bandage sensor that can be readily dissolved in water.
Contrasting with conventional gauze sensors, the water-insoluble components of this
cellulose-based apparatus can be facilely isolated from water for subsequent reuse. The
variations in the output voltage of the WS-TENG are capable of precisely distinguishing
between various respiratory states, rendering it adequate for employment as a real-time
physiological signal-monitoring sensor. As a fully water-soluble device, it has the potential
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to act as a sophisticated medical sensor, thereby broadening the scope of TENG applications
in health monitoring.

Kim and colleagues developed a new type of highly elastic and self-healing hydrogel
conductor (CCDHG) [42], illustrated in Figure 7a, using all-marine biomaterials, including
catechol, CTS, and diatom. The CCDHG was employed in fabricating a stretchable TENG,
which exhibited an open-circuit voltage of up to 110 V, a short-circuit current of 3.8 µA,
and an instantaneous power density of 29.8 mW/m2, as shown in Figure 7b. Furthermore,
it served as a self-powered tremor sensor, attached to the skin, for monitoring the health
status of Parkinson’s Disease (PD) patients, as depicted in Figure 7c.

Liu developed a CTS and zinc oxide (ZnO)-based TENG for room temperature acetone
detection with excellent humidity tolerance [97], attributed to the numerous hydrogen
bonds formed between CTS and ZnO. The bilayer structure of CTS and ZnO not only acts
as the sensing layer but also as the triboelectric layer, achieving high sensitivity and low
detection limit for acetone, particularly suitable for the breath diagnosis of diabetes.
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Figure 7. (a) Schematic representation of the CCDHG−TENG apparatus; (b) the electrical output
metrics of the CCDHG−TENG; (c) the schematic depiction of the application of the CCDHG−TENG
in Parkinson’s disease monitoring; reprinted with permission from Ref. [42]. Copyright 2021, Elsevier.
(d) The production process diagram for the FG−TENG, inspired by leaf microstructures; (e) the
generated output voltage and current of the LMFG−TENG across varied resistances; (f) the applica-
tion of LMFG−TENG on the human body to track movements such as walking, running, jumping,
leg swinging, and vocal cord vibrations; reprinted with permission from Ref. [98]. Copyright 2023,
Elsevier. (g) The structural blueprint of the P−TENG; (h) the performance metrics of the P−TENG;
(i) the rvaluation of the P−TENG’s antibacterial effectiveness against Escherichia coli and Staphylococ-
cus aureus. Reprinted with permission from Ref. [99]. Copyright 2021, MDPI.

4.2.2. Motion Tracking

Biopolymers, with their unique biocompatibility, degradability, and flexibility, are
increasingly becoming important materials for motion tracking. The application of biopoly-
mers makes wearable devices lighter and more comfortable. For example, wearable sensors
based on biopolymers can be integrated into sports clothing, wristbands, or insoles, mon-
itoring real-time motion data such as step count, speed, movement trajectory, calorie
consumption, and even muscle activity and posture. Through the real-time tracking and
analysis of these data, individuals can better understand their physical conditions and
formulate and adjust personal fitness plans, thereby achieving a healthier lifestyle. More-
over, due to the good biocompatibility of biopolymers, they can also be used to develop
implantable sensors for the long-term monitoring of chronic disease patients. This reduces
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the side effects of in-body use, such as inflammation or foreign body reactions, and these
materials can naturally degrade when no longer needed, reducing residual in the body.

For example, Nie and others fabricated an excellent-performance, moisture-resistant
TENG based on CNF [100]. By a simple and eco-friendly method, CNF films underwent
aminosilane modification, significantly enhancing the CNF surface’s positive charge density
and hydrophobicity. This functional CNF-based TENG exhibited excellent output stability
at an environmental humidity of 70%, and was able to respond to various human activities
such as pressing, stretching, bending, and twisting, showing outstanding flexibility. More
importantly, this TENG could monitor human motion states in a sweaty environment,
providing new insights and possibilities for the application of self-powered wearable
electronic devices.

Shi and colleagues developed a FG-based triboelectric nanogenerator (FG-TENG) [98],
inspired by the microstructural design of natural plant leaves, as shown in Figure 7d. This
FG-TENG achieved significant improvements in power generation, capable of reaching a
maximum voltage of up to 320 V and a current output of 0.80 µA, while also demonstrating
good environmental degradability, as illustrated in Figure 7e. Importantly, the device has
been successfully applied to monitor body posture, as depicted in Figure 7f, showcasing
its potential applications in the healthcare sector, especially in self-powered sensing and
human activity monitoring.

4.2.3. Anti-Mite and Antibacterial

Natural biomaterials are one of the preferred materials for constructing antibacterial
TENGs. For example, Lu and others used a hydrothermal method to synthesize CTS-
hydroxyethyl cellulose-pectin (CHP) films, used as triboelectric materials [101]. At 11%
CTS content, the TENG exhibited a superior current and voltage output, with efficient
energy conversion performance and anti-mite antibacterial properties, providing a potential
solution for TENG-based intelligent medical and health monitoring systems.

Lin and others manufactured a flexible paper-based triboelectric nanogenerator (P-
TENG) pairing ZnO@paper with PTFE film [99], as depicted in Figure 7g. This P-TENG not
only demonstrated high output performance but also exhibited antibacterial activity. Specif-
ically, the output voltage and current of the P-TENG were 77 V and 0.17 µA, respectively,
as shown in Figure 7h. The ZnO@paper showed excellent antibacterial activity against
Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), indicating that the P-TENG
could inhibit and kill bacteria during operation, as illustrated in Figure 7i. The results also
indicated that ZnO could improve the surface roughness of cellulose paper, enhancing the
output performance of the flexible P-TENG. Furthermore, the potential applications of the
P-TENG-based pressure sensor in measuring human motion information were reported.

4.3. Environmental Monitoring
4.3.1. Air Quality

Air quality monitoring is of significant importance for public health and urban envi-
ronmental management. Sensors made from biopolymers can be used to detect various
pollutants in the air, including but not limited to NO2, NH3, humidity, PM2.5, carbon
dioxide, etc.

For example, Yang and others developed a self-powered NO2 gas sensor based on pa-
per and In2O3/SnS2 composite materials, powered by a TENG, achieving a high-sensitivity
detection of NO2 [102]. Utilizing paper as the friction material, the sensor showed rapid
response and recovery to 50 ppm NO2 under room temperature and 43% relative humidity.
Additionally, a self-powered alarm system based on this technology was constructed for
the real-time monitoring of NO2 concentration in the environment, suitable for smart
environmental monitoring.

Yang and others developed a self-powered gas sensor (PC-TENG) based on polyani-
line (PANI)/commercial cellulose paper for the efficient monitoring of NH3 concentration
at room temperature Figure 8a) [44]. Utilizing the three-dimensional microporous structure
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of commercial nitrocellulose filter paper as a porous framework base, the in situ polymer-
ization of PANI nanoprotrusions formed a fine PANI hierarchical structure with excellent
gas permeability and abundant NH3 adsorption sites, as illustrated in Figure 8b. Exhibiting
exceptional NH3 detection capabilities, this PC-TENG sensor, shown in Figure 8c, reached
a lower detection limit of 100 ppb and could detect levels up to 500 ppm. Its sensitivity,
peaking at 45.41% ppm−1 within the 0.1 to 1 ppm range, stands as the highest for trace
NH3 among current self-powered NH3 sensors. This innovation, highlighted at the outset,
merges environmental sustainability with effective monitoring, making it appropriate for
broad production and application.

Zheng and others developed an environmentally friendly and multifunctional starch-
based triboelectric nanogenerator (S-TENG) [103]. The S-TENG showed an open-circuit
voltage of 151.4 V and short-circuit current of 47.1 µA, not only able to drive and smartly
control electronic devices but also effectively harvest energy from human motion and
wind. Notably, the output of S-TENG increased instead of decreasing with the increase
in environmental humidity, showing an unusual performance improvement. Within a
relative humidity range of 20% to 80%, the S-TENG could act as a sensitive self-powered
humidity sensor. This work paves the way for the mass production of multifunctional
biomaterial-based TENGs and their practical application in self-powered sensing.
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Figure 8. (a) Schematic diagram of the TENG device based on PANI/cellulose paper; (b) the
schematic illustration of the PANI/nitrocellulose layered structure; (c) the sensitivity comparison of
the PC−TENG for NH3 with previously reported works; reprinted with permission from Ref. [44].
Copyright 2023, the Royal Society of Chemistry. (d) the design of the sensing system based on
FF−TENG and its working mechanism diagram; (e) the output performance of wool fibers of
different sizes; (f) wave sensor based on FF−TENG; reprinted with permission from Ref. [104].
Copyright 2023, Elsevier. (g) The schematic diagram of the SFC−TENG device; (h) the output power
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diagram of the SFC−TENG; (i) the application diagram of the SFC−TENG in agricultural production;
reprinted with permission from Ref. [43]. Copyright 2022, Elsevier. (j) The preparation flowchart of
the CNF−BP−PA film for TENG; (k) the process diagram of the FR-TENG for flame detection alarm;
(l) the flowchart of the FR−TENG for temperature detection alarm. Reprinted with permission from
Ref. [37]. Copyright 2022, Elsevier.

4.3.2. Marine Accident

The real-time monitoring of the marine environment is crucial for preventing maritime
accidents. Xia and their team introduced a novel freely floating structure triboelectric nano-
generator (FF-TENG) [104], specifically designed for environmental monitoring around
marine wind turbines (Figure 8d). The FF-TENG employs an integrated structure of spheres
and floaters, combined with lightweight wool balls as the triboelectric material, to effi-
ciently capture and convert wave energy. Thanks to this unique design, the FF-TENG can
adapt to ocean waves, generating up to 462 V and 15.5 µA of current, while maintaining
good durability and stable energy output, as shown in Figure 8e. Not only does the device
harvest wave energy, but it also serves as a self-powered wave sensor for the real-time
monitoring of marine environmental changes, such as wave frequency and amplitude,
offering an effective solution for the environmental monitoring of offshore wind turbines,
as demonstrated in Figure 8f. This research provides an innovative approach to marine
environmental monitoring, integrating energy harvesting and sensing into one solution.

4.3.3. Agricultural Production

Self-powered wireless sensors have broad application prospects in the real-time moni-
toring of agricultural environments. Men and others developed a cotton cellulose-based
triboelectric nanogenerator (SFC-TENG) for wind energy collection in smart agriculture
(Figure 8g) [43]. The device utilizes an innovative dual rotor/stator structure, enhancing
the energy conversion efficiency and durability. The SFC-TENG demonstrates an excep-
tional electrical output performance, including a high open-circuit voltage of 2500 V, a
short-circuit current of 85 µA, and a maximum output power of 80 mW, as depicted in
Figure 8h. It has been successfully applied in smart agriculture for nighttime lighting, pH
value monitoring, and temperature and humidity control, as shown in Figure 8i, showcasing
its potential as a clean and sustainable energy solution in agricultural technology.

4.3.4. Urban Safety
Fire Alarm

Developing a flexible TENG with temperature-responsive and fire-warning capabili-
ties is a challenging task, especially when considering the use of natural biopolymers as
materials. Such a TENG needs to find a balance between physical properties and envi-
ronmental adaptability while ensuring sufficient sensitivity to temperature changes. For
example, Wang et al. fabricated a flexible, flame-retardant triboelectric nanogenerator
(FR-TENG) utilizing materials such as cellulose, black phosphorus, and phytic acid [37],
depicted in Figure 8j, featuring high-temperature responsiveness and fire warning capabili-
ties. This FR-TENG exhibited exceptional fire resistance and flame-retardant properties.
Most notably, the FR-TENG demonstrated extremely high thermal response sensitivity
within the temperature range of 35–150 ◦C, capable of rapidly responding to temperature
changes within 5 s, making it suitable for early fire detection, as shown in Figure 8k,l.
This work provides new insights into developing temperature monitoring and early fire
warning systems.

Traffic Warning

Future urban planning necessitates the integration of self-powered and sustainable
traffic monitoring systems. Li et al. introduced an all-weather, self-powered intelligent
traffic monitoring system, employing a polyvinyl alcohol-polyacrylamide/tannic acid-
modified cellulose nanocrystal double network hydrogel (PPC) [105]. The system includes
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self-healing piezoresistive sensors and TENG, capable of the real-time monitoring of driver
status and vehicle conditions. Due to its excellent self-healing performance and stable
environmental adaptability, the system can operate across a wide range of temperatures,
timely detecting vehicle speed and weight, assessing traffic accident responsibilities, and
preventing accidents caused by fatigued driving. Furthermore, replacing the water com-
ponent in PPC with glycerol further ensures its stable operation under various climatic
conditions. This work provides new perspectives and technical support for the safety
assurance and smart traffic development of future cities.

Smart Home

Hao and others demonstrated a wood-based triboelectric nanogenerator (W-TENG)
made of natural New Zealand pine and PTFE [106], which not only can convert mechanical
energy into electrical energy through human walking actions but also can be used as a
self-powered switch sensor. As a lighting switch, W-TENG effectively reduces unnecessary
energy consumption. Moreover, W-TENG can also be applied to security alarm systems,
triggering alarms by monitoring specific activities or movements, thus achieving security
monitoring and energy self-sufficiency without the need for an external power source,
providing new solutions for smart homes and safety fields.

Most of the polymer materials used in manufacturing TENGs are non-biodegradable,
leading to plastic pollution and potentially fatal effects on aquatic life. In the United States,
the average person consumes approximately 39,000 fibers per day in drinking water [107].
Hence, there is a significant demand for biodegradable alternatives. Despite various TENGs
made from both natural and synthetic polymer materials proving to be clean, cost-effective,
and sustainable energy harvesters for self-powered electronic devices across various appli-
cations such as sensors, biomedical instruments, and smart home controllers, the adoption
of new natural polymers for TENGs with mechanical durability and high power efficiency
still faces severe environmental constraints, including humidity, temperature, electro-
magnetic interference, mechanical flexibility, transparency, breathability, hydrophobicity,
and acoustics. For instance, exposure to humid conditions or repetitive external forces
can result in the mechanical degradation of eco-friendly TENGs when using naturally
sourced biopolymers. Hence, further research is warranted to explore novel biopolymer
materials capable of overcoming the durability and performance limitations of existing
eco-friendly TENGs.

Table 1 provides a detailed summary of various biopolymer-based TENGs, including
their synthesis methods, materials, dimensions, triboelectric outputs, and main application
areas. These materials demonstrate potential applications in natural resource collection,
human health monitoring, and environmental surveillance, among others. They also exhibit
the characteristics of biocompatibility and degradability, making them suitable for creating
comfortable and portable wearable devices.

Table 1. Summary of the performance and application of the BP-TENG with different
triboelectric materials.

Synthesis
Method Material Type Size Electrical Output Application Ref.

Natural Silk Proteins 4 × 7 cm2 2 V/4.3 mW·m−2 Energy harvesting [34]
Natural SF Proteins 2 × 4 cm2 68 V/5.78 µA Drive microdevice [63]
Natural SF Proteins 2 × 1 cm2 172 V/8.5 µA Drive microdevice [36]
Natural SF Proteins 2 × 2 cm2 ∼50 V/∼3 µA Intelligent vehicle [64]

Natural Spider silk
protein Proteins 6 × 8 cm2 ≈2.6 kV/≈0.48 mA Implantable

anti-bacterial patch [66]

Natural RP Proteins 6 cm (diameter) ∼70 V/∼2.6 µA Medical devices [65]
Natural Cellulose Polysaccharides 2 × 2 cm2 ~96 V/130 mW·m−2 E-skin [58]
Natural Cellulose Polysaccharides 1 × 1 cm2 ~30 V/~90 µA Power board [61]
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Table 1. Cont.

Synthesis
Method Material Type Size Electrical Output Application Ref.

Natural Lignin Polysaccharides 6.5 × 6.5 cm2 1.04 V/cm2/3.96
nA/cm2 Biomedical devices [59]

Natural Lignin Polysaccharides 4.5 × 4.5 cm2 700V/95 µA Energy harvesting [38]
Natural Starch Polysaccharides 2 × 2 cm2 22 V Biomedical devices [60]
Natural Gelatin Proteins 3 × 3 cm2 500 V/4 µA Wearable devices [40]
Natural Paper Polysaccharides 6 × 3 cm2 180 V/20 µA Health care [96]

Microbial
Synthetic PHB — 8 mm

(diameter)
25.6 V/cm−2/550.2

nA·cm−2 Athletic monitoring [72]

Microbial
Synthetic BC Polysaccharides 6 × 6 cm2 29 V/0.6 µA Wearable devices [73]

Microbial
Synthetic BC Polysaccharides 20 × 0.5 cm2 266.0 V/5.9 µA Athletic monitoring [39]

Microbial
Synthetic γ-glycine — 3 × 3 cm2 81 V/121 µA Energy harvesting [74]

Microbial
Synthetic Aspartic acid — 2.5 × 2.5 cm2 200 V/6 µA Gas sensor [75]

Microbial
Synthetic CTS Polysaccharides 3 × 4 cm2 121 V/15 µA Energy harvesting [76]

Microbial
Synthetic CTS Polysaccharides 1 × 1 cm2 106.04 ± 2.3 V Energy harvesting [77]

Microbial
Synthetic SA Polysaccharides 5 × 5 cm2 33 V/150 nA Energy harvesting [78]

Microbial
Synthetic SA Polysaccharides 5 × 5 cm2 53 V/18 nC Wearable devices [79]

Microbial
Synthetic SA Polysaccharides 3 × 3 cm2 629 V/40.16 µA Self-powered

sensing array [80]

Microbial
Synthetic

κ-Carrageenan-
agar Polysaccharides 3 × 3 cm2 0.45 mA·m−2/0.15

mW·m−2 Energy harvesting [83]

Chemically
Synthesized PLA — 8 cm (Diameter) 395 V/28 µA Drive microdevice [85]

Chemically
Synthesized PCL — 3×3 cm2 800 V/30 µA Self-healing [86]

Chemically
Synthesized PCL — 16 cm2 ~1.1V/~45 nA Wearable devices [87]

Chemically
Synthesized CD Polysaccharides 2 × 2 cm2 152 V/1.2 µA Energy harvesting [88]

Chemical
Modification CA Polysaccharides 20 × 3 × 0.08

mm3
103.2 V/7.93

mA·m−2
Motion tracking
and wind speed [92]

Chemical
Modification CA Polysaccharides 2 × 1 cm2 ~400 V/~3 mA/m2 Vibration sensor [89]

Chemical
Modification PU — 2 × 2 cm2 120 V/1.2 µA Self-healing [93]

Chemical
Modification Cellulose paper Polysaccharides 4 × 4 cm2 126 V/11.4 µA Energy harvesting [94]

Chemical
Modification

Hydroxyethyl
cellulose Polysaccharides 5 × 1 × 7 mm3 584 V/41 µA Agricultural

production [95]

Chemical
Modification Cellulose Polysaccharides 2 × 4 cm2 195 V/13.4 µA Wearable devices [100]

“—” in the table indicates that the data were not documented in the research.

5. Conclusions and Prospect

Compared to conventional polymer materials, biopolymer materials are not only
non-toxic, biocompatible, and biodegradable, but most importantly, they are abundantly
available in nature and often possess higher surface areas. These are key factors influencing
the output performance of TENGs. As indicated in Table 1, some BP-TENGs are comparable
to existing inorganic-based TENGs, making them suitable for self-powered electronic
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products, thus demonstrating their potential as performance-enhancing triboelectric electric
materials. Additionally, BP-TENGs exhibit significant application value in fields such as
medical health monitoring and environmental control, especially in harnessing mechanical
energy from natural and biological sources for autonomous, continuous, and reliable
operation. Although there are still unresolved issues, the challenges related to the output
performance of BP-TENGs are surmountable through strategic material selection, precise
structural design, chemical modification, and the optimization of energy management
systems. Meanwhile, the wear and degradation issues of biopolymers may affect the
long-term stability and durability of BP-TENGs, but these challenges are expected to be
addressed through advanced surface treatment technologies, cross-linking reinforcement
strategies, the use of composite materials, and innovations in encapsulation techniques.

To push BP-TENG technology towards broader applications in energy harvesting,
healthcare, and environmental monitoring, this study highlights several key challenges and
issues that future research should focus on. These include improving energy conversion
efficiency, extending device lifespan, enhancing system environmental stability, and en-
suring the biocompatibility and sustainability of biopolymers. By addressing these issues,
BP-TENG technology has the potential to revolutionize its applications in self-powered
sensors, wearable devices, and environmental energy harvesting, thereby leading a new
round of technological innovation and sustainable development strategies:

5.1. Output Performance

The energy conversion efficiency of current BP-TENGs still has room for improvement
compared to traditional energy-harvesting technologies, necessitating improvements in
material properties and device structure. Strategies to enhance BP-TENG performance
include selecting suitable materials, the micro/nano-structuring of surfaces, and chemical
modifications, such as nitration and amination, which can alter the surface potential of
biopolymers and, thereby, the charging states during contact electrification. However, most
methods are both complex and costly to implement. Additionally, there is a lack of in-depth
study on the intrinsic multi-level structure of biopolymers and their triboelectric perfor-
mance in BP-TENG reports. In the future, more material modification techniques will be
introduced into the development of BP-TENGs to enhance their electrical performance and
mechanical quality. These advancements will provide greater possibilities and challenges
for BP-TENGs in driving electronic devices and achieving effective electrical stimulation.
Overall, BP-TENGs are expected to find broader applications in the future.

5.2. Stability and Durability

Although biopolymers offer advantages in biocompatibility and degradability, they
often face the issues of declining mechanical performance, rapid biodegradation, or in-
creased environmental sensitivity in long-term applications. Especially under the condi-
tions of repetitive mechanical stress, high humidity, or temperature changes, the structure
of biopolymers might alter, leading to a decreased triboelectric performance. Moreover,
biopolymers may be sensitive to microbial activities, which could accelerate material degra-
dation in certain environments, thereby shortening the effective lifespan of BP-TENG
devices. These challenges require researchers to innovate in material selection and design
and to enhance the stability and durability of biopolymers through surface treatment,
cross-linking reinforcement, composite materials, and the development of encapsulation
techniques. Addressing these issues is crucial for the widespread application of BP-TENG
technology in energy harvesting, self-powered sensors, and sustainable electronic de-
vices. Therefore, developing BP-TENG systems with high stability and durability repre-
sents a major challenge in the field, as well as a significant opportunity for research and
technological innovation.
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5.3. Scalable Production and Standardization

Despite the great potential of BP-TENGs in energy harvesting and sensor applications,
their large-scale production and widespread application still face many obstacles. The
diverse sources and varying performances of biopolymers lead to an increased complexity
in production processes and variability in final product performance. Moreover, the
processing and biocompatibility treatment of biopolymers require delicate and costly
approaches, further limiting the scalability of BP-TENGs. The challenges in standardization
should not be overlooked either, as there is currently a lack of unified standards to evaluate
and verify the performance and safety of different BP-TENG products. To overcome these
challenges, efficient and economical production processes need to be developed, and
comprehensive standards and testing regulations should be established.

5.4. Controlled Degradation

BP-TENGs typically leverage biopolymers to enhance their biocompatibility and
biodegradability. To date, the degradation of BP-TENGs has been regulated through
various physical and chemical approaches, including methanol treatment and infrared
control, but these do not allow for the precise control of material degradation rates in natural
or biological environments. This involves complex materials science issues, including how
to ensure that materials safely degrade within a predetermined time while maintaining
good energy collection performance. Additionally, degradation rates are influenced by
various factors, including the chemical composition, structure, and external environmental
conditions (such as temperature, pH value, and enzyme activity), making controlled
degradation more complex. Moreover, the products of complete degradation need to be non-
toxic and harmless to avoid adverse effects on the environment or human health. Although
these challenges are daunting, they also offer broad opportunities for researchers to explore
new materials, technologies, and degradation mechanisms, thereby advancing the further
application of BP-TENG technology in sustainable development and biomedicine.

5.5. Integration and Compatibility

Integration and compatibility are crucial for the practicality and widespread appli-
cation of BP-TENGs. This involves not only the multifunctionality of BP-TENG devices
and their ability to work in synergy with other systems but also their adaptability to
different application environments. Due to the unique properties of biopolymers, such
as biodegradability and biocompatibility, they may face material matching and interface
compatibility issues when integrating with existing technologies and electronic devices.
Additionally, the energy output characteristics of BP-TENGs need to match the energy
demands of backend electronic systems, requiring the development of efficient energy
conversion and management strategies to ensure continuous and stable power supply.
Through successful integration, BP-TENGs are expected to play a significant role in wear-
able devices, self-powered sensor networks, biomedical applications, and environmental
monitoring in the future. Moreover, this integration will also drive the development of
a new generation of eco-friendly and self-sustaining energy solutions, providing strong
support for the integration of green energy conversion and intelligent technologies.
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