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Abstract: The preparation of an environmentally friendly and efficient flocculant for solid-liquid
separation in industrial wastewater is highly important. In this study, a novel cationic flocculant
(AL-g-PAMA) was synthesized by a thermal initiation method using alkali lignin (AL) as the main
chain and acrylamide (AM) and methacrylamido propyl trimethyl ammonium chloride (MAPTAC)
as the grafted side chains. The structure, thermal stability, and surface morphology of the copolymers
were investigated by various characterization methods. The results indicated the successful synthesis
of AL-g-PAMA. AL-g-PAMA was applied to improve solid-liquid separation in kaolin suspensions.
The results showed that AL-g-PAMA had excellent flocculation-sedimentation and dewatering
efficiency. When the dosage of AL-g-PAMA #5 was 600.0 g/t(s), the thickness of the compressed layer
was 2.2 cm, the floc settling velocity was 24.1 cm/min, and the transmittance of the supernatant was
84.0%. The moisture content of the filter cake decreased from 55.0% to 43.4% after treatment with
AL-g-PAMA #5. The results of zeta potential and focused beam reflectance measurement (FBRM)
analysis indicated that bridging and electroneutralization were the main flocculation mechanisms.
Therefore, this study extends the potential for using lignin as a bioflocculant and provides a feasible
approach to efficiently purify high-turbidity wastewater.

Keywords: lignin; grafted cationic flocculant; solid-liquid separation; FBRM; kaolin

1. Introduction

Significant quantities of clay minerals are present in wastewater discharged from
industrial activities, such as mineral processing, papermaking, construction, and oil ex-
ploitation [1]. Kaolin is a major component of such clay minerals [2]. Fine kaolin particles
are subject to hydration, selective adsorption, dissolution, and lattice replacement in sludge
water, resulting in negatively charged particle surfaces. The surface of particles forms a
hydration film and an electric double layer, which results in strong hydration repulsion
and steric hindrance effects, making precipitation and dewatering increasingly difficult [3].
Moreover, fine kaolin particles have difficulty overcoming various forms of resistance and
disturbance when driven by gravitational forces, which can lead to settling problems [4].
Therefore, separating clay minerals from industrial wastewater is of great theoretical and
practical importance [1,5].

The use of flocculants to treat dispersed industrial wastewater has been demonstrated
to be effective in improving the efficiency of solid-liquid separation [6]. In recent years,
natural flocculants have become a green solution for treating a wide variety of industrial
wastewater due to their wide range of sources and biodegradability [7]. Lignin is the
most abundant renewable aromatic polymer in nature [8]. It provides a good source of
reactants for the production of value-added products because it is inexpensive and readily
available [9]. However, lignin is rarely utilized as a value-added product [10]. For example,
most lignin separated from wood pulp waste streams is burned as fuel or disposed of as
waste [10], which leads to the loss of valuable natural polymers and causes an increase in
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greenhouse generation. Therefore, the development of value-added functional materials
from lignin is highly desirable [11].

Lignin maintains its stable structure in water due to its rigid three-dimensional skeletal
framework, which can significantly improve its capacity to flocculate through the sweep
effect [12]. Lignin features phenolic hydroxyl and carboxyl groups, which endow it with a
strong potential for modification and enable it to be modified and used as a flocculant [13].
Most previous studies have focused on the Mannich reaction of lignin. The positively
charged amino groups introduced by the Mannich reaction can neutralize the charge on
negatively charged micellar particles in wastewater [14]. Wang et al. [12] prepared a poly-
mer with highly efficient flocculation properties using lignin and acrylamide (AM) as
raw materials in a UV-induced aqueous-phase copolymerization system via the Mannich
reaction, which provided an innovative and green strategy for the development of novel
lignin-based flocculants. Sheehan et al. [15] synthesized a biodegradable water-soluble
flocculant (WSP) by grafting hydrophilic L-lysine onto the aromatic backbone of depoly-
merized lignin via the Mannich reaction. The test results showed that a 10–20 mg/L
lignin-based WSP could reduce the turbidity of kaolin suspensions by more than 95%.
However, Mannich reaction-modified lignin has disadvantages, such as low reactivity and
low molecular weight, which limit its application as a flocculant [16]. In previous studies,
the number of Mannich active sites on lignin has typically been increased using phenolic
pretreatment [10]. Wang et al. [17] increased the number of Mannich active sites of lignin
by phenolization pretreatment and then conducted sequential grafting of amino and sul-
fonate functional groups onto the phenolized lignin in an alkaline solution via the Mannich
reaction and sulfomethylation, respectively, to synthesize a lignin-based adsorbent. The
use of phenol solutions and concentrated sulfuric acid in the phenolization process and
the use of polluting solvents in the Mannich reaction prompt environmental and economic
concerns. These chemical processes can lead to the generation of effluents and wastes
that pollute the environment and can entail expensive waste disposal and environmental
remediation costs [12].

Graft polymerization of lignin is conducted through a free radical polymerization
reaction, whereas the Mannich reaction occurs through polycondensation. Free radical
polymerization reactions are more likely to result in the formation of reactive intermediates,
thus enhancing the reactivity of the system. In recent years, graft copolymerization has
been frequently used to prepare various environmentally friendly lignin-based flocculants
with improved flocculation performance. Moore et al. [18] synthesized a cationic hy-
drolyzed lignin polymer using free-radical polymerization with [2-(methacryloyloxy)ethyl]
trimethylammonium chloride (METAC) and hydrolysis lignin (HL) and then examined
the flocculation efficiency of the lignin-based flocculants in simulated wastewater. Their
results indicated that HL-METAC could remove up to 60% of the TOC present. In addition
to the graft polymerization of binary compounds described above, ternary compounds
and multicomponent compounds can be synthesized by graft polymerization [19,20]. Chen
et al. [21] synthesized a lignin-grafted cationic flocculant (L-CPA) via a “grafting to” strat-
egy using acrylamide (AM), methylacryloyloxyethyltrimethyl ammonium chloride (DMC),
and enzymatically hydrolyzed lignin (EHL) as the raw materials. Their results showed that
the resulting flocculant had a favorable flocculation effect. When the dosage of L-CPA was
4 mg/L, the maximum light transmittance of the kaolin suspension was 82%. Therefore,
grafting functional monomers onto lignin is a feasible approach for improving the reactivity
of lignin.

Kaolin particles are extremely fine and have negative surface charges; therefore, they
do not easily settle in water and are prone to sludge formation. Flocculation is one of
the most economical and effective methods for settling clay minerals in industrial pro-
cesses. Lignin has many functional groups, and lignin modification for use as a floccu-
lant is a promising treatment approach. In this study, to address the issue of settling
kaolin, the molecular weight of lignin was increased by the introduction of AM to en-
hance bridging during flocculation, and the positive charge number and space volume of
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lignin were increased by the introduction of MAPTAC to further enhance the adsorption–
electroneutralization and net trapping–scavenging effects of lignin during flocculation.
This increase in molecular weight and the number of positive charges was designed to
enhance the interaction of lignin with particles during the flocculation process. To test our
hypothesis, we explored the flocculation and dewatering performance of AL-g-PAMA on
kaolin suspensions. This research provides a new approach to utilizing natural polymers
for cost-effective water treatment.

2. Materials and Methods
2.1. Materials

Alkaline lignin (AL) was purchased from Beijing Huamaike Biotechnology Co., Ltd.
(Beijing, China). AM and absolute ethanol were supplied by Tianjin Tianli Chemical
Reagent Co., Ltd. (Tianjin, China). Cationic polyacrylamide (CPAM) was purchased from
Shanghai Aladdin Bio-Chem Technology Co., Ltd. (Shanghai, China). Methacrylamido
propyl trimethyl ammonium chloride (MAPTAC, 50% in H2O) was purchased from Shang-
hai Macklin Biochemical Technology Co., Ltd. (Shanghai, China). Potassium persulfate
(KPS) was purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). All
the solutions used in the experiments were prepared with deionized water. Kaolin (average
particle size 3.4 µm) was obtained from Tianjin Hengxing Chemical Reagent Manufac-
turing Co., Ltd. (Tianjin, China). A laser particle size analyzer (S3500, Microtrac MRB,
Montgomeryville, PA, USA) was used to analyze the particle sizes of the kaolin samples, as
shown in Figure 1.
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Figure 1. Particle size distribution of kaolin samples.

2.2. Preparation of AL-g-PAMA

As shown in Scheme 1, AL was mixed with AM and MAPTAC in a three-neck flask,
and then deionized water was added. Subsequently, the oxygen in the reaction vessel was
removed by N2 (99.0%) sparging at room temperature (approximately 25 ◦C) for 30 min.
Then, KPS was added as an initiator, and the reaction was allowed to continue for 2 h at
80 ◦C in a water bath. After 2 h, air was introduced to terminate the reaction. After the
solution was left undisturbed at room temperature for 2 h, a clear gel-like solid product
formed. Then, the obtained gel product was purified using excess absolute ethanol. The
product gradually transformed from a clear gel to a brownish-yellow precipitate. The
resulting polymer was continuously dried in a vacuum oven at 50 ◦C to a constant weight.
Finally, the obtained product was ground to a powder using a mortar and pestle for
subsequent characterization and application.
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2.3. Characterization of AL-g-PAMA

The functional group structures of the samples were characterized by FTIR (Nicolet
iS20, Thermo, Waltham, MA, USA). The resolution was 4 cm−1, the number of scans was
32, and the range of wavenumbers tested was 600–4000 cm−1. The molecular structures of
the samples were characterized by 1H NMR (AVANCE Model DRX-500, Bruker, Karlsruhe,
Germany), and the 1H NMR spectra of the samples were obtained by dissolving the samples
in D2O. The structures of the samples were characterized by XRD (MiniFlex 600 model,
Rigaku, Tokyo, Japan) with a scanning range of 5–85◦ and a scanning speed of 8◦/min.
After the samples were sprayed with gold using a Quorum SC7620 sputter ion coater,
their surface morphology was determined by SEM (MIRA LMS, TESCAN, Brno, Czech
Republic). The thermal decomposition properties of the polymers were determined by
a thermogravimetric analyzer(SDT-650, TA, Newcastle, DE, USA). The temperature was
increased from room temperature to 700 ◦C at a heating rate of 10 ◦C/min and a nitrogen
flow rate of 100 mL/min.

2.4. Grafting Efficiency of PAMA and Intrinsic Viscosity Determination
2.4.1. Determination of Grafting Efficiency

The grafting efficiency of PAMA (GE) was determined via gravimetric methods and
calculated as follows [22]:

GE =
M3 − M0

M0 + M1 + M2
× 100% (1)

where M0 is the mass of AL, g; M1 is the mass of AM, g; M2 is the mass of MAPTAC, g;
and M3 is the total mass of the graft copolymer after purification, g.

2.4.2. Determination of Intrinsic Viscosity

The intrinsic viscosity of the polymers (η) was determined via the one-point method [23].
Measurements of the intrinsic viscosity of the polymer solutions were conducted using a
Ubbelohde viscometer (capillary diameter of 0.46 mm) at a constant temperature of 30 ◦C.
First, 0.08–0.1 g of polymer was accurately weighed into a 200 mL volumetric flask. After
adding approximately 90 mL of deionized water, the volumetric flask containing the sample
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was placed in a thermostatic shaker at 30 ± 0.05 ◦C and shaken to fully dissolve the polymer.
Then, 100 mL of 2 mol/L NaCl solution was added to the volumetric flask. After sufficient
shaking, the sample solution in the volumetric flask was diluted to scale with deionized water.
Finally, the sample test solution was filtered through a sand core funnel, and the intrinsic
viscosity was determined by the one-point method. Equation (2) was used to calculate the
intrinsic viscosity of the polymer as follows:

[η] =

√
2 − ln 3

ηr − ln ηr − 1 (ηr − 1)− 2
√

ηr − ln ηr − 1
2 − ln 3

c(
√

2 − ln 3
ηr − ln ηr − 1 − 1)

(2)

where η is the intrinsic viscosity of the polymer, dL/g; c is the concentration of the polymer
solution, g/L; and ηr is the relative viscosity (dL/g) of the polymer, as calculated by
Equation (3) as follows:

ηr =
t
t0

(3)

where t and t0 are the time that the polymer solution and the 1 mol/L NaCl solution spent
flowing through the upper and lower scale lines of the Ubbelohde viscometer, respectively.

2.5. Flocculation-Sedimentation and Dewatering Experiments
2.5.1. Flocculation and Sedimentation Experiments

First, 20 g of kaolin was added to 1 L of deionized water and then stirred evenly at
500 rpm. The prepared suspension was used for flocculation (pH = 7). Subsequently, an
appropriate volume of the prepared flocculant solution was injected into a 250 mL settling
tube containing a kaolin suspension at a concentration of 20 g/L. Next, the tube was capped
and inverted five times at room temperature. Then, the settling tube was quickly placed
upright on the test bench, and the level of the clarified liquid was recorded over time as the
suspended particles settled. After 5 min, the height of the accumulated flocs was recorded.
The transmittance and absorbance of the supernatant were determined with a Shanghai
Jinghua 721 visible spectrophotometer. The zeta potential of the supernatant was measured
by a zeta potential analyzer (PANalytical, Malvern Instruments, Malvern, UK).

2.5.2. Dewatering Experiments

After the suspension settled, a vacuum pump was turned on, the pressure was set to
0.08 MPa, and the suspension was poured into a Brinell funnel for vacuum filtration. After
filtration, the dewatering time was recorded. The filter cake was dried at 105 ◦C for 2 h.
The mass of the filter cake before and after drying was recorded. The moisture content of
the filter cake was calculated according to Equation (4) as follows:

Moisture content% =
M1 − M2

M1 − M0
× 100% (4)

where M0 is the total mass of the beaker and filter paper, g; M1 is the total mass of the
beaker, filter cake, and filter paper after filtration, g; and M2 is the total mass of the beaker,
filter cake, and filter paper after drying, g.

The dewatering rate was calculated according to Equation (5) [24] as follows:

u =
V

T·π·R2 (5)

where u is the dewatering rate, cm/min; V is the volume of filtrate, mL; T is the dewatering
time, s; and R is the radius of the Brinell funnel, cm.
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2.6. FBRM Test

The flocculation behavior and properties of the flocs formed in kaolin suspensions
were monitored in real time using an FBRM instrument (G400, Mettler Toledo, Zurich,
Switzerland). Kaolin (5 g) was added to 250 mL of deionized water and mixed at 300 rpm
for 1 day to ensure that the particles were completely dispersed. Tests were performed at
150 rpm to keep the particles in suspension, and the flocculant was added to this suspension
2 min after the beginning of the FBRM test. Recordings were made every 2 s to dynamically
monitor the solution after the addition of the flocculant.

3. Results and Discussion
3.1. Structural Characteristics of AL-g-PAMA
3.1.1. FTIR Analysis

Figure 2 shows the FTIR spectra of AL, AM, MAPTAC, and AL-g-PAMA. Compared
to the FTIR spectrum of AL, that of AL-g-PAMA showed an amino group (N-H) stretching
vibrational peak at 3196 cm−1 that was not present before grafting; this amino group was
attributed to the introduction of the amide group (–NH2) in AM [25]. The absorption peak
at 2935 cm−1 corresponded to the asymmetric stretching vibration of the hypomethyl group
(–CH2) [26]. The telescoping vibrational peak located at 1672 cm−1 was attributed to the
introduction of carbonyl (C=O) in AM and MAPTAC [27]. The characteristic absorption
peaks at 1454 and 967 cm−1 corresponded to the bending vibration of –CH2 adjacent to
the quaternary ammonium and the telescoping vibration of (–N+(CH3)3) in MAPTAC,
respectively. In addition, in contrast to the FTIR spectra of AM and MAPTAC, that of AL-
g-PAMA retained the telescopic vibrational peak of the AL phenyl ring at 1600 cm−1 [28].
These data confirmed that MAPTAC and AM were successfully grafted into AL.
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Figure 2. FTIR spectra of AL, AM, MAPTAC, and AL-g-PAMA.

3.1.2. 1H NMR Analysis

Figure 3 shows the 1H NMR spectra of AL, AM, MAPTAC, and AL-g-PAMA. In the
1H NMR spectrum of AL-g-PAMA, the chemical shift at δ = 1.11 (Ha) ppm corresponded
to the methylene group (–CH2) on the main chain of CPAM [29,30]. The chemical shifts
at δ = 2.00 (Hd) and 1.85 (He) corresponded to the presence of hypomethyl (–CH) and
methyl (–CH3) groups, respectively, on the main chain of MAPTAC. The chemical shifts at
3.05 (Hg), 1.73 (Hh), 3.29 (Hi), and 3.17 (Hj) ppm represented the proton peaks of the three
methyl groups (–CH2) and three equivalent methyl groups on the quaternary ammonium
moiety (–N+(CH3)3) in the branched chain of MAPTAC, respectively [31,32]. Additionally,
AL-g-PAMA retained the benzene ring structure of AL. The chemical shift at δ = 3.90 (Hk)
ppm corresponded to the proton peak of the methoxy group (–OCH3), which was linked to
the benzene ring in AL. Analysis of the above spectra further demonstrated that AM and
MAPTAC were successfully grafted onto AL.
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3.1.3. XRD Analysis

The XRD patterns of AL and AL-g-PAMA are shown in Figure 4. The XRD pattern
for AL had four peaks near 2θ = 11.01◦, 22.32◦, 27.10◦, and 30.88◦, showing a typical
A-type XRD pattern [33]. Compared to the XRD pattern of AL, that of AL-g-PAMA had
broad dispersed peaks, indicating that its crystallinity was lower [30,34]. This decrease
in crystallinity indicated that the introduction of AM and MAPTAC led to an increase in
steric hindrance within AL-g-PAMA, which weakened intra- and intermolecular hydrogen
bonding, thereby resulting in a significant decrease in the overall structural order [35,36].
Therefore, AL-g-PAMA had an amorphous structure. In summary, the change in the XRD
peaks of AL-g-PAMA further confirmed that AM and MAPTAC were successfully grafted
onto AL.
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Figure 4. XRD patterns of AL and AL-g-PAMA.

Differences in the internal structure of flocculants inevitably cause changes in floccula-
tion performance. The crystal structure of AL was mainly attributed to hydrogen bonding
between phenolic hydroxyl groups and the ordered nature of the molecule. Poor floccu-
lation potential in AL was mainly attributed to the lack of cationic groups that could be
protonated with sludge particles and the short length of the branched chains. The grafting
of AM and MAPTAC was important for reducing the degree of crystallinity of AL, which
significantly improved its flocculation efficiency. This improvement likely occurred because
MAPTAC provided abundant quaternary ammonium groups that enhanced electrostatic
attraction between the flocculant and the kaolin particles. The long-branched structure of
AM greatly strengthened bridging and netting effects. This synergistic mechanism enabled
the suspended kaolin particles to combine and settle quickly during flocculation [37].
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3.1.4. SEM Analysis

Figure 5 shows SEM images of AL and AL-g-PAMA at 10,000× magnification. The
surface of AL in Figure 5a was uniform and smooth, with relatively few folds and de-
pressions, while the surface of AL-g-PAMA in Figure 5b was uneven, with irregular folds,
many raised structures, and numerous localized hollow structures of varying sizes. This
discrepancy in the morphologies likely occurred because the introduction of MAPTAC
disrupted hydrogen bonding on AL, resulting in the collapse of the original crystal structure
of AL and the alteration of its surface structure. This characterization also demonstrated
the successful grafting of AM and MAPTAC onto AL. The SEM images demonstrated that
AL-g-PAMA had a large specific surface area, increasing the possibility that it would make
contact with kaolin particles. This feature somewhat enhanced the netting and sweeping
effect of AL-g-PAMA on the suspended particles; therefore, the generated flocs could settle
quickly [25,31].
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3.1.5. TG Analysis

The stability of AL-g-PAMA was assessed through TG analysis (Figure 6). The data
revealed three weight-loss stages that occurred during the thermal decomposition of AL.
In the initial stage (26–187 ◦C, weight loss of 10.6%), bound water escaped from AL [38]; in
the second stage (187–281 ◦C, weight loss of 11.3%), phenolic hydroxyls were oxidized and
degraded, and aliphatic chains were broken and decomposed, which was accompanied
by the generation of H2O, CO2, and CO; and in the third stage (281–700 ◦C, weight loss of
24.9%), benzene rings in AL were destroyed, and coke residue was formed [39].

In contrast to the differential TG curve of AL, the TG curve of AL-g-PAMA was
divided into four weight loss stages. The first two stages were similar to those of AL.
However, in the third stage (244–322 ◦C, weight loss of 15.8%), the amide groups in AM
and MAPTAC underwent thermal decomposition and imidization, and the methyl group
on the quaternary ammonium group of MAPTAC was removed [40]. When the temperature
was 383 ◦C, there was a weak exothermic peak in the DSC curve of AL-g-PAMA. This
occurred because after the introduction of AM and MAPTAC into AL, the original molecular
structure of AL was destroyed, and thermal decomposition of both amide groups and the
AL backbone occurred during heat treatment. These results indicated that the original
thermal decomposition properties of AL were altered by the grafting of AM and MAPTAC.
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Figure 6. Thermal stability analysis of (a) AL and (b) AL-g-PAMA.

3.2. Flocculation and Dewatering Performance

To investigate the main factors affecting flocculation performance, five representative
types of AL-g-PAMA were selected for subsequent flocculation experiments, with specific
details shown in Table 1.

Table 1. Details of the experimental flocculants.

Flocculant Weight of AL
(g)

Weight of AM
(g)

Volume of
MAPTAC

(mL)

Weight of KPS
(g)

Volume of the
Solution

(mL)

Intrinsic
Viscosity

(dL/g)

Grafting
Efficiency of

PAMA
(%)

AL-g-PAMA #1 8.7 21.8 12.6 2.0 100 3.4 77.1
AL-g-PAMA #2 8.7 21.8 12.6 3.0 100 4.7 79.8
AL-g-PAMA #3 11.2 36.5 8.1 4.0 100 5.3 67.5
AL-g-PAMA #4 8.7 21.8 12.6 5.0 100 6.6 73.8
AL-g-PAMA #5 8.7 21.8 12.6 4.0 100 6.4 87.7

CPAM - - - - - 7.6 -

CPAM: commercial polyacrylamide.

3.2.1. Effect of AL-g-PAMA Type on Flocculation Performance

The intrinsic viscosity of a polymer is directly proportional to its relative molecular
weight. Flocculants with higher molecular weights generally provide more active sites
than those with lower molecular weights, thus forming larger flocs and exhibiting greater
adsorption capacity; these features promote effective particle coagulation and settling [41].
Therefore, intrinsic viscosity is an important indicator for evaluating the flocculation
performance of AL-g-PAMA [42]. As shown in Figure 7a, although the intrinsic viscosities
of the three AL-g-PAMA were different, the flocculation efficiencies of the three flocculants
on kaolin suspensions showed similar trends with increasing dosage. At the same dosage,
the flocculation efficiency of the kaolin suspension treated with AL-g-PAMA #5 was the
greatest. This likely occurred because AL-g-PAMA #5 had the highest intrinsic viscosity
as well as long linear polymer chains that were able to easily form a network structure,
thereby increasing the possibility of collision between AL-g-PAMA and kaolin particles [43].
Thus, the colloids formed “bridges” with each other and adsorbed more kaolin particles;
these particles aggregated, flocculated, and settled to the bottom of the system.

For the AL-grafted cationic monomers in this study, the PAMA grafting efficiency was
related to the amount of introduced charge. As shown in Figure 7b, the transmittance of the
supernatants after AL-g-PAMA treatment with three different grafting efficiencies tended to
increase and then decrease with increasing flocculant dosage. The supernatant of the kaolin
suspension treated with AL-g-PAMA #5 had the highest transmittance. AL-g-PAMA #5 had
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the highest grafting efficiency, which indicated that this flocculant contained the greatest
proportion of quaternary ammonium groups and that the surface of AL-g-PAMA #5 had
more positive charges. When treating negatively charged kaolin particles, the positively
charged AL-g-PAMA #5 exerted stronger electric neutralization effects and achieved better
flocculation efficiency. In summary, charge neutralization and bridging played important
roles in the flocculation and sedimentation process of this flocculant in kaolin suspensions.
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Figure 7. (a) Effect of the intrinsic viscosity of AL-g-PAMA on the transmittance of the supernatant.
(b) Effect of AL-g-PAMA grafting efficiency on supernatant transmittance.

3.2.2. Effect of AL-g-PAMA #5 Dosage on Flocculation Performance

To thoroughly investigate the flocculation performance of AL-g-PAMA, AL-g-PAMA
#5 (which showed remarkable flocculation efficiency) was further considered. Figure 8a
shows the effect of the AL-g-PAMA #5 dosage on the settling velocity of the kaolin suspen-
sion and the thickness of the compressed layer. The addition of AL-g-PAMA #5 improved
the settling velocity of the kaolin suspension and maintained the settled film within a
stable range. In contrast, an excessively fast settling velocity results in insufficient aggre-
gation of all suspended particles, leaving some solids in the supernatant. As the dosage
of AL-g-PAMA #5 increased, the settling velocity increased and then decreased, whereas
the thickness of the compression layer decreased slightly and then increased. When the
flocculant was present in excess, the binding sites on the surfaces of the particles became
saturated. This excess flocculant did not bind effectively to the particles, creating additional
voids in the composite structure. These voids resulted in instability and looseness of the
resulting flocculated structure, which increased the resistance of the particles to settle in
the liquid. As a result, the settling velocity of the particles decreased [24]. Simultaneously,
loose flocs could lead to a thicker compression layer thickness.

Figure 8b shows the effect of different dosages of AL-g-PAMA #5 on the clarity of the
kaolin suspension supernatant. This clarity increased and then decreased with increasing
the flocculant dosage. The best clarity was reached when the dosage of AL-g-PAMA #5 was
600.0 g/t(s) and the transmittance was 84.0%. When the dosage of AL-g-PAMA #5 exceeded
600.0 g/t(s), the transmittance decreased, and the flocculation efficiency decreased. An
excessive flocculant caused a decrease in the settling velocity of the particles, resulting in
an increase in the content of solid particles in the supernatant, as well as the formation of
larger flocs and colloidal particles. These phenomena reduced the clarity of the supernatant.
The optimal settling was achieved at a dosage of 600.0 g/t(s).
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Figure 8. (a) Effect of varied t dosages on the flocculation settling velocity and thickness of the
compression layer of the kaolin suspension. (b) Effect of different dosages on the clarity of the
supernatant of the kaolin suspension.

3.2.3. Effect of AL-g-PAMA #5 Dosage on Dewatering Performance

Figure 9 shows the effect of varied dosages of AL-g-PAMA #5 on the dewatering of
kaolin suspensions. The evaluation indices included the dewatering rate and the moisture
content of the filter cake. The original kaolin filter cake had a moisture content of 55.0%
and a dewatering rate of 83.6 mL/(s·m2) without the addition of any flocculant. When the
dosage of AL-g-PAMA #5 was increased, the dewatering rate increased and then decreased,
while the moisture content decreased and then increased. When the dosage of AL-g-PAMA
#5 reached 600.0 g/t(s), the dewatering rate reached a maximum of 110.0 mL/(s·m2), while
the moisture content decreased to a minimum of 43.4%. Therefore, the addition of AL-
g-PAMA #5 increased the dewatering rate of the suspension and reduced the moisture
content of the kaolin filter cake. The addition of the flocculant enhanced interactions
between kaolin particles, resulting in the aggregation into larger flocs that were easily
captured and precipitated, thus increasing the dewatering rate. Moreover, the pore spaces
within these aggregated flocs were reduced, making it easier for water to be discharged
from the filter cake and reducing the moisture content of the cake [44,45]. When the quantity
of AL-g-PAMA #5 exceeded 600.0 g/t(s), the dewatering rate decreased while the moisture
content increased. This might have occurred because the dosage of AL-g-PAMA #5 in
the kaolin suspension was very high and the hydrogen bonding forces between particles
and water molecules were strong; therefore, the solid-liquid separation was hindered, the
dewatering rate slowed, and the amount of water inside the flocs increased.
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3.3. Interaction between AL-g-PAMA and Kaolin Particles
3.3.1. Zeta Potential Analysis

The zeta potential is commonly employed to characterize the mechanism of electri-
cal neutralization during flocculation by analyzing changes in the electric double-layer
potential of colloidal particles [46]. Figure 10 shows the variation in the zeta potential
of the reaction system with changing the AL-g-PAMA #5 dosage. When the dosage of
AL-g-PAMA #5 was lower than 400.0 g/t(s), the zeta potential of the supernatant increased
slowly with increasing the AL-g-PAMA #5 dosage. In this case, the flocculation mechanism
of AL-g-PAMA #5 was mainly driven by the bridging and net trapping effects. When
the dosage was 400.0–600.0 g/t(s), the zeta potential increased rapidly and shifted from a
negative to a positive potential. In this case, the flocculation mechanism of AL-g-PAMA #5
was mainly driven by charge neutralization. The surface charge of the negatively charged
suspended kaolin particles was rapidly neutralized, and the particles were destabilized,
such that the supernatant was positively charged [47]. When the dosage of AL-g-PAMA #5
exceeded 600.0 g/t(s), the increase in zeta potential slowed. Excess flocculant remained on
the surface of the kaolin particles to form a covering layer that prevented direct interactions
between the charges in the solution and the particles and slowed the increase in the zeta po-
tential. In this case, the flocculation efficiency deteriorated, indicating that “restabilization”
occurred, which was detrimental to the flocculation performance [48].
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Figure 10. Effect of the AL-g-PAMA #5 dosage on zeta potential.

3.3.2. FBRM Results

Figure 11a shows the distribution of the number of particles of different sizes with
time during flocculation after the addition of AL-g-PAMA #5. The number of particles in
the kaolin suspension system before the addition of flocculant was approximately 40,000.
A total of 60.3% of the particles had a size less than 10 µm; 39.7% consisted of 10–100 µm
particles; and less than 0.01% consisted of larger than 100 µm particles. After the system
was homogeneously stirred for 2 min, the flocculant was added. Then, the number of
particles in the system rapidly decreased, with the number of particles smaller than 10
µm decreasing by 99.9% and the number of particles in the size range of 10–100 µm
decreasing by 99.5%; however, the number of particles in the size range of 100–1000 µm
increased. The high positive charge and long-chain structure of AL-g-PAMA #5 led to the
continuous aggregation of fine particles smaller than 100 µm. The formation of larger flocs
was beneficial for improving the settling efficiency [49].

Different types of flocculants have different effects on supernatant clarity [24]. There-
fore, the dynamic distribution of particles during the flocculation of kaolin suspensions
by AL-g-PAMA #5 was investigated using FBRM. Figure 11b shows the dynamics of the
number of kaolin particles with time after the addition of different types of flocculants. The
chord length of the original sample was 27 µm. After the addition of AL, the chord length
distribution of the kaolin particles was similar to that of the original sample, albeit with
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more dispersion, and the chord lengths of most of the particles did not change. This result
demonstrated that lignin did not enable flocculation. The size of the flocs increased signifi-
cantly with the addition of CPAM and AL-g-PAMA #5. CPAM and AL-g-PAMA #5 had
similar chord length distributions. The chord lengths of most of the particles with CPAM
were between 570 and 630 µm, while the chord lengths of the particles with AL-g-PAMA
#5 mainly ranged from 480 to 550 µm. Moreover, AL-g-PAMA #5 contained more particles
than CPAM. These results confirmed that flocculation efficiency improved after treatment
with AL-g-PAMA #5 [50].
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The AL-g-PAMA #5 and commercial flocculant (CPAM) results for flocculation and
dewatering of the kaolin suspension at a dosage of 600.0 g/t(s) are shown in Table 2.
Compared with the results for CPAM, the kaolin suspension treated with AL-g-PAMA #5
had a moderate settling velocity, a clear supernatant, a thinner compression layer, and a
lower moisture content in the filter cake. Considering the FBRM analysis curve shown
in Figure 11, the kaolin flocs treated with CPAM were larger, and their settling velocity
increased. The CPAM-treated flocs were loose, resulting in lower floc compressibility
and a thicker compression layer. The oversized flocs contained more water; therefore,
the moisture content of the filter cake increased after dewatering. The kaolin particles
treated with AL-g-PAMA #5 were tightly aligned, forming flocs with small pores and dense
structures. The flocs of kaolin particles treated with AL-g-PAMA #5 contained less water,
and the dewatering efficiency improved [51]. Currently, mine wastewater treatment is
increasingly being performed via integrated precipitation and dewatering, and the excellent
dewatering effect of AL-g-PAMA is conducive to improving the solid-liquid separation of
suspensions in these systems. In addition, CPAM is biodegradable and toxic, and the use of
CPAM carries the risk of secondary pollution. Therefore, AL-g-PAMA can replace CPAM
as an environmentally friendly and efficient flocculant for the solid-liquid separation of
kaolin suspensions.

Table 2. Flocculation and dewatering performance of different flocculants.

Flocculant Type Transmittance
(%)

Settling Velocity
(cm/min)

Thickness of the
Compressed Layer

(cm)

Filter Cake Moisture
Content

(%)

AL-g-PAMA #5 84.0 ± 0.5 24.1 ± 1.0 2.2 43.4 ± 0.5
CPAM 84.2 ± 1.1 31.0 ± 1.7 2.8 47.7 ± 1.1
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3.3.3. Flocculation Mechanism of AL-g-PAMA

There are three main mechanisms involved in the proposed flocculation process: elec-
troneutralization, adsorption and bridging, and netting and sweeping [52]. In general,
the internal structure of the flocculant has a large influence on the flocculation and de-
watering performance of kaolin [29]. In this study, the successful synthesis of AM and
MAPTAC on the AL backbone was demonstrated by a series of characterization methods.
AM was introduced to increase the molecular weight of AL and strengthen adsorption-
driven bridging during the flocculation process. MAPTAC was introduced to increase
the number of positive charges on AL and enhance adsorption and electroneutralization
during flocculation. MAPTAC, which has a long molecular chain, large side groups, and a
large molecular volume, strengthened bridging and net trapping during flocculation [52].
Moreover, SEM analysis (see Figure 5) revealed that many pores of different sizes were
distributed on the surface of AL-g-PAMA, indicating that its specific surface area increased.
Thus, the bridging and netting effects were enhanced. Subsequently, these fine pores served
as drainage channels, greatly improving the filterability and compressibility of the sludge.

In addition, the type and dosage of flocculants have important effects on the flocculation
mechanism. In this study, the transmittance (see Figure 7) and zeta potential (see Figure 10)
of the supernatants from different AL-g-PAMA flocculation treatments were analyzed to
identify the mechanism underlying the corresponding flocculation processes. When the
AL-g-PAMA dosage was in a range of 0–400.0 g/t(s), the zeta potential increased slowly, and
the improvement in the supernatant clarity was attributed to the adsorption bridging and
net trapping effects of AL-g-PAMA. Under optimal conditions, the dominant flocculation
mechanism was electroneutralization. Considering the effect of the AL-g-PAMA #5 dosage
on the dewatering performance (see Figure 9) and the FBRM curve (see Figure 11), the chord
lengths of the AL-g-PAMA #5 particles increased from 27 µm to approximately 510 µm. Large
kaolin flocs formed a denser filter cake with a better dewatering performance. The floc size
plays a crucial role in kaolin dewatering, which is associated with electroneutralization, as
well as the net trapping and sweeping effects of AL-g-PAMA [53].

Based on this discussion, the flocculation mechanism of AL-g-PAMA in kaolin sus-
pensions is schematically shown in Figure 12. First, the positively charged quaternary
ammonium and amino groups in AL-g-PAMA enhance charge adsorption during floc-
culation. At this stage, negatively charged kaolin particles are bound to the surface of
AL-g-PAMA and subsequently aggregate by collision under electrostatic attraction. Then,
due to the high ductility of AL-g-PAMA, the unstable colloidal particles aggregate into
large and dense flocs by bridging and reticulation. Eventually, the flocs settle to the bottom
of the settling tube. Due to these mechanisms, AL-g-PAMA showed efficient flocculation
and dewatering effects.
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4. Conclusions

In this study, AM and MAPTAC were investigated as graft monomers to modify
AL. A novel cationic flocculant (AL-g-PAMA) was synthesized by thermally initiated
copolymerization. The FTIR, 1H NMR, XRD, TG, and SEM results confirmed the successful
synthesis of AL-g-PAMA. The SEM results showed that AL-g-PAMA had a porous and
uneven surface structure.

The addition of AL-g-PAMA significantly improved the flocculation, sedimenta-
tion, and dewatering of the kaolin suspension. When the dosage of AL-g-PAMA #5
was 600.0 g/t(s), the thickness of the compressed layer was 2.2 cm, the settling velocity
was 24.1 cm/min, and the transmittance of the supernatant was 84.0%. These values
corresponded to the optimal conditions for flocculation of the kaolin suspension. The
flocculation efficiency of AL-g-PAMA #5 was equivalent to that of CPAM. Furthermore,
vacuum filtration was conducted at this dosage, reducing the moisture content of the
resulting filter cake by 11.6%. The moisture content of the kaolin filter cake treated with
AL-g-PAMA was 4.3% lower than that of the kaolin filter cake treated with CPAM.

AL-g-PAMA exhibited excellent flocculation performance on suspended particles due
to the strong net trapping and electroneutralization effects of the grafted AM and cationic
MAPTAC.

Organic flocculants, such as CPAM, exhibit problems, such as high toxicity and re-
sistance to degradation. In contrast, AL-g-PAMA is a highly efficient, low-consumption,
and environmentally friendly flocculant that provides a novel approach to the treatment of
kaolin suspensions.
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