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Abstract: Meat quality and shelf life are important parameters affecting consumer perception and
safety. Several factors contribute to the deterioration and spoilage of meat products, including
microbial growth, chemical reactions in the food’s constituents, protein denaturation, lipid oxidation,
and discoloration. This study reviewed the development of functional packaging biomaterials that
interact with food and the environment to improve food’s sensory properties and consumer safety.
Bioactive packaging incorporates additive compounds such as essential oils, natural extracts, and
chemical substances to produce composite polymers and polymer blends. The findings showed that
the incorporation of additive compounds enhanced the packaging’s functionality and improved the
compatibility of the polymer–polymer matrices and that between the polymers and active compounds.
Food preservatives are alternative substances for food packaging that prevent food spoilage and
preserve quality. The safety of food contact materials, especially the flavor/odor contamination from
the packaging to the food and the mass transfer from the food to the packaging, was also assessed.
Flavor is a key factor in consumer purchasing decisions and also determines the quality and safety
of meat products. Novel functional packaging can be used to preserve the quality and safety of
packaged meat products.

Keywords: meat products; biodegradable; functional packaging; food preservative; meat quality;
flavor contamination; odor

1. Introduction

Petroleum-based plastic packaging is environmentally unfriendly because petroleum
plastics produce high carbon emissions during their extraction and refinement processes [1].
Petroleum-based plastic packaging is poorly biodegradable and can take more than a hundred
years to degrade. Environmentally friendly bioplastic packaging is now widely used in the
food industry [2,3], and the biocircular green (BCG) economic model has promoted increasing
consumer demand for biodegradable plastics [1–3]. In recent years, the packaging industry
has undergone a transformative shift towards sustainability and eco-conscious solutions. With
growing concerns about environmental degradation and plastic pollution, there is a pressing
need for innovative packaging technologies that preserve the quality and safety of food
products and minimize their environmental footprint [3–6]. In this context, the emergence of
functional biodegradable packaging represents a groundbreaking advancement.

Bioplastic materials represent a significant stride toward sustainability in packaging
and material production. These materials are derived from renewable biomass sources such
as plant starches, cellulose, or even agricultural waste, offering an eco-friendly alternative
to traditional plastics and also reducing carbon emissions. Bioplastics can be categorized
based on their composition, which includes biobased, biodegradable, or both [3,5,7,8].
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Bioplastic materials present a viable alternative to traditional petroleum-based plastics.
Bioplastics represent a burgeoning field within the broader realm of sustainable materials
science. The state of the art in bioplastic materials is characterized by ongoing advance-
ments in feedstock utilization, biodegradability, performance properties, and processing
technologies [9,10]. These developments have contributed to the growing adoption of
bioplastics across various industries, fostering a more sustainable approach to plastic pro-
duction and consumption. Functional bio-material packaging offers a holistic approach
to addressing the dual challenges of food preservation and environmental sustainability.
When engineered with functional properties tailored to meat products, such as barrier en-
hancement, antimicrobial efficacy, and active packaging features, biodegradable packaging
can revolutionize the way meat is packaged, distributed, and consumed [8,11–13].

The critical factors at different stages of the meat supply chain that effect the shelf life of
packaged fresh meat and potential strategies to improve its quality have been reviewed [14].
Furthermore, the utilization of active functional packaging materials in the meat industry
has garnered significant attention due to their potential to enhance food safety, extend shelf
life, and maintain product quality. The potential of applying essential oils, nanoparticles,
and natural antioxidants in functional meat packaging has been reviewed [15–17]. However,
a comprehensive review of the meat quality standards and packaging necessities needs
to be thoroughly evaluated. This review evaluates the application of alternative active
packaging materials, particularly in the realm of meat packaging, including chemical
additives and natural extracts. We also focus on evaluating the utilization of biodegradable
packaging materials such as PBAT, PLA, and starch, whether used singly or in blends.
Moreover, this review investigates the factors contributing to meat spoilage and flavor/odor
contamination of meat products by packaging components, offering insights into the
strategies for improving packaging performance and ensuring consumer safety.

2. Major Challenges for Meat Products

Meat products are an important source of protein and rich in key nutrients, minerals,
vitamins, and water, thereby supporting human health. Fresh meat is a highly perishable
food due to the composition of meat, while its high water activity (aw > 0.95) promotes the
propagation of spoilage and pathogenic microorganisms. The quality and shelf life of meat
products are determined by their color, odor, texture, and flavor. The factors impacting
meat’s deterioration include holding time, temperature, storage conditions, moisture, pH,
relative humidity, water activity, and atmosphere. Both intrinsic and extrinsic factors play
critical roles in meat quality changes [18].

2.1. Meat Composition

Meat is composed of macromolecules including protein, fat, minerals, and vitamins.
Its protein content ranges from 16 to 22% and averages 18.5% of the weight of muscle. Meat
is very low in carbohydrates at 0.5–1.5%, with its lipid and fat contents ranging from 1
to 13% depending on the muscle type and animal age. Meat also contains non-protein
nitrogenous substances (phosphate, peptides) and other non-protein substances (minerals,
vitamins) at 1.7% and 0.85%, respectively. The percentage of water (approximately 75%) in
the muscle plays a key role in supporting microorganism growth [19,20].

2.2. Quality and Safety of Meat Products

Meat quality is described according to its appearance, texture, flavor, odor, and color,
with its nutritional value resulting from chemical/biochemical, microbiological, and physi-
cal reactions. Interactions between both intrinsic and extrinsic factors impact the occurrence
of reactions that affect the quality, shelf life, and safety of food products [21].

2.2.1. Discoloration

Meat color is an important factor in purchasing decisions because consumers use color
to discern the freshness of meat. Color preservation of meat in the food industry can be
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achieved by introducing additives such as salt and nitrite and using modified atmosphere
packaging (MAP) and vacuum packaging [20,22]. Myoglobin is a complex muscle protein
and gives meat its red color. The color of myoglobin is determined by oxidation–reduction
(redox) reactions, with a reduced ferrous form (Fe2+) or an oxidized ferric form (Fe3+).
Myoglobin can exist in four redox states, namely (i) oxymyoglobin (Fe2+), (ii) metmyoglobin
(Fe3+), (iii) deoxymyoglobin (Fe2+), and (iv) carboxymyoglobin (Fe2+), which cause the
meat color to be bright red, brown, purple, or cherry red, respectively [21,23].

The interrelationships of myoglobin as primarily responsible for meat color are shown
in Figure 1. The reversible reaction between oxymyoglobin and deoxymyoglobin is ex-
plained by oxygenation and deoxygenation, attributed to the amount of oxygen present. De-
oxymyoglobin is detectable as purple on meat’s surface, typically associated with vacuum-
packaged products because of their rapid oxygen change to a low oxygen concentration
(0.5–1.0%), while oxygenation occurs when myoglobin is rapidly exposed to oxygen, gener-
ating a red color.
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Oxidation occurs when heme iron is converted from the ferrous into ferric form.
Metmyoglobin is a stable form that can exist either as oxymyoglobin or deoxymyoglobin.
The formation of metmyoglobin from oxymyoglobin results from the lipid oxidation rate,
which depends on oxygen partial pressure, temperature, pH, meat activity, and microbial
growth. The reduction reaction works in the opposite way to oxidation. All the reactions in
this cycle are reversible, with different discoloration according to the storage conditions,
which depend on intrinsic factors, including pH, type of muscle, and meat activity, and
extrinsic factors, including temperature, oxygen content, and the environment [20–23].
Deoxymyoglobin undergoes a wide variety of reactions, leading to discoloration in meat.
Bacterial discoloration occurs in the log phase of microbial growth, when a high oxygen
content affects the growth of aerobic bacteria and causes the formation of myoglobin. Some
bacteria produce hydrogen sulfide (H2S) and hydrogen peroxide (H2O2), which react with
deoxymyoglobin to produce sulfmyoglobin and choleglobin, respectively. The resulting
pigment gives meat a green color. Oxysulfmyoglobin is generated when meat is exposed
to high oxygen levels (oxygenation) and causes a red appearance [21,24]. The packaging
types used to preserve a red color in meat are shown in Table 1.
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Table 1. Active packaging used to maintain or improve the color stability of meat.

Material Additive or Condition Food Product Quality References

Polypropylene trays

Modified atmosphere
packaging: (i) HiOx MAP
(80% O2/20% CO2) and (ii)
CO MAP
(0.4%CO/30%CO2/
69.6% N2)

Beef steaks
Both MAP steaks developed
bioprotective strategies to
improve their color stability

[25]

Styrofoam trays

Modified atmosphere
(70%O2 + 20%CO2 + 10%
N2) and ascorbic acid,
taurine, carnosine, and
rosemary powder

Beef patties

- Rosemary powder and
rosemary–ascorbic acid were
effective in inhibiting the
oxidation of both lipids and
myoglobin
- Ascorbic acid, taurine +
ascorbic acid, and carnosine +
ascorbic acid showed a small
inhibitory effect on
myoglobin oxidation

[26]

Multilayer polyolefin bag
Rosemary extract and
sodium lactate with
vacuum packaging

Ground ostrich meat

Rosemary extract retarded the
formation of TBARS and showed
the highest protection
against discoloration

[27]

TPS/linear low-density
polyethylene (LLDPE)

Incorporated sodium
nitrite into film Pork Films containing nitrite

effectively improved redness [28]

PBAT/TPS

Incorporated nisin and
nisin-
ethylenediaminetetraacetic
acid into film

Pork

PBAT/TPS films containing
EDTA and nisin effectively
inhibited lipid degradation,
stabilized redness, and delayed
meat discoloration

[29]

Color stability in meat products is mostly achieved using modified atmosphere pack-
aging to alter the concentrations of nitrogen, oxygen, carbon dioxide, and carbon monoxide.
Meat is also immersed in various solutions such as tea catechins, Vitamin E, thymol, car-
vacrol, and grapefruit seed extract to reduce oxidation and preserve color stabilization.
However, scant research has addressed the use of additives to develop functional pack-
aging and improve the color stability of meat and poultry products. Copious research is
now focused on novel functional packaging for extending the shelf life and preserving the
quality of meat products.

2.2.2. Texture

Texture is one important indicator of the quality of meat products influencing con-
sumer acceptability and satisfaction. Texture describes meat’s firmness, tenderness, and
juiciness depending on its physicochemical and biochemical changes [20]. Firmness and
tenderness are complex quality parameters, described as the mechanical strength of muscle
and connective tissue, which is affected by both antemortem and postmortem factors.
Intrinsic antemortem factors affecting meat tenderness include the animal species, connec-
tive tissue, muscle fiber cells, and fat, while postmortem factors impacting meat’s texture
include the temperature and pH of the muscle, proteolysis, and its water-holding capac-
ity [19,20,30]. Protein oxidation is associated with both physical and chemical changes in
meat quality and is linked to meat tenderness. Protein oxidation occurs through a loss of
enzyme activity and the formation of amino acids, leading to a loss of amino acid structure,
a reduced water-holding capacity, and decreased protein solubility [20].

Texture can be improved using salt marination, high-pressure processing, irradiation,
and a modified atmosphere to reduce water loss and increase products’ shelf life [31].
Seyfert et al. [32] investigated the impact of modified atmosphere packaging on the ox-
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idative and sensory properties of beef. The results showed that a low oxygen content
decreased oxidation and improved its tenderness, while Kim et al. [33] found that modified
atmosphere packaging (70% O2/30% CO2) reduced the cross-linking of myosin chains
through disulfide bonding and the content of protein thiols, indicating protein oxidation,
with reduced tenderness and juiciness of the meat. Protein oxidation or deformation
modifies the texture of meat.

2.2.3. Flavor and Odor

Flavor and odor are factors used to determine the quality of meat and impact consumer
perception. Flavor and odor are important quality attributes of muscle foods and comprise
the two sensations of taste and aroma or smell. The characteristics of flavor and odor
depend on the animal species, temperature, and method of cooking. Beef, chicken, and
pork contain many organic compounds, such as hydrocarbons, alcohols, aldehydes, ketones,
carboxylic acids, esters, lactones, ethers, furans, pyridines, pyrazines, pyrroles, oxazoles and
oxazolines, thiazoles and thiazolines, thiophenes, and other sulfur- and halogen-containing
substances [34]. In fresh meat, flavor and odor denaturation occur as an off flavor/odor
and rancidity during storage as a result of lipid oxidation [20,34,35].

Lipid oxidation causes quality deterioration in flavor and odor, as well as in color and
texture, as described previously. Lipid oxidation occurs due to fatty acid and phospholipid
exposure to oxygen and is accelerated by light and catalysts such as free iron. Free iron is
an important catalyst because it is abundant in meat muscle. Lipid oxidation consists of
three steps: (i) initiation, (ii) propagation, and (iii) termination [36,37].

(i) Initiation step: Free radicals such as the hydroxy radical (•OH), abstracted from an
unsaturated fatty acid, are accelerated by free iron to form the lipid peroxyl radical, which
then undergoes molecular rearrangement to form conjugated dienes or trienes.

(ii) Propagation step: The lipid peroxyl radicals from the initiation step react with
molecular oxygen to form peroxyl radicals (•OO), which then abstract hydrogen from
adjacent lipid molecules, resulting in lipid hydroperoxide (OOH). This then reacts with
molecular oxygen to form new peroxyl radicals, and the reaction continues.

(iii) Termination step: Peroxyl radicals (•OO) react with radicals or other non-radical
compounds (antioxidants) to form a non-radical product.

The use of natural antioxidants to increase meat’s oxidative stability is a topic of
great interest, whereby an antioxidant compound transfers a hydrogen atom to the radical
derived from lipid oxidation. This reaction neutralizes the lipid radical and creates a new
radical from the antioxidant compound [36].

2.2.4. Microorganisms

Microorganisms play an important role in meat quality and safety because microbial
contamination or microbial growth is of the highest concern for consumers. Meat and
poultry have a high water activity (aw > 0.95) and are highly perishable products. Microbes
including bacteria, yeast, and mold lead to spoilage and pathogens. Microorganisms break
down the fats, carbohydrates, and proteins in the meat muscle, causing oxidation and
chemical deformation, resulting in off flavors, off odors, slime formation, texture change,
gas production, and discoloration, which impact consumer acceptability [38,39].

The microorganisms mostly found in meat include Arthrobacter spp., Acinetobacter spp.,
Aeromonas spp., Staphylococcus spp., Enterococcus spp., Moraxella spp., Psychrobacter spp., Pseu-
domonas spp., Cladosporium spp., Geotrichum spp., Mucor spp., Rhizopus spp., Sporotrichum
spp., Thamnidium spp., Candida spp., and Torulopsis spp. [38–40]. Indications of the microbial
population are expressed as organisms per square meter or as organisms per gram. Generally,
the initial microbial counts in meat range from 102 to 105 CFU/cm2, and meat starts to spoil
at a total viable count of 106 CFU/cm2, resulting in the production of an off flavor, while at
108 CFU/cm2, the meat shows slime on its surface and discoloration [41,42].
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3. Bioplastic Materials

Bioplastics are sustainable materials produced from renewable resources or obtained
from biomass that are used to produce environmentally friendly packaging with reduced
carbon emissions. Bioplastic, biobased, or biodegradable materials can be classified accord-
ing to the type of plastic, as shown in Figure 2. The bioplastic materials that are fossil-based
or made according to chemical synthesis through polymerization include polybutylene
adipate-co-terephthalate (PBAT), polycaprolactone (PCL), and polyvinyl alcohol (PVOH).
Bioplastics are also made from natural resources such as sugar cane, starch, cellulose, and
seaweed. Cellulose-based material can be prepared using 2,2,6,6-tetramethylpiperidine-
1-oxyl (TEMPO)-oxidized bacterial cellulose powder [43]. The bioplastics produced from
microorganism fermentation include polylactic acid (PLA) and polyhydroxyalkanoate
(PHA). However, not all bioplastics made from biobased natural resources are biodegrad-
able. Biodegradable materials undergo polymer transformation by biological organisms
and can be easily cleaved through hydrolysis or enzymatic activity [5,6,13].
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Bioplastic materials have diverse properties. This study focused on PBAT, starch, PLA,
cellulose, and PBS as the biodegradable materials mostly used in the plastic industry and
produced as flexible and rigid materials to support market demand [4]. The current market
studies forecast the global production capacity of biodegradable materials of 1.14 million
tons to reach 4.61 million tons between 2023 and 2028. This growth is stimulated by demand
from Asia and the United States [4].

3.1. Polybutylene Adipate-Co-Terephthalate (PBAT)

PBAT is a random co-polyester produced according to the polycondensation reaction
of adipic acid, 1,4-butanediol, and dimethyl terephthalate. PBAT is biodegradable and made
from a synthetic petroleum base including two segments of (i) polybutylene adipate (PBA)
and (ii) polybutylene terephthalate (PBT), containing both aliphatic and aromatic units, as
shown in Figure 3. The fractions of the aliphatic and aromatic units affect the biodegradable
rate and properties [45,46]. According to data from European Bioplastics [4], in 2023, the
global production capacities of PBAT represented 4.6% of the overall bioplastic production,
at more than 100 thousand tons [4]. PBAT has excellent mechanical properties compared
to polyesters such as polylactic acid and polybutylene succinate, while the mechanical
properties of PBAT show a high flexibility, similar to low-density polyethylene (LDPE).
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PBAT-based products have been widely used in many applications, such as shopping bags,
garbage bags, and mulch films. However, the limitations of PBAT include high production
costs and low transparency [3,46]. The improvement and development of PBAT properties
will be discussed later.
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3.2. Starch

Starch is a source of carbohydrates found in plants as energy reserve materials. This
polymeric mixture consists of two main polymers, amylose (liner polymer) (Figure 4a)
and amylopectin (branch structure) (Figure 4b). The structure of starch comprises D-
glucopyranose units joined together by glycosidic bonds between α-1,4-glycosidic linkages
and α-1,6-glycosidic linkages, as shown in Figure 4. The starch granules in semi-crystalline
starch consist of crystalline and amorphous regions, which are derived from amylose and
amylopectin, respectively. The amylose and amylopectin proportions depend on the source
type, molecular size, chain length distribution, and degree of polymerization [47–49]. The
proportions of amylose and amylopectin influence the fundamental and physicochemical
properties of starch, with variations in composition and structures related to the diverse
genotypic sources of starch.
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Starch is used in the food industry as a thickener and stabilizer and also for the
preparation of plastic materials because it is an abundant, low-cost, and biodegradable
renewable resource. Starch films can be prepared from plasticized starch as thermoplastic
starch (TPS) using plasticizers such as water, glycerol, and sorbitol to reduce their melting
point because the melting temperature of starch granules is higher than the decomposition
temperature (230 ◦C). Starch transforms from granules into TPS when heated at high
temperatures, with high shear forces and added plasticizers contributing to the de-structure
of the starch granules via extrusion processing [5,51,52].
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A plasticizer is incorporated into the material to increase the flexibility and process-
ability of starch and also reduce the glass transition temperature [53]. Molecules of the
plasticizer penetrate the starch granules (amylose and amylopectin) to break the inner
hydrogen bonding under high-temperature, high-pressure, and shearing conditions. Sub-
stitution through the starch–plasticizer interaction allows the starch network to be easily
deformed and eliminates the starch–starch reaction because the plasticizer molecules are
smaller and have higher molecular mobility than the starch molecules [54]. The most
common plasticizers used in the processing of TPS are water and glycerol. The type
and amount of plasticizer influence the films’ mechanical and barrier properties, thermal
stability, and transparency.

3.3. Polybutylene Succinate (PBS)

PBS is an aliphatic co-polyester produced through the polycondensation of succinic
acid and 1,4-butanediol, as shown in Figure 5. Monomers of PBS can be produced from
fossil-based or renewable resources according to bacterial fermentation. PBS is a semi-
crystalline polymer that influences the stiffness or mechanical strength, transparency, and
flexibility of materials. The properties of PBS depend on its degree of crystallinity. PBS
has similar properties and processability to polyolefins such as polyethylene (PE) and
polypropylene (PP) with a low glass transition temperature and high elongation at break
(more than 500%). PBS is widely used to produce packaging films, agriculture mulch films,
and compost bags [13,55–57].
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3.4. Polylactic Acid (PLA)

Figure 6 shows the chemical structure of PLA. PLA is an aliphatic polyester that is
synthesized through different polymerization processes, including (i) the polycondensation
of lactic acid and (ii) ring-opening polymerization of lactide [58]. Direct condensation of
lactic acid is easier in its synthesis and commercialization, but this process produces low-
molecular-weight products. Ring-opening polymerization is mostly used for PLA synthesis
to produce high-molecular-weight products [59]. Ring-opening polymerization of lactide
involves enantiomers such as L-lactide and D-lactide, to produce poly(L-lactide) (PLLA)
and poly(D-lactide) (PDLA), respectively. Both PLA forms have semi-crystalline structures
with glass transition and melting temperatures at around 55 and 175 ◦C, respectively. PLA
is highly brittle at room temperature and has poor thermal stability; therefore, it needs to
be modified and blended with other polymers to improve these limitations [5,13].
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3.5. Bioplastic Blends

Blending is an important process for modifying and improving the properties of
bioplastic polymers. Pure biopolymers have limitations during processing and poor prop-
erties compared to fossil-based or conventional polymers [3]. The properties of bioplastic
packaging, including PBAT, TPS, PBS, and PLA, are shown in Table 2.

Bioplastic limitations have led to the blending of various bioplastics to improve their
properties and increase economic competitiveness. Different blending ratios influence
the physical, chemical, morphological, and thermal properties of films. Zhai et al. [60]
demonstrated the effect of the TPS/PBAT ratios on films’ chemical and physical properties.
The compatibility of starch and PBAT improved by increasing the PBAT content from 10%
to 50%, while the film strength and flexibility improved through blending with PBAT,
which modified the barrier properties by improving the hydrophobic surface of the films.
Zhang et al. [61] prepared bioplastic blends of PLA and PBS that improved the properties
of pure PLA or PBS. They found that adding PBS increased the elongation at break and
decreased the tensile strength by enhancing the distinctive PBS features of flexibility, while
PLA acted as a rigid filler, with stiffness improvement. Garalde et al. [62] investigated the
impact of TPS/PBAT film ratios of 20/80, 40/60, and 60/40 on the films’ morphological,
mechanical, and thermal properties. The results showed that increasing the TPS/PBAT
ratio to 40/60 led to an improved polymeric component distribution and an increased
PBAT crystallization temperature, while the tensile properties of the TPS/PBAT films were
reduced by increasing the proportion of TPS. Bumbudsanpharoke, Wongphan, Promhuad,
Leelaphiwat, and Harnkarnsujarit [2] studied different PBAT/PBS ratios of 20/80, 40/60,
60/40, and 80/20 on microstructural modification, the degree of crystallinity, and relaxation
temperatures. The bioplastic blended polymer had smooth and compact microstructures,
causing compatibility and adhesion at the polymer interface. The barrier properties of the
bioplastic blended film increased with an increasing PBS content because the degree of
crystallinity followed a more tortuous path, with reduced permeation.

Table 2. Properties and applications of bioplastic packaging.

Bioplastic Properties Advantages Disadvantages Packaging
Applications References

PBAT

Tm~110–125 ◦C
EB > 500%
TS~15–20 MPa
WVP~3 g·mm/m2·d·kPa
OP~60 cm2·mm/m2·d·atm

High flexibility
Good biodegradability
Thermal stability
Good processing
stability

Low transparency
High production
costs

Blowing film
application
Mulch film
Cutlery
Bags

[2,3,46]

TPS

EB < 100%
TS < 5 MPa
WVP~7–11 10−10·g/s·m·Pa
Water solubility > 20%

Abundant renewable
resources
Biodegradable
Cheap biopolymer

Poor thermal
processability
Low water vapor
barrier
Moisture sensitivity
Retrogradation
processes

Compost bags
Food packaging
Edible film
Coating

[6,52,53,63]
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Table 2. Cont.

Bioplastic Properties Advantages Disadvantages Packaging
Applications References

PBS

EB~100–200%.
TS~25 MPa.
WVP~1.5 g·mm/m2·d·kPa
OP~30 cm2·mm/m2·d·atm

High flexibility
Excellent thermal
stability

High stiffness
High melt viscosity
for processing
Low transparency

Film (polymer
blends)
Film coating

[2,57,63]

PLA

Tm~130–210 ◦C
EB < 15%
TS~20–60 MPa
WVP~3 g·mm/m2·d·kPa
OP~60 cm2·mm/m2·d·atm

High strength
High transparency
High processability

High brittleness
Low heat distortion
temperature
Slow crystallization
rate

Tray
Bag
Metallized and
shrink films

[3,57,58]

Tm is melting temperature, EB is elongation at break, TS is tensile strength, WVP is water vapor permeability, and
OP is oxygen permeability.

However, polymer blends have limits due to the incompatibility between polymers,
giving poor mechanical and barrier properties. The properties of polymer blends depend
strongly on the miscibility (or immiscibility) of the polymers. Compatibility is necessary to
enhance the interfacial adhesion of the polymer blend, leading to a homogeneous structure
with strong mechanical properties and high barrier and thermal resistance properties [3,64].
A compatibilizer is a compound used to reduce the interfacial adhesion energy and im-
prove the adhesion between polymers. These compatibilizers have different responsibilities
and functionalities, such as crosslink agent, plasticizer, and hydrolytic agent, leading to
strong mechanical properties, a smooth surface structure, high water vapor and oxygen
barriers, and high thermal stability [65]. Commonly used compatibilizers for TPS/polyester
films are maleic anhydride, citric acid, itaconic acid, tartaric acid, and organic acid [66–68].
The compatibilizers used in PLA/PBS films include diphenyl diisocyanate, lysine triiso-
cyanate, lysine diisocyanate, glycidyl methacrylate, benzoyl peroxide, organoclays, and
epoxy functionality [57]. Compatibilizers can be extracted using essential oils such as car-
vacrol, citral, and α-terpineol to enhance the compatibility of PBAT/PLA and PBAT/PBS
packaging [69,70].

4. Bio-Functional Packaging

Packaging plays an important role in the food supply chain. Four primary functions of
packaging have been identified: (i) containment to move or transport something from one
place to another place; (ii) protection from physical and chemical damage such as water,
gases, microorganisms, dust, shocks, and force; (iii) convenience in responding to consumer
demand and promoting products; and (iv) communication as a silent salesman to convey
information to consumers [21].

Food packaging is used to protect food products from physical and chemical changes
including heat, light, oxygen, moisture, pressure, and microorganisms while also prevent-
ing biological activity. Packaging prevents the spoilage and contamination of food products
during storage, transport, and distribution [71]. Food marketing requires that the quality of
the food products must be preserved, and food packaging plays a key role in reducing the
impact of external factors and avoiding or delaying the deterioration of food quality. The
role of food packaging, along with marketing needs, has led to the development of active
or functional packaging that maintains or improves the quality of food products.

Active packaging is defined in European Regulation (EC) No. 450/2009 as “active
materials mean materials and articles that are intended to extend the shelf life or to maintain
or improve the condition of packaged food; they are designed to deliberately incorporate
components that would release or absorb substances into or from the packaged food or the
environment surrounding the food” [72]. Active packaging can be classified into release
and scavenger/absorber systems, including antimicrobial, antioxidant-, or carbon-dioxide-
releasing systems and systems absorbing oxygen, moisture, or ethylene, which prolong
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the shelf life or enhance the quality and safety of products [73]. Functional packaging
is enhanced in its ability to maintain, improve, or modify the quality and safety of food
products and also has modified or improved properties itself [71,74]. Functional packaging
can be produced using functional compounds including natural extracts such as essential
oil, herbs, and spices and synthetic chemical compounds such as potassium sorbate, citric
acid, and nano-oxide compounds. Functional compounds are widely used to preserve food
quality and agricultural products. Some properties of polymeric bioplastic packaging are
listed in Table 3.

Table 3. Related research on the development of functional bioplastic films for food products.

Bioplastic
Material

Functional
Compound Food Product Packaging Properties Food Quality References

Corn
starch/chitosan

Potassium sorbate
and grapefruit
seed extract

Bread

- Grapefruit seed extract
films have high
crystallinity, low
hydrophilicity,
low water vapor
permeability, and high
mechanical properties.
- Potassium sorbate films
showed high mechanical
properties, high water
vapor permeability
than grapefruit
seed extract films.

- Grapefruit seed extract
showed the maximum
zone of inhibition
against A. niger.
- Grapefruit seed extract
extended the shelf life of
bread after storage
for 6 days.

[75]

PLA Na+-
montmorillonite Salami

- Montmorillonite
enhanced its water barrier
properties.

- Montmorillonite
reduced the lipid
oxidation of processed
meat products.

[76]

Whey protein
Ginger and
rosemary
essential oils

Minced
lamb meat

- Increased essential oil
content gave statistically
high % of elongation and
slightly decreased
tensile strength.

- Incorporation of 1%
essential oil significantly
delayed microbiological
deterioration of minced
lamb meat.

[77]

PBAT/PLA
Carvacrol, citral,
and α-terpineol
essential oils

Pacific white
shrimp

- Microstructures and
water vapor and oxygen
barrier properties were
modified depending on
the types and
concentrations of the
essential oils.
- Citral conferred
smoothness due to
plasticization
effects and improved
compatibility.

- Citral and carvacrol
effectively stabilized
protein conformation in
muscle tissues, delayed
drip loss,
and retained the
adhesion between the
shrimp cephalothorax
and abdomen.
- Essential-oil-
compounded films
prevented melanosis.

[69]

PLA/chitosan

Polyethylene
glycol methyl ether
methacrylate,
stearyl
methacrylate, and
deoxycholic acid

Bread

- Functional compounds
improved the
compatibility of chitosan
with PLA.
- Deoxycholic acid was
used as an antioxidant
and antibacterial additive
in PLA bioplastics.

- Deoxycholic acid was
most efficient in
inhibiting the growth of
natural microorganisms
on the bread slices
stored in the packaging.

[78]
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Table 3. Cont.

Bioplastic
Material

Functional
Compound Food Product Packaging Properties Food Quality References

PBAT/TPS

Coconut
nanocellulose,
annatto, and
citric acid

Freshly
cut mango

- Nanocrystals reduced
the water vapor
permeability and
influenced the increased
stiffness of the films.
- Tensile strength was
dependent on the
percentage of
nanocrystals.

- The film maintained
the characteristics of
packaged Tommy
Atkins mango
for 14 days.

[79]

Gliadins
(protein)

Cinnamaldehyde
and natamycin Cheese slices

- Incorporation of
natamycin gave rise to
films with a greater water
uptake, weight loss, and
diameter gain and higher
water vapor and oxygen
permeabilities.
- Cinnamaldehyde
enhanced the barrier
properties of gliadin films
due to the formation of a
cross-linked matrix that
restricted chain mobility
and produced a more
compact structure.

- Both compounds acted
synergistically to
prevent the growth of
A. niger.
The combination of
cinnamaldehyde and
natamycin gave rise to
antifungal bioplastic
films against common
food spoilage
microorganisms both
in vitro and in
cheese slices.

[80]

Chitosan

Montmorillonites
and rosemary
and ginger
essential oils

Fresh
poultry meat

- Reinforcement with
montmorillonites
improved chitosan
barrier properties.

- Essential oil reduced
oxidative processes in
poultry meat.
- Reinforcement with
nanoclays reduced lipid
oxidation and
microbiological
contamination, but the
incorporation of
essential oils only
improved the barrier
to oxidation.

[81]

PBAT/TPS Titanium
dioxide (TiO2) Banana

- TiO2 nanoparticles
increased mechanical
strength and reduced
oxygen, carbon
dioxide, and water
vapor permeability.
- Films containing TiO2
also showed efficient
oxygen-scavenging
activity that removed
residual oxygen from the
package headspace.

- Banana fruit packaged
in films containing TiO2
recorded a slower
darkening color change
and an enhanced shelf
life with an increasing
TiO2 content.

[82]
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Table 3. Cont.

Bioplastic
Material

Functional
Compound Food Product Packaging Properties Food Quality References

PBAT/TPS
Sodium
benzoate and
potassium sorbate

Noodle

- Sodium benzoate and
potassium sorbate gave
more homogeneous
microstructures.

- Sodium benzoate and
potassium sorbate
effectively delayed A.
niger and Rhizopus spp.
and reduced the total
viable count, yeast, and
mold in fresh noodles.
- Sodium benzoate and
potassium sorbate
improved the polymer
compatibility but
reduced the tensile
strength and elongation.

[83]

TPS/PBAT
Nisin and ethylene-
diaminetetraacetic
acid (EDTA)

Pork

- Nisin and EDTA
improved the
compatibility
and adhesion networks,
giving homo-structures.

- Nisin and EDTA
showed efficiency in
inhibiting microbial
growth, stabilized the
color of the packaged
pork.
- EDTA efficiently
stabilized the lipid
structures in wrapped
meat muscles and
retained the quality of
the meat.

[29]

5. Functional Packaging for Meat Products
5.1. Antioxidant Packaging

Antioxidant packaging uses antioxidants to delay oxidation or maintain oxidation
stability, leading to a reduction in quality deterioration in flavor and odor, as well as color
and texture deterioration. Food additive antioxidants such as butylated hydroxytoluene
(BHT) or butylated hydroxyanisole (BHA) incorporated into polyolefin film [84,85] may
influence health hazards for consumers. An alternative approach now being widely studied
is the use of natural extracts, synthetic chemicals, and nanoparticles as antioxidants. Many
studies have demonstrated that antioxidant agents incorporated into bioplastic packaging
effectively extend the shelf life of meat.

Chollakup et al. [86] studied the incorporation of rambutan peel extract and cinna-
mon oil as antioxidants into cassava starch and whey protein isolate films to preserve
the quality of salami. The release of polyphenols from the rambutan peel extract and
cinnamon oil gave strong antioxidant functions to the films, as confirmed using DPPH
assay. Moreno et al. [87] investigated potato starch films containing the bioactive proteins
lactoferrin and lysozyme, which acted as antioxidants. These films effectively reduced the
lard oxidation of minced pork after long storage times (14 days) due to the strong chelation
capacity of the transition metals in the bioactives, which inhibited the oxidation reaction,
used as natural antioxidant preservatives. Fiore et al. [88] showed that rosemary essential
oil incorporated into a chitosan–caseinate coating with a polylactic acid film prolonged
the shelf life of fresh minced chicken, and 2% rosemary essential oil demonstrated the
greatest radical scavenging activity. Panrong et al. [89] demonstrated that a bioplastic
film containing green tea extract acted as an antioxidant. Green tea is a rich source of
polyphenols, especially catechin, epicatechin, and epigallocatechin, which accelerated the
formation of oxymyoglobin (redness) with its free radical scavenging capacity and reduced
the lipid oxidation of bacon after storage for 20 days. Ribeiro Sanches et al. [90] examined
the influence of the concentration of red cabbage extract and sweet whey as antioxidants
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due to their significant contents of phenolic compounds and anthocyanins. The results
showed greater stabilization of oxymyoglobin after storing ground beef for 4 days. The
interaction of the antioxidants from natural extraction was mainly due to their content of
polyphenols, which can reduce oxidation and delay the quality deterioration of meat. Pack-
aging can also incorporate sodium nitrite [74], ferulic acid [91], ethylenediaminetetraacetic
acid [29], zinc oxide (ZnO) nanoparticles [92,93], pyrogallol [94], and gallic acid [95].

5.2. Antimicrobial Packaging

The growth of microorganisms influences product quality, shelf life, and safety. Thus,
technology has been developed to maintain food quality and extend shelf life through the
addition of antimicrobial agents that reduce or inhibit microorganism growth [11]. The basic
mechanism involves the penetration of active compounds into the lipid structure of bacterial
walls, leading to protein denaturation, cell membrane destruction, bacterial membrane
leakage, and ultimately cell lysis. Furthermore, the efficiency of antimicrobial agents is
highly dependent on their release ability, according to factors such as the concentration
gradient and solubility with the food product [69].

Antimicrobial agents such as organic acids, essential oils, enzymes, plant extracts, and
nanoparticles can be incorporated into bioplastic polymers to increase food packaging’s
functional properties. Various types of antimicrobial packaging for extending the shelf life
of meat products are presented in Table 4.

Table 4. Antimicrobial packaging produced using bioplastic polymers to extend the shelf life of
meat products.

Packaging Material Antimicrobial Agent Product Findings Reference

PLA/PBAT Cinnamaldehyde and
tea polyphenols Meat analogue Films protective against E. coli and

S. aureus during 10 days of storage. [96]

PBAT/TPS Nisin and ethylenedi-
aminetetraacetic acid Pork

Ethylenediaminetetraacetic acid and nisin
protective against L. monocytogenes,
C. perfringens, S. aureus, and L. innocua.

[29]

TPS/
whey protein isolate

Rambutan peel extract
and cinnamon oil Salami

Rambutan peel extract and cinnamon oil
displayed antibacterial activity against
B. cereus, E. coli, and S. aureus.

[86]

PLA Carvacrol Ground beef Carvacrol-loaded PLA film reduced TVC
and extended shelf life at 1.1 ± 1.5 days. [97]

PLA
Lauric arginate ester,
sodium lactate, and
sorbic acid

Meat

- Lauric arginate ester reduced L. innocua,
L. monocytogenes, and S. typhimurium
growth for 3–5 weeks
- Sorbic acid reduced the growth of
L. innocua but
not Salmonella.

[98]

TPS Gallic acid, chitosan,
and carvacrol Ham

- Chitosan and carvacrol acted
synergistically in L. monocytogenes
inhibition.

[99]

TPS/PBAT Sodium nitrite Pork
- Nitrite reduced TVC up to
1.5 log CFU/g.
- Nitrite against Pseudomonas aeruginosa.

[74]

Chitosan Thyme essential oil Meat

- Thyme essential oil reduced yeast
populations but did not affect aerobic
mesophilic bacteria, lactic acid bacteria,
and enterobacteria.

[100]
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Table 4. Cont.

Packaging Material Antimicrobial Agent Product Findings Reference

Chitosan Aloe emodin Pork

- Chitosan is a natural antibacterial agent
with positively charged amino groups that
interacted with microbial cell membranes.
- Aloe emodin inhibited bacterial
formation, bringing about bacterial
metabolism disorder and death and
protecting against E. coli and S. aureus as
shown in Figure 7.

[101]

Sodium caseinate Pomegranate
peel extract Ground beef

- Pomegranate peel extract protecting
against S. aureus and E. coli enhanced the
germicidal activity of sodium caseinate.

[102]

Carboxymethyl
cellulose (CMC)

Encapsulated
pomegranate extract

Fresh beef and
chicken meat

- CMC film and encapsulated
pomegranate extract interacted via
hydrogen bonding at 3320 cm−1, which
shifted to a lower wavenumber.
- The film system was more effective in
inhibiting L. monocytogenes than C. jejuni,
S. typhimurium, and S. aureus.
- The classical CMC could not retard the
growth of bacteria until the end of storage,
while CMC with encapsulated
pomegranate extract could delay
microbial growth in beef
and chicken meat.

[103]

Cassava starch and
sodium

carboxymethyl
cellulose

Caffeic acid and silica
nanoparticles
(C@SNPs)

Fresh beef and
chicken meat

- Reduction in hydrogen bonds and
hydroxyl groups of the film formed by the
nanoparticles, reduced the hydrophilicity
of the film matrix.
- Film containing C@SNPs 5:1 could
inhibit E. coli and S. aureus with percent
reductions up to 65.43% and 61.90%,
respectively.
- The active packaging delayed the
microbial growth and TBARS in the fresh
meat. The TBARS in the meat packed in
film were 0.130 mg MDA/kg, while in the
control group, they were
0.611 mg MDA/kg.

[104]

PBAT/TPS Zinc oxide (ZnO)
nanoparticles Pork

- ZnO delayed microbial growth and
extended shelf life to more than 12 days.
- ZnO against S. aureus, E. coli,
Enterobacteriaceae, and Pseudomonas spp.

[105]

Bacterial
nanocellulose (BNC)

Postbiotics of
Lactobacillus sakei Buffalo patty

- A slight shift in the stretching vibration
of the carboxylic groups of the BNC
(1627 cm−1) indicates the successful
incorporation of postbiotics into the
BNC matrix.
- The growth of L. monocytogenes in the
buffalo patty was significantly reduced by
the BNC film containing postbiotics of
Lactobacillus sakei.

[106]

Antimicrobial agents inhibit the growth of microorganisms, namely Gram-positive
bacteria, Gram-negative bacteria, and fungi, through their incorporation with bioplastic
matrices using coating, extruding, and casting. Novel functional packaging technologies
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can control and reduce microbial spoilage to better preserve the quality of and prolong the
shelf life of meat.
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Figure 7. Antibacterial activity of chitosan, glycerol, and aloe emodin films against E. coli (a) and
S. aureus (b); antibacterial ratio of chitosan, glycerol, and aloe emodin films (c). (Reproduced with
permission from Yang, Ning, Ren, Xu, Li, and Wang [101]).

5.3. Other Functional Packaging

Furthermore, functional packaging can also enhance other aspects of quality, such as
tenderness, texture, and color. Wongphan et al. [107] developed a novel edible film made
of starch incorporated with papain that improved the tenderness of beef, with reduced
Warner–Bratzler shear values and hardness. Papain has proteolytic activities that hydrolyze
collagen into myofibrillar proteins, leading to the degradation of the myofibrillar proteins.
Enzymatic catalysis (papain) influenced the transformation and chemistry of myoglobin
and thereby gave a bright red color. Moreover, the papain interacted with the starch film
matrices, delaying the water dissolution of the starch films. The interaction between the
starch and papain via hydrogen bonding reduced the binding between the starch and water,
resulting in reduced dissolution, as shown in Figures 8 and 9.
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Chatkitanan and Harnkarnsujarit [28] reported that the incorporation of 1% and 2%
sodium nitrite into LLPDE/TPS retained the hardness of the pork because the nitrite
prevented protein aggregation and retained the protein structure. Therefore, incorporating
active compounds into packaging improves the tenderness, maintains the protein structure,
and extends the shelf life of meat.

6. Food Preservatives as Alternative Functional Compounds

Food preservatives are added to prevent food spoilage due to microorganisms (bacte-
ria, mold, yeast, and fungi) and slow or prevent discoloration, flavor, or texture changes by
delaying oxidation to maintain product freshness [108]. The food preservatives on product
labels include ascorbic acid, butylated hydroxyanisole (BHA), butylated hydroxytoluene
(BHT), calcium propionate, calcium sorbate, citric acid, ethylenediaminetetraacetic acid
(EDTA), potassium sorbate, sodium benzoate, sodium erythorbate, sodium nitrite, and
tocopherols (Vitamin E). These can be classified into chemical or synthetic preservatives
and natural preservatives [109]. Both types of preservatives are commonly used in meat
products, acting as antimicrobials and antioxidants. Natural preservatives are plant-based
bioactive phenolic compounds found in plants, fruits, herbs, and spices. Essential oils or
plant extracts, including rosemary, sage, thyme, oregano, cinnamon, clove extracts, green
tea, and eugenol [110–113], are natural bioactive compounds that do not require a labeled
additive (e-number) for their application in food products. Conversely, the amounts of
chemical or synthetic preservatives used are limited by safety and toxicological require-
ments and regulated by legislation [108,114]. The functionality of some organic acids and
their salts, commonly used in industry, is shown in Table 5, acting as antioxidant, antimi-
crobial, emulsifying, and stabilizing agents to maintain the freshness of appearance and
consistency of products [115,116].

However, the direct addition of food preservatives to products impacts consumer
health due to the residuals in the products, with the amount of residual food preservative
being a significant factor to consider. Nevertheless, studies have shown that incorporating
additives into packaging reduces the amount of additives remaining in the food com-
pared to with their direct addition to food [28,74,105]. This serves as another option for
maintaining food quality and enhancing consumer safety. Additionally, it helps address
packaging-related issues, as shown in Table 6. The selection of active compounds must
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adhere to the standards for food contact materials, generally recognized as safe (GRAS)
designation, and the specific regulations set by each country. When adding active com-
pounds added to active packaging, their concentrations must align with the acceptable
daily intake to ensure food safety. However, this should not compromise their ability
to effectively preserve food products. Ideally, active compounds should be used at the
minimum concentration that maximizes their efficiency while maintaining human safety
and the desired packaging properties.

Table 5. Food preservative functionalities commonly used in industry.

Preservative Functionality

Ascorbic acid Oxygen scavenger

Citric acid Enzyme inhibitor/metal chelator

Sulfites Enzyme inhibitor/oxygen scavenger

Tocopherols Free radical scavenger

Acetic acid Disrupts cell membrane function (bacteria, yeasts, some molds)

Benzoic acid Disrupts cell membrane function/inhibits enzymes (molds, yeasts, some bacteria)

Natamycin Binds sterol groups in fungal cell membranes (molds, yeasts)

Nisin Disrupts cell membrane function (Gram-positive bacteria, lactic-acid-producing bacteria)

Nitrates, nitrites Inhibits enzymes/disrupts cell membrane function (bacteria, primarily Clostridium botulinum)

Propionic acid Disrupts cell membrane function (molds, some bacteria)

Sorbic acid Disrupts cell membrane function/inhibits enzymes/inhibits bacterial spore germination (yeasts,
molds, some bacteria)

Sulfites and sulfur dioxide Inhibits enzymes/forms additional compounds (bacteria, yeasts, molds)

Phosphate Maintain juiciness and shelf life, emulsifying and stabilizing

Table 6. Functional bioplastic packaging incorporating food preservatives.

Material Preservative Method of
Preparation Findings Reference

Gelatin Ascorbic acid Solution casting

- Ascorbic acid acted as an antioxidant and
increased DPPH radical scavenging activity
and total phenolic content.
- Ascorbic acid had hydrogen donation
capabilities and could scavenge free radicals
by transferring electrons.
- Ascorbic acid improved the flexibility related
to a complex and dense microstructure.

[117]

Pectin (papaya) Ascorbic acid Solution casting

- Ascorbic acid acted as an antioxidant and
prolonged the shelf life of pears.
- Ascorbic acid provided weak films (low
mechanical properties) and increased the aw
values of papaya films due to its
hydrophilic nature.

[118]

Calcium alginate Acetic and
propionic acid Solution casting

- Organic acid acted as an antimicrobial
against total coliform, S. aureus, lactic acid
bacteria, and mold and yeast viable counts.
- Alginate and organic acids showed H
bonding between free water molecules and
hydroxyl groups.
- Films had strong mechanical properties but
were more stretchable than the control films.

[119]
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Table 6. Cont.

Material Preservative Method of
Preparation Findings Reference

PBAT/TPS Nisin and EDTA Blown film extrusion

- EDTA and nisin acted as antimicrobials and
inhibited Listeria, C. perfringens, S. aureus, and
L. innocua.
- The interaction between PBAT/TPS, EDTA,
and nisin was alkylation.
- EDTA and nisin improved the compatibility,
as also shown by a smoother microstructure.

[29]

TPS/PBAT Sodium nitrite and
sodium erythorbate Blown film extrusion

- Sodium nitrite and sodium erythorbate
modified starch granule and
increased compatibility.
- Sodium nitrite and sodium erythorbate
preserved ham quality via
delay antioxidation.

[12]

Carboxymethyl
cellulose Potassium sorbate Solution casting

- Potassium sorbate acted as an antimicrobial
and inhibited A. parasiticus, A. parasiticus, and
A. flavus.
- The incorporation of potassium sorbate into
carboxymethyl cellulose films increased the
WVP values via blockage of the polymer
matrix pores.

[120]

Chitosan/whey
protein

Ascorbic acid,
benzoic acid, and
potassium sorbate

Solution casting
- Organic acid acted as an antimicrobial and
delayed S. Typhimurium, E. coli, and C. jejuni
in fresh-cut turkey for 6 days.

[121]

Protein Sorbic or
benzoic acids Solution casting

- Organic acid acted as an antimicrobial and
inhibited the growth of E. coli O157:H7,
L. monocytogenes, and S. aureus.
- Sorbic acid penetrated into protein more
easily than benzoic acid, forming hydrogen
bonds with amide groups of proteins.
- Sorbic and benzoic acid gave high solubility.

[122]

TPS/PBAT Sodium nitrite Blown film extrusion

- Sodium nitrite acted as an antimicrobial and
reduced total viable count, lactic acid bacteria
and yeast and molds.
- Interaction between the pork and TPS/PBAT
film released nitrite from the film matrices
and interacted with the myoglobin in the pork
to form nitrosyl myoglobin, increased redness.
- Sodium nitrite modified the C=O bonding of
PBAT and improved its compatibility with
TPS networks.

[74]

Starch Potassium sorbate Solution casting

- Potassium sorbate acted as an antimicrobial
and delayed yeast growth.
- Potassium sorbate formed complexes that
modified the solubility, diffusivity and
partition coefficients.

[123]

PBAT/TPS
Sodium benzoate
and potassium
sorbate

Blown film extrusion

- Organic acid acted as an antimicrobial and
delayed A. niger and Rhizopus sp. growth.
- Sodium benzoate and potassium sorbate
modified the starch network and
compatibility between PBAT and TPS.

[83]
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Table 6. Cont.

Material Preservative Method of
Preparation Findings Reference

PBAT Sodium benzoate Solution casting

- Sodium benzoate acted as an antimicrobial
against B. subtilis and S. aureus.
- Sodium benzoate gave higher barrier
properties against water and methanol vapor
to the PBAT film.

[124]

TPS/PBAT Sodium
metabisulfite Blown film extrusion

- Sodium metabisulfite prevented mold
growth and darkening in packaged salami.
- Sodium metabisulfite prevented
recrystallization.
- Sodium metabisulfite formed S-O bonds
with starch molecules.

[125]

From these studies, it was found that research on incorporating food preservatives
into food packaging through compression processes to enhance the efficiency of food
packaging and increase consumer satisfaction and the development of packaging properties
incorporating food preservatives is a new method for maintaining the quality and safety of
meat products. This can be considered a new challenge emerging in the food and packaging
industries. The current research on bioplastic meat packaging is primarily centered on
scaling up production to the industrial level using extrusion technology. However, there is
a need to more deeply investigate the stability of active packaging for meat products under
various storage conditions (i.e., temperature, pressure, vibration) for specific durations of
time. The storage conditions and duration can be directly linked to the meat supply chain
(production, distribution, retail, and consumer behavior). Therefore, a comprehensive
approach involving collaboration between marketing, supply chain stakeholders, and
packaging developers is essential to address these challenges effectively.

7. Flavor/Odor Contamination

Contamination or migration are major issues in food packaging. Contamination or
migration is defined as the transfer of compounds from packaging to food, which can affect
its quality and safety in accordance with legislation or regulations. Contamination can alter
the sensory and quality properties of food or cause harm to consumers’ health [126].

Flavor is an important sensory aspect of the overall acceptability of meat products [127].
The flavor of meat is attributed to a complex mixture of both volatile and non-volatile com-
pounds. Organic natural volatile components include pyrazines, aldehydes, acids, ketones,
hydrocarbons, esters, alcohols, nitrogen, and sulfur-containing compounds that are formed
due to lipid oxidation and bacterial metabolism, leading to odorous sensations [128,129].
Non-volatile compounds produce a sense of taste by interacting with the taste buds on the
surface of the tongue and in the mucous membranes of the palate and throat area [129].
Flavor can determine the quality of meat and poultry products. The volatile components
derived from the degradation of proteins and lipids impact the sensory quality of meat
depending on the degree of meat degradation [128].

Table 7 lists the volatile compounds in meat that impart specific product flavors
or odors. The product packaging and conditions between storage and distribution also
influence the formation of volatile compounds [130]. Some aromatic hydrocarbons in
meat are derived from packaging due to migration. Song, Canellas, and Nerin [128]
analyzed the volatile compounds in minced pork during storage in an active film (rosemary
essential oil coated PET sheet) and identified 41 compounds using HS-SPME–GC–MS.
These included alcohols, aldehydes, ketones, and hydrocarbons. Aromatic hydrocarbons
such as toluene, ethylbenzene, m-xylene, o-xylene, isopropylbenzene, and p-cymene came
from the packaging, indicating that the aromatic hydrocarbons in food contact material
can be transferred into food and consequently pose a risk to consumers. Rivas-Canedo
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et al. [131] investigated how high-pressure processing (HPP) significantly changed the
levels of some volatile compounds. The amount of alcohols and aldehydes decreased
while 2,3-butanedione and 2-butanone were more abundant in the high-pressure-processed
meats, with the migration of compounds from the plastic material such as branched-chain
alkanes and benzene. Ref. [132] studied the volatile profile of Spanish salchichón when
subjected to HPP using a multilayer plastic as the packaging material. The results showed
high levels of compounds emanating from the plastic material, especially branched-chain
alkanes and benzene. Wrona et al. [133] demonstrated that the incorporation of green
tea extract into polyethylene using extrusion technology extended the shelf life of fresh
meat, with epigallocatechin gallate, gallocatechin gallate, epicatechin gallate, gallocatechin,
epigallocatechin gallate, and catechin gallate migrating from the packaging. Therefore,
using active packaging as food contact materials should be studied in relation to the flavor
(mass) transfer from packaging into products. The flavor of both volatile and non-volatile
compounds affects the senses and can also impact food quality and product safety.

Table 7. Volatile compounds in beef, pork, and poultry and their odor data, modified from [128,134].

Compound Name Characteristic Flavors/Aromas

Benzaldehyde Volatile almond oil, bitter almond, burning aromatic taste

Benzene Pleasant, distinct

sec-Butanamine Seafood, green, onion

Butenal Malty, green, roasted

n-Caproic acid Goaty

3-Carene Sweet and pungent odor but more agreeable than turpentine, orange peel, lemon, resin

Cyclobutanol Roasted

2,2,6-Trimethylcyclohexanone Mint, acetone

2,4-Decadiena Deep fatty flavor, chicken flavor at 10 ppm, citrus/orange/grapefruit flavor at lower
dilutions

Decanal Powerful, waxy, aldehydic, orange, citrus peel

2-Decenal Tallow, orange

1,3-Bis(1,1-dimethylethyl) benzene Cooked beef

N,N 0-Dimethyl 1,2-ethanediamine Ammonia

5-Ethylcyclopent-1-enecarboxaldehyde Fragrant, perfume

2-Pentylfuran Green bean, butter

2,4-Heptadienal Nut, fat

Heptanal Oily, fatty, rancid, unpleasant, penetrating fruity odor in liquid

1-Heptanol Fragrant, woody, oily, green, fatty, winey, sap, herb

2-Heptanone Fruity, spicy, cinnamon, penetrating fruity odor in liquid

6-Methyl 2-heptanone Cloves, menthol, eugenol

2-Heptenal Soapy, fatty, almond, fishy, unpleasant

Hexanal Fatty, green, grassy, strong green, tallow, fat, unripe fruit when dilute

Hexane Faint peculiar odor

Hexanol Woody, cut grass, chemical/winey, fatty, fruity, weakly metallic, green

2-Ethyl 1-hexanol Resin, flower, green

2-Hexen-1-ol Green, sharp, leafy, fruity, unripe banana

3-Methylbutanal Pungent apple-like odor, malt
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Table 7. Cont.

Compound Name Characteristic Flavors/Aromas

Limonene Pleasant, lemon-like, turpentine, citrus, fruity, fresh, light

Methyl salicylate Cooling sensation, wintergreen, gaultheria

2,4-Nonadienal Fat, wax, green, watermelon, geranium, pungent

Nonanal Floral, citrus, fatty, grassy, waxy, green

2-Nonanone Hot milk, soap, green, fruity, floral

2-Nonenal Cardboardy, orris, fat, cucumber

Octadecanal Oil

Octanal Harsh, fatty, orange peel, soapy, lemon, green, honey

1-Octanol Penetrating aromatic odor, fatty, waxy, citrus, oily, walnut, moss, chemical, metal, burnt

2-Methyl 3-octanone Herb, butter, resin, gasoline

2-Octenal Green, nut, fat

(Z)-3-Octene Fruity, old apples

1-Octen-3-ol Mushrooms, compound excreted by many insects

2-Octen-1-ol Green citrus

3-Octen-2-one Nuts, crushed bugs, earthy, spicy, herbal, sweet, mushroom, hay, blueberry

Pentanal Almond, malt, pungent, acrid, fermented, fruity

Pentane Very slight warm flavor, oxidized

1-Pentanol Mild odor, fuel oil, sweet, fruity

5-Amino 1-pentanol Mild

α-Pinene Piney, fruity, citrus, turpentine

β-Pinene Pine, citrus, fruity, resin, turpentine

Piperazine Salty

Propanol Alcoholic

Styrene Penetrating odor, sweet smell

Tetradecane Alkane

Tridecane Alkane

2-Tridecenal Sweet, strong, spicy

Ethanol Sweet, alcoholic

2,3-butanedione Butter, pungent

Acetic acid Sour, vinegar

3-Hydroxy-2-butanone Sweet, fatty

3-Methyl-1-butanol Alcoholic, fruity

4-Methyl-2-pentanone Green, herbal, fruity

Toluene Paint

2,3-Butanediol Buttery

Ethylbenzene Paint

m-Xylene Plastic

1-Hexanol Sweet, alcoholic

5-Methyl-4-hepten-3-one Fruity
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Table 7. Cont.

Compound Name Characteristic Flavors/Aromas

Decane Gasoline

p-Cymene Citrus, woody

2-Ethyl-1-hexanol Floral, sweet

Benzeneacetaldehyde Floral, sweet

1-Octanol Green, orange

Tridecane Gasoline

Dodecane Gasoline

(Z)-2-Octen-1-ol Sweet

8. The Prospective Future of Functional Packaging Technology for Meat Products

Functional packaging technology for meat products is continuously evolving to ad-
dress various challenges in the industry, including extending shelf life, preserving freshness,
enhancing food safety, and meeting consumer demand for convenience.

Shelf life extension: One of the main challenges in meat packaging is extending
shelf life while maintaining product quality and safety. Emerging technologies such as
active packaging with natural compounds, extracted or synthesis compounds, and food
preservatives such as antioxidant and antimicrobial agents can help extend shelf life.

Sustainability: With increasing environmental concerns and the aim of reducing food
loss and waste, the demand for sustainable packaging solutions in the meat industry is
therefore increasing. Future directions may include the development of biodegradable and
compostable packaging materials derived from renewable sources, such as bioplastics.

Active packaging: Active packaging systems that include active ingredients such
as antimicrobials, antioxidants, and oxygen scavengers directly added to the packaging
materials are gaining attention. Future advances may involve the use of nanotechnology to
increase the efficacy of the active ingredients and improve the kinetics of their release.

Convenience and consumer interaction: Packaging technology is also evolving to
meet consumer demands for convenience and an enhanced user experience.

Food safety and quality assurance: Ensuring food safety and quality remains a
paramount concern in the meat industry. Advanced packaging technologies such as barrier
films, active coatings, and nanocomposites can help prevent contamination and maintain
product freshness during storage and transportation.

Regulatory compliance: As the regulations governing food packaging become more
stringent, manufacturers need to ensure that safety and labeling requirements are followed.
Future directions may involve developing packaging materials that are compliant with
emerging regulatory standards and guidelines.

9. Conclusions and Challenges

This study reviewed the recent advances in functional bioplastic meat packaging,
focusing on enhancing the ability to maintain, improve, or modify the quality and safety
of meat products. Meat products are crucial sources of protein and essential nutrients
and play a significant role in supporting human health. However, their perishable nature
poses challenges in terms of maintaining their quality and safety. Maintaining the optimal
conditions during their production, storage, and distribution is essential for preserving
the quality and safety of meat products to meet consumer expectations and regulatory
standards. Advanced packaging technologies, proper handling practices, and stringent
quality control measures play vital roles in mitigating spoilage and ensuring food safety
throughout the meat supply chain. Further research is required to scale up polymeric-based
packaging to industrial market production and promote a circular economy.
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