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Abstract: Nowadays, many image processing and machine learning (ML) methods are used in mango-
quality classification systems. Existing algorithms perform independently to capture the relationships
between features in the dataset. Nevertheless, each method has its advantages and disadvantages. As
a result, this study presents an ensemble-learning framework that combines the strengths of multiple
ML algorithms to make predictions. Initially, different image processing algorithms are used to
extract external mango features. Next, the dataset is constructed by combining those features with
weight values from sensor signals. Following that, different ML algorithms are evaluated on the
dataset to determine which ones are robust. Subsequently, various ensemble-learning approaches are
deployed, such as bagging, boosting, and stacking. Finally, those models are evaluated and compared,
to decide which model is suited for this study’s dataset. In the experimental part, the assessment of
errors demonstrates the usefulness of image processing algorithms. Furthermore, evaluation of the
training models revealed that the stacking model, which integrates several methods in both the base
learner and meta-learner, produced the highest results in precision, recall, F1-score, and accuracy,
with values of 0.9855, 0.9901, 0.9876, and 0.9863, respectively. These experimental results confirm the
robustness of the proposed methodologies for classifying mango quality.

Keywords: mango grading; mango sorting; feature extraction; machine learning; Vietnam agriculture;
fruit classification

1. Introduction

In Vietnam, mango is widely consumed for its sweet taste and high nutrition, leading
to its cultivation across vast areas to meet the substantial demand. During a specific
season, mangoes are harvested from gardens and transported by distributors to various
consumption locations. Mangoes cultivated in diverse regions exhibit varying qualities
due to differences in soil and weather conditions. Despite this variability, many markets
aim to import consistently high-quality and uniform fruit. Thus, the grading of mangoes
based on quality becomes crucial to ensure a consistent supply of high-quality fruit for
the market. Normally, mango sorting relies on manual assessment, in line with farmers’
experience [1]. However that method resulted in uncertain classifications, leading to an
uneven classification [1,2]. To address the issue, farmers used various measuring tools
such as rulers, and scale. Nevertheless, this approach incurred additional equipment costs
and demanded substantial labor [2]. Moreover, in the context of an aging population
and increasing labor costs, the expenses associated with agricultural production have
risen significantly [3]. To tackle this challenge, commercial machines were designed and
manufactured for the classification process of agricultural products [4].

In previous studies, fruit grading was carried out with the help of electronic nose
devices to estimate fruit ripeness [5]. Another study in [6] describes an automated method
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for peach-fruit maturity grading using spectroscopy-based sensors and multivariate pro-
cessing to reduce the operator’s intervention. By estimating fruit firmness through spectral
data and employing a fuzzy classifier, the system offers reliable maturity categorization
despite fruit variability. Those studies mainly involve maturity estimation via a non-vision-
based approach. However, those systems have limitations in evaluating fruits on a large
scale within a short time because the implementation process is quite complicated and
requires a large amount of labor. Therefore, some subsequent studies have proposed fruit
classification systems based on machine vision to improve classification accuracy. Machine
learning (ML) algorithms are widely used in the field of computer vision to classify agri-
cultural products due to their adaptability to many conditions. In Reference [7], Nandi
et al. introduce an automated mango grading system that assesses maturity and quality
based on shape and surface defects using machine vision. It categorizes mangoes into four
groups, considering market distance and value, employing image processing and support
vector regression for maturity prediction, and a fuzzy algorithm for grading. That study
achieves an impressive 87% accuracy, and the system also demonstrates 100% repeatability.
The effectiveness of ML algorithms in the fruit classification process has also been shown in
some other studies. The authors in [8] present how to use visible images to grade mangoes
based on their shapes, with a 98.3%-correct classification using discriminant analysis and
a 100%-correct classification using support vector machines (SVMs). Furthermore, the
study shows a good correlation of 94.0% between estimated and actual values by applying
the cylinder approximation analysis method, which can be used to predict mango weight
from images. A 95% accuracy in weight grading is produced by the derived formula,
w = 2.256V − 157.7, where w is the predicted weight in grams and V is the estimated
volume. That method shows that the simple approach to predicting fruit weight and
volume is effective. Another study also applied ML to fruit classification. Schulze et al. [9]
compare three models—simple linear regression (SLR), multiple linear regression (MLR),
and artificial neural networks (ANNs)—for estimating the mass of mango fruits based
on their features. Using independent datasets for calibration and validation, the study
established a high-performance model suitable for mass–size estimation in machine-vision
systems. ANNs emerged as the most accurate model, displaying robustness with a root-
mean-squared error (RMSE) of 6.55 g, a mean absolute percentage error (MAPE) of 1.62%,
and a coefficient of efficiency (E) of 0.99 during validation, making it the preferable choice
for mango-mass estimation, with a success rate of 96.7%. In study in [10], the authors
introduce an image processing system that automatically categorizes rice grains based on
their commercial value by segmenting grains from the background, extracting key features,
and using SVMs for classification. The experimental results of that study demonstrate
the method’s effectiveness in accurately classifying grain samples. Agricultural product
classification systems that apply ML are effective, but they are not powerful enough in
complex cases [11]. Therefore, some researchers have proposed new classification systems
using deep learning (DL) algorithms. Specifically, in research described in [11], Cao et al.
present LightNet, a novel convolutional neural network (CNN) architecture designed to
efficiently classify fresh zizania into high- and defective-quality categories. LightNet’s
compressed block design reduces computational complexity by converting serial operations
to a parallel structure, achieving 95.62% accuracy in zizania grading at a speed of 47 ms
per image. Despite having fewer parameters and lower complexity than other networks,
LightNet maintains comparable accuracy in zizania grading and achieves 99.31% accu-
racy in grading apples. In addition, the authors of a study in [12] introduced CNNs and
transfer learning for seed-quality classification, showing that deep learning (specifically
GoogLeNet) achieved a significantly higher accuracy of 95% compared to 79.2% using
traditional machine learning (SURF+SVM). However, those DL algorithms often have a
large number of computations, making classification systems with limited computational
resources incapable of operating in real time. In addition, although the ML algorithms
studied in [8–11] have less computation than DL, they were developed individually. That
cannot take advantage of the different strengths of ML algorithms to achieve the best
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result. Furthermore, recent studies have primarily concentrated on developing intelligent
algorithms for quality classification without providing comprehensive system research.
Therefore, this research aims to construct a complete mango classification system and
analyze the algorithms employed to extract external features, which are subsequently fed
into the model for predicting mango quality. Notably, our proposed ensemble-learning
model rectifies the limitations observed in the previous studies. Initially, various machine
learning algorithms underwent evaluation using mango classification data. The most
robust algorithms were then compared, followed by hyperparameter tuning aimed at
enhancing accuracy. Subsequently, different ensemble-learning (EL) methods—such as bag-
ging, boosting, and stacking—were applied to increase the individual model’s performance.
Ultimately, the most robust model was integrated into the system.

The main contributions of this study are described as follows:

(1) The proposed stacking ensemble method takes advantage of the strengths of many
ML algorithms to increase the system’s prediction performance.

(2) Successful application of the proposed stacking ensemble method to classifying man-
goes, thereby improving the efficiency of the entire mango distribution process.

(3) Easy application for classifying other agricultural fruits and vegetables such as sweet
potatoes, tomatoes, etc., and promoting research to create intelligent methods and
equipment for agriculture.

2. Materials and Methods
2.1. Structure of the Mango Sorting System

The mango sorting system, illustrated in Figure 1, comprises several integrated com-
ponents that take mangoes as input and produce graded mangoes as output. Before
entering the system, the mangoes undergo screening by farmers to eliminate overly small
or significantly damaged ones. Then, the mangoes are placed onto the conveyor (depicted
in Figure 1a) for transfer to the image processing chamber (shown in Figure 1a). In the
chamber, a series of image processing algorithms are used to extract various features such
as length, width, and defects of the mangoes. Subsequently, the mangoes pass through
a weighing system equipped with loadcells. The signals from those sensors undergo fil-
tration using the Kalman filter before being forwarded to the central processor for further
analysis. This paper does not delve into processing signals from the loadcells. The derived
weight is then combined with the external features of the mangoes to generate an essential
input value for the classification model. Next, the mangoes are transferred to trays via the
conveyor (shown in Figure 1b) for transportation to the grading tray area. At the sorting
unit (shown in Figure 1c), mangoes of each specific type are directed to the corresponding
trays by the classification system. At this point, a sorting process is completed based on
central controller (Figure 1d).
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Figure 1. Mango-grading system including: (a) Conveyor and Processing chamber, (b) Tray conveyor,
(c) Sorting Unit, and (d) Central Controller.

To initiate the classification process, external features are extracted by algorithms in
the central processor. Subsequently, the information is combined with weight data obtained
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from the loadcells to generate a set of input data for the classification model. The features
go through a series of processing steps aimed at eliminating noise and normalizing the
data to make them suitable for the classification model’s requirements. The processed
features are then fed into the model to generate predictions regarding mango quality. Upon
identifying the specific type to which the mango belongs, the corresponding mechanism
promptly operates, which ensures the accurate classification of the mango as depicted in
Figure 2.
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Figure 2. Structure of mango-quality grading process.

2.2. Extracting External Features of Mangoes Using Image Processing

In this section, image processing algorithms are presented to extract external features of
mangoes. The algorithms are included in the following steps: first, the mango is segmented
from the background, and next, the length, width, volume, and defect features are extracted
by the system.

2.2.1. Mango Segmentation

As presented in the previous section, mangoes were conveyed to the imaging chamber
via a roller conveyor. Within the setup, the original mango is segmented from its back-
ground through binarization. Recent research has explored various algorithms for object
segmentation, and the most robust approach involves the application of Deep Learning
(DL). Specifically, Perez-Borrero et al. utilized the Mask RCNN model in their study [13] to
segment strawberry fruit. Nevertheless, DL models often consume large computational
resources, resulting in slower processing times for classification systems. To address that
issue, classical image processing algorithms with lower computations have been employed
for mango segmentation, such as the approach of utilizing a fixed threshold to segment
objects from grayscale images, as described in the study in [14]. However, that method lacks
adaptability when the color of the mangoes has changed. Hence, a suitable segmentation
method in this context involves segmenting mangoes based on the HSV color space [4].

First, the image captured from the camera is an RGB color image (IRGB), and then it is
converted to an HSV image (IHSV) using the following Equations (1)–(3).

V = max(R, G, B) (1)

S =

{
V−min(R,G,B)

V i f V ̸= 0
0 otherwise

(2)

H =


60(G − B)/(V − min(R, G, B)) i f V = R

120 + 60(B − R)/(V − min(R, G, B)) i f V = G
240 + 60(R − G)/(V − min(R, G, B)) i f V = B

(3)

In the image processing chamber, environmental conditions were established and
adjusted to create favorable settings for subsequent processing steps. The setup is crucial
for generating an input image with reduced noise and ensuring optimal conditions for
image binarization. In the captured image (as shown in Figure 3), the green of the mangoes
stands out against the background, facilitating segmentation. Subsequently, the captured
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HSV image (IHSV), is converted into a binary image (IB), as described in Equation (4). In the
color space conversion, a range of values corresponding to the green color in the HSV color
space is selected, with a lower bound of Tmin(H,S,V) = (30,15,17) and an upper bound of
Tmax(H,S,V) = (80,255,255). Following the process, the resulting binary image comprises
pixels with a value of 255, representing the color area of the mango, while a value of 0
corresponds to both the background and the mango’s defect area in the original image.
Subsequently, a Gaussian blur filter with a kernel size of 3 × 3 is applied to smooth the
binary image. Additionally, a dilate morphology method is utilized to eliminate noise in
the binary image. The binary image outcomes of this process are illustrated in Figure 3.

IB(x, y) =


255 i f

TH
min < IH

HSV(x, y) < TH
max

TS
min < IS

HSV(x, y) < TS
max

TV
min < IV

HSV(x, y) < TV
max


0 otherwise

(4)
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2.2.2. Mango External-Feature Extraction

After segmenting the mango from the background via the image binarization process,
those images go through various image processing algorithms to extract their external
features. The input features were chosen from the analysis presented in study [15] for fruit
classification. Based on that analysis, combined with the biological features of the mango,
the length, width, volume and defects were then utilized as inputs for the classification
model in this study, as illustrated in Figure 4.
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Next, the mango rolls on a roller conveyor to capture all of its features using a bounding
box rectangle. Specifically, the mango’s length in a series of images is considered constant,
as there is not much change. However, because of the shape of the mango, this results in
the parameter of widthmax, which is captured to enhance classification accuracy. Then, the
volume value of the mango is estimated from the width and length, which are presented in
the following section. Additionally, a mango defect is identified as a black area caused by
damage. The cumulative defect area is calculated across the entire mango surface. As the
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mango rotates on the conveyor belt, the system can detect that entire defect area. Following
the extraction of external features, these features are combined with the weight value
obtained from the load cell sensor. This combination generates a full set of input features
for the classification model, including length, width, volume, defect, and weight.

After the image binarization process, the obtained image consists of pixels with values
of 0 and 1. Pixels with a value of 1 represent the area of the mango, while pixels with a value
of 0 represent both the background and any defect area. Subsequently, the length, width,
volume, and defect values are converted from pixel units to actual values. This conversion
is achieved by multiplying the pixel value by a factor, as described in Equation (5).

Wactual = kWpixel (5)

where Wpixel represents the width in pixel value, Wactual represents the width in actual value,
and k is a constant. However, as the mango moves along the roller conveyor, the distance
between the mango and the camera changes, leading to a variation in the k coefficient.
To ensure accuracy, an approximation for the coefficient k is necessary. As the mango
moves, if the distance from the camera decreases, the number of pixels representing the
mango increases. Consequently, as the number of pixels increases, the resulting actual
value (multiplied by the coefficient k) also rises. Therefore, the approximate value of k
must adhere to a function. After capturing a sequence of n images during the rotation, the
average width value Wavg is calculated using the following Equation (6).

Wavg =
1
n

n

∑
i=1

Wi (6)

From Equation (6), the kestimated value is calculated as described in Equation (7).

kestimated =

n
∑

i=1
Wpixel

i Wactual
i − nWpixel

avg Wactual
avg

n
∑

i=1

(
Wpixel

i

)2
− n

(
Wpixel

avg

)2 (7)

Then, the final width value W of the mango and the error of k are calculated as follows,
in (8) and (9).

W = kestimatedWpixel (8)

ε =
1
n

n

∑
i=1

(
Wactual

i − W
)2

(9)

A similar calculation for Equation (8) is applied to calculate the length value of the
mango. Notably, the defects in the mango are recognized by the area of zero-valued pixels
within the mango’s boundary in the binary image. This area is determined by the pixel-size
ratio k where each pixel represents an area of k2. Equation (10) is used to calculate the actual
defect value.

Sactual =
(

k2 + 2εk
)

Spixel (10)

where Spixel represents the accumulated area of defects in pixels, while Sactual represents the
accumulated area of defects in an actual value.

2.2.3. Mango-Volume Estimation

In the image processing chamber, the mango rotates continuously on the conveyor
belt, causing a continuous change in its width value. Therefore, one more input feature
is considered to enhance the accuracy of the model. Hence, the volume of the mango is
considered a new feature, which represents the space occupation of the mango.

The shape of the mango, which varies by country and area, affects the assessment of
volume. Consequently, the shape is extracted before the volume is estimated. Structured
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data that have been transformed from images and sensor signals make up the appropriate
data for training models. There are three stages involved in volume estimation. A camera
extracts the length, width, and defect from the collected image in the first stage. The volume
is estimated using the length and width, and its errors are assessed in the second stage. In
the end stage, the length, width, volume, and defect are added to the weight to obtain a
completed dataset. Figure 5 shows a series of captured images to extract external features.
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Figure 5. Images of mangoes were captured at different locations.

Numerous techniques, like modeling and statistical analysis based on weight or size,
are used to calculate the mango volume (V). However, two-dimensional images are used in
this study to compute the volume of mangoes, since they are a quick and resource-efficient
approach for processing. The image-processing process generates images of a mango
in many orientations because of the mango’s intricate shape. Three factors are used in
many studies to calculate the mango’s volume. Nevertheless, further research [16] has
demonstrated a relationship between width (wid) and length (len); as a result, wid and len
values are used to calculate volume. The len and wid values of the mango are obtained
from the processed images. Mango orientations are random during feature extraction, with
n places. Using image-processing algorithms, a rectangle that covers them indicates the
presence of a mango. Len and wid are extracted n times at n places during the sampling
process. Two features from the ith mango at n places are determined into n value pairs (wid,
len) in Figure 5.

The volume is dependent upon two variables, namely length (len) and width (wid),
according to the data gathered from images. Len, wid, and V variables are used in m samples
of mangoes to quantify the mangoes. Predicting the volume from the length and width is
the necessary task. Accordingly, V′ is a dependent variable that is determined by Equation
(11), while len and wid are independent variables for the regression approach.

V′ = b0 + len ∗ b1 + wid ∗ b2 (11)

In volume prediction, an error ε is always existent. The variables’ coefficients are b0,
b1, and b2. Volume value is calculated as Equation (12).

V = b0 + len ∗ b1 + wid ∗ b2 + ε (12)

2.3. Proposed Method for Mango-Quality Classification

In this section, the data collection method and the model are presented to predict the
quality of mango based on external features.

2.3.1. Data Collection

In model training, data play a crucial role and significantly impact the accuracy of
the model. According to Behera et al., in study in [17], abundant and diverse data create
favorable conditions for improving model accuracy. Therefore, a tabular dataset was
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collected across multiple harvest seasons and various mango farms in Dong Thap province,
Vietnam. This dataset comprises 6 columns, with the first 5 columns representing the input
features of the model: length, width, weight, volume, and defect. The last column denotes
the label of each sample. A total of 1300 mango samples (as shown in Figure 6) were
collected to construct the training data. Each feature value is measured n times. After that,
the average value Am is calculated, as shown in Equation (13). These mangoes are labeled by
experts. Therefore, the type of mango is selected based on Viet GAP standards (Vietnamese
Good Agricultural Practices) for accurate classification. Criteria for Cat Chu mango quality
in this study are presented in Table 1. Every feature is measured and recorded. These errors
are then calculated to ascertain the variance between the system-calculated values and the
actual values of each mango. The error evaluation is presented in the Experimental section.

Am =

n
∑

i=0
Ai

n
(13)
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Table 1. Mango-quality standards.

Grade Width
(cm)

Length
(cm)

Volume
(mL)

Weight
(g)

Defect
(cm2)

1 9–11 14.1–16 651–800 451–700 0–3
2 8–9 12.1–14 401–650 250–450 3–5
3 6–8 10–12 250–400 100–250 >5

2.3.2. Data Preprocessing

After structuring the dataset, the statistical information from the dataset in this study
is shown in Table 2. The data table reveals that each feature in the data has different ranges,
with different mean and standard-deviation values. The complexity of the dataset effects
model training [17]. Therefore, a data normalization method needs to be applied to reduce
this influence. That method is a crucial preprocessing step in refining the tabular data for
effective employment in ensemble-learning models in mango-quality classification. By
standardizing the range and scale of features, normalization reduces differences stemming
from differing magnitudes among features. This process ensures that no single feature
dominates the learning algorithm due to its larger scale, resulting in more balanced model
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training. Additionally, normalization aids in improving convergence rates, enabling opti-
mization algorithms to converge faster. Ultimately, by promoting uniformity and stability
in the dataset, data normalization enhances robustness and accuracy, facilitating more
precise classifications of mango quality. The correlation of features in the collected data is
shown in Figure 7.

Table 2. Statistics on the value of mango features.

Width
(cm)

Length
(cm)

Weight
(g)

Volume
(mL)

Defect
(cm2)

Count 1300 1300 1300 1300 1300
Mean 85.4030 117.1955 393.8333 537.8166 5.1606

Std 26.3559 35.9526 114.3187 156.7680 2.8732
Min 16.8347 −5.5648 10.68328 43.9788 0.0000
25% 67.3743 93.5801 321.6118 429.6065 3.0858
50% 85.7452 118.2014 397.1450 539.6910 5.1432
75% 102.4258 140.2857 466.1139 641.6059 6.9783
Max 189.0237 230.4080 819.8204 1080.8878 16.5581
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The standard-scale method was employed to normalize the data, ensuring that all
features were uniformly scaled and eliminating potential biases caused by differing scales
among the features. It is a technique that was applied to standardize the dataset. This
process involves transforming the data such that each feature has a mean of zero and
a standard deviation of one, thereby eliminating differences arising from varying scales
among the features. The equation for Standard Scaler is shown as follows (14).

z =
x − µ

σ
(14)

where x represents the original value of the feature, µ is the mean of the feature’s values,
σ is the standard deviation of the feature’s values, and z denotes the standardized value.

Furthermore, to enhance the robustness of the dataset, the interquartile range (IQR)
method was utilized for outlier detection and subsequent removal. Outliers, which repre-
sent potential irregularities or noise in the data, were identified based on their deviation
from the IQR boundaries and subsequently removed. This method involves calculating
the IQR, represented as the difference between the third quartile (Q3) and the first quartile
(Q1), denoted as follows (15).

IQR = Q3 − Q1 (15)

Any data point falling below the (Q1 − 1.5 × IQR) value or above the (Q3 + 1.5 × IQR)
value is considered an outlier, and subsequently removed from the dataset. This step
aimed to enhance the dataset’s robustness by eliminating potentially noisy or irrelevant
data points, thus improving performance and accuracy within the ensemble-learning
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framework for mango-quality classification. The distribution of the original data and
the results of normalizing the data and removing outlines from the dataset are shown in
Figure 7a,b, respectively.

Figure 7a shows the distribution of mango features. Figure 7a reveals that the mean
values of the features increase in order from defect (5.14), width (85.77), length (118.2),
weight (397.15), and volume (539.69). The mean value of volume reaches the largest value
because it is calculated from many different features. A similar trend is also observed with
the interquartile range (IQR) value when the defect is the smallest value, from 3.09 to 6.98,
and the volume is the maximum, from 429.61 to 641.61. In addition, data points outside
the maximum and minimum values are considered outliers. Those outliers are removed to
facilitate the training process by the IQR method. After this process, the new distribution
of the data is shown in Figure 7b, with the values of the features normalized with a mean
of 0 and a standard deviation of 1.

As illustrated in Figure 8, a heatmap is used to graphically depict the relationships
between a variety of input parameters. The correlation coefficient, which measures the
degree and direction of a relationship between two variables, is represented by each
individual feature in the dataset. The degree of linear association between variables is
shown by the correlation coefficient, a numerical value that ranges from −1 to 1. Values
around 1 or −1 indicate a strong positive or negative linear relationship, respectively,
whereas values near 0 indicate no linear relationship. In the context of this study, the
heatmap demonstrated a positive linear relationship between the width, length, weight, and
volume features. Meanwhile, the defect feature shows no relationship with the remaining
features, because the defect’s correlation coefficient value compared to the remaining
features is approximately zero.
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2.3.3. Machine Learning Algorithms

In this section, individual ML models are utilized to predict mango quality based on
external features. The selected ML algorithms are powerful in the classification based on
the studies of [18,19]. They are evaluated and compared with each other to determine the
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best models for ensemble-learning methods, in the following section. The obtained data
exhibit complex relationships; therefore, the objective is to discover robust models capable
of capturing these complex relationships under various conditions. The description of
these ML algorithms is as follows. Firstly, K-Nearest Neighbors [20] (KNN) is a simple
yet effective algorithm used for classification. Given a new data point, KNN identifies
its k-nearest neighbors based on a chosen distance metric (like Euclidean distance) in the
feature space. The class label for the new data point is determined by a majority vote
among its k neighbors. The output class is assigned based on the most frequently occurring
class among these neighbors.

Decision Tree [18] (DT) is a versatile supervised learning algorithm used for both
classification and regression tasks in machine learning. As a classifier, it makes predictions
by learning simple decision rules inferred from the features in the training data. Random
Forest [21] (RF) is an ensemble-learning method based on DTs. RF builds multiple DTs
using random subsets of the training data and random subsets of features. Each tree in
the forest independently makes a prediction, and in classification, the class predicted most
frequently across all trees becomes the final prediction. Extra Trees Classifier [21] (ET) is
an ML algorithm based on DTs, similar to RF, but with some key differences in the way
trees are built. ET constructs multiple DTs using random subsets of the training data and
random feature splits. Unlike RF, it selects random thresholds for each feature rather than
finding the best possible thresholds for splitting nodes. This randomness allows ET to
create more diverse trees, which can sometimes reduce variance and improve performance.
AdaBoost [22] (ADB) is an ML algorithm that combines multiple weak learners into a strong
classifier. ADB trains a series of weak classifiers (often decision trees) sequentially. Each
model focuses on the instances that were misclassified by the previous models. During
each iteration, the algorithm assigns higher weights to misclassified samples, making them
more influential for subsequent models. Final predictions are made by combining the
individual predictions of each weak classifier, where their importance is determined by
their accuracy in the training process.

Gradient Boosting [23] (GB) builds a strong model by combining multiple weak
learners, often decision trees, in a sequential manner. Unlike AdaBoost, GB focuses on
minimizing the errors (residuals) of the previous models. GB builds a series of DTs se-
quentially, each one learning to correct the errors made by the preceding trees. Each new
tree is trained on the residuals (the differences between actual and predicted values) of
the previous model. The algorithm updates the model by optimizing the loss function,
gradually reducing errors, and improving overall prediction accuracy. XGBoost [24] (XGB)
is an ML algorithm that builds an ensemble of weak decision trees, optimizing the model
by minimizing a defined loss function. It focuses on reducing errors by employing regu-
larization techniques to prevent overfitting and by utilizing a gradient descent algorithm
for efficient learning. Support Vector Machine [18] (SVM) is a powerful supervised learn-
ing algorithm. It finds the hyperplane that maximizes the margin, which is the distance
between the hyperplane and the nearest data points (support vectors) of each class. It
can handle linear and non-linear classification by using kernel functions to map data into
higher-dimensional spaces.

2.3.4. Proposed Ensemble-Learning Method

This section presents the process of building and evaluating the model. This method
involves several steps aimed at enhancing the model’s accuracy. Initially, the data undergo
preprocessing to transform label values from strings to numbers. Subsequently, outlier
detection and removal are performed on all features to reduce noise in the data. The data
are then normalized to create optimal conditions for effective model training. Once this
preparation is completed, the data are ready for input into the model. At this stage, eight
ML models are selected for evaluation using the prepared dataset. The evaluation of these
models is conducted independently by employing the Kfold cross-validation technique
to ensure more accurate results. Following this stage, the outstanding algorithms are
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chosen, and hyperparameter tuning techniques are applied to enhance the performance
of each model. Additionally, ensemble methods such as boosting, bagging, and stacking
are employed to capture the intricate relationships within the data. Finally, these ensemble
models undergo evaluation and comparison with each other to identify the most suitable
model for the dataset in this study.

In evaluating ML algorithms, it is crucial to employ a method that assesses the per-
formance and capabilities of the models in classifying mango quality. In this study, Kfold
cross-validation is chosen as the method, due to its effectiveness. This method is widely
utilized in other studies for evaluating ML algorithms [24]. Kfold cross-validation involves
splitting the dataset into K subsets or “folds” of approximately equal size. The model is
trained K times, each time using K-1 folds for training and the remaining fold for validation.
This process allows for comprehensive validation, as each subset serves as both a training
set and a validation set at different stages. The final performance metric is averaged over
the K iterations, providing a reliable evaluation of the model’s performance. In addition,
tuning hyperparameters is essential for optimizing the performance of the ML model. Vari-
ous hyperparameter tuning techniques are employed in current research [22,23], including
Bayesian optimization, random search, and grid search. Each method is utilized in distinct
scenarios tailored to specific types of data. In this study, grid search is utilized to find
the optimal parameters for the ML algorithm. The structure of building a mango-quality
classification model is illustrated in Figure 9.
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2.3.5. Performance Evaluation

The metrics used to evaluate the performance of models include precision (P), recall
(R), F1-score (F), and accuracy (Acc), which are described in Equations (16)–(19). Firstly,
accuracy measures the overall correctness of the model’s predictions. It signifies the
proportion of correct predictions among all predictions made by the model. Secondly,
precision assesses the accuracy of positive predictions. Precision focuses on minimizing
false positive predictions, indicating how many of the predicted positive instances are
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actually positive. Next, recall evaluates the model’s ability to capture all positive instances.
It emphasizes minimizing false negatives, indicating how many actual positive instances
the model identifies correctly. Finally, the F1-score represents a balance between precision
and recall, as in Equations (16)–(19).

precision =
TP

TP + FP
(16)

recall =
TP

TP + FN
(17)

F1 − score = 2 × precision × recall
precision + recall

(18)

accuracy =
TP + TN

TP + FN + TN + FP
(19)

where TP represents the instances where the model correctly predicts the positive class. TN
represents the instances when the model correctly predicts the negative class. FP represents
the instances where the model incorrectly predicts the positive class. FN represents the
instances when the model incorrectly predicts the negative class.

3. Results and Discussions
3.1. External-Feature Extraction Evaluation

The external features of the mango were extracted by the image processing system. The
classification of mango quality involves various features such as length, width, volume, and
defects, which are crucial in determining overall fruit quality. Utilizing image processing
algorithms to extract these features provides a quantitative means to classify mangoes.
Then, a comparison between the predicted value and the measured value is made for
an overall evaluation. The evaluation metrics of mean absolute error (MAE) and root-
mean-squared error (RMSE) are used for assessing the accuracy of the image processing
algorithm in estimating mango features. The equation of those metrics is presented in
Equations (20) and (21).

MAE =
1
n

n

∑
i=1

|y − ŷ| (20)

RMSR =

√
1
n

n

∑
i=1

(y − ŷ)2 (21)

where n is the number of samples, y is the actual value by measurement, and ŷ is the
predicted value.

Table 3 presents the performance evaluation of mango features extracted using image
processing algorithms. The extracted features, including width, length, volume, weight,
and defect, were evaluated using MAE and RMSE metrics. The MAE values indicate the
average magnitude of errors between the measured value and the algorithmically obtained
value. In this table, lower MAE values, such as for weight (0.15986), width (0.54764), length
(0.62954), and defect (0.03187), signify a small error between the actual and predicted values,
suggesting higher accuracy in the estimation of these features. Conversely, features like
volume (5.78345) display slightly higher MAE values, implying a comparatively greater
deviation between actual and estimated values. The larger error value stems from the
combined errors in the width and length features, as the volume feature is derived from
these two parameters. Nonetheless, despite this relatively larger error, it remains within
an acceptable range for practical use in the mango-quality grading system. Similarly, the
RMSE values provide in-depth insight into errors, with lower RMSE values indicating a
more precise estimation. That evaluation offers a comprehensive understanding of the
algorithm’s efficacy in extracting mango features from images.
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Table 3. Evaluating errors in estimating the feature value of mangoes.

Features MAE RMSE

Width 0.5476 0.5584
Length 0.6295 0.6498
Volume 5.7834 5.9487
Weight 0.1598 0.1698
Defect 0.0318 0.0429

3.2. Model Evaluation

The previous experiment evaluated the external-feature extraction process, demon-
strating the feasibility of image processing algorithms. In this section, eight ML algorithms
undergo evaluation and comparison using the Kfold cross-validation method. The average
values of the metrics are recorded in Table 4, with the first column indicating the algo-
rithm type and the subsequent columns displaying precision, recall, F1-score, and accuracy
values. The results are arranged in descending order based on accuracy. The evaluation
of multiple ML algorithms based on their performance illuminates distinctive strengths
and weaknesses. Table 4 reveals that KNN and DT are two algorithms with all P, R, F,
and Acc values below 0.9, while ensemble algorithms from DT such as AD, GB, ET, RF,
XGB, and SVM all reach above 0.9. This confirms the effectiveness of ensemble techniques
in those models. Among the eight algorithms, three showed outstanding performances,
such as XGBoost, Random Forest, and Extra Tree Classifier. XGBoost exhibits a remarkable
precision of 0.98, indicating its robustness in minimizing false positives, coupled with an
impressive accuracy rate of 0.97. Both Random Forest and Extra Tree Classifiers showcase
strong overall performance, with an F1 score and an accuracy level above 0.96. Random
Forest maintains a slightly lower recall of 0.95 compared to the Extra Tree Classifier’s recall
of 0.97, implying a reduced false-negative rate in predictive results. The results also reveal
that XGB is the model that achieves the most comprehensive power, with P, R, F, and Acc
values of 0.98, 0.94, 0.96, and 0.97, respectively. This result is important for helping to find
a robust algorithm suitable for the dataset to develop the ensemble-learning model that is
presented below.

Table 4. Performance of individual ML algorithms.

ML Model Precision Recall F1-Score Accuracy

XGBoost 0.98 0.94 0.96 0.97
Random Forest 0.97 0.95 0.96 0.96

Extra Tree Classifier 0.96 0.97 0.97 0.96
Gradient Boosting 0.93 0.96 0.94 0.95

Support Vector Machine 0.94 0.94 0.94 0.93
Adaboost 0.93 0.91 0.91 0.92

Decision Tree 0.88 0.87 0.87 0.88
K-Nearest Neighbors 0.85 0.84 0.82 0.82

Next, hyperparameter tuning is applied to find the optimal parameters for the models,
enhancing their performance and stability. Following this process, the three algorithms
that achieve high performance undergo ensemble-learning techniques such as bagging,
boosting, and stacking. Ensemble methods such as bagging, boosting, and stacking stand
as powerful techniques aimed at exploiting the strengths of single algorithms to enhance
predictive performance. The evaluation of the ensemble-learning method on both training
and testing sets is recorded in Table 5. The findings indicated that bagging, boosting, and
stacking achieved accuracies of 0.9793, 0.9885, and 0.9932 on the training data, respectively.
Notably, the stacking method attained the highest accuracy value, suggesting greater
robustness among the comparison models.
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Table 5. Results of different ensemble-learning models.

Method Base Learner Meta-Learner Dataset Precision Recall F1-Score Accuracy

Bagging XGB
Train 0.9744 0.9836 0.9783 0.9793
Test 0.9733 0.9785 0.9751 0.9726

Boosting XGB
Train 0.9855 0.9890 0.9875 0.9885
Test 0.9629 0.9819 0.9711 0.9756

Stacking RF
XGB

Train 0.9919 0.9938 0.9928 0.9932
ET Test 0.9855 0.9901 0.9876 0.9863

Among the individual algorithms, Table 5 illustrates the fact that the XGBoost al-
gorithm demonstrates superior performance. Consequently, the bagging and boosting
approaches leverage the strengths of the XGBoost algorithm as a base model. In this process,
bagging operates by training multiple models independently on different subsets of the
training data and subsequently aggregating their predictions through voting, mitigating
overfitting, and fostering robustness. On the other hand, boosting focuses on the sequential
improvement of models by assigning higher weights to misclassified instances, allowing
subsequent models to rectify previous errors. This iterative refinement often leads to higher
predictive accuracy.

The stacking method, a more intricate ensemble technique, combines diverse models’
predictions as input features for a meta-learner, enabling the creation of a higher-performing
model by leveraging the varied strengths of base models. This method involves construct-
ing a base model comprising multiple ML algorithms combined. These algorithms within
the base model generate predictions, which subsequently serve as input data for a higher-
level model to generate the final output. Among the eight ML models assessed, XGBoost,
Random Forest, and Extra Tree Classifier demonstrated superior performance and were
chosen for integration into the base model. Specifically, each model within the base model
undergoes training on a part of the training data. Subsequently, each prediction serves
as a data point in the meta-dataset. In a meta model, a high-level model is designated to
produce the final prediction. The selection of the appropriate meta-learner depends on the
specific problem. Notably, in a study by Cui et al. [25], the meta-learner was determined
due to its highest performance among the base models. Specifically, in the context of
mango data, the meta-learner is designed by the XGBoost algorithm. The results in Table 5
highlight the superiority of the stacking model over others, exhibiting higher values for
precision, recall, f1-score, and accuracy at 0.9919, 0.9938, 0.9928, and 0.9932 on the training
data, respectively. This superiority can be analyzed as follows: stacking outperforms both
bagging and boosting models in ensemble learning, due to its capacity for sophisticated
model combinations and adaptive learning. Unlike bagging, which aggregates predictions
from parallel models, or boosting, which sequentially improves weak learners, stacking
operates on multiple levels, utilizing a meta-learner to synthesize information from the
predictions of diverse base models. This hierarchical approach allows the meta-learner to
interpret the strengths of individual models, resulting in more accurate predictions. Stack-
ing’s flexibility in selecting meta-learners suitable for specific problems allows it to adapt
to a wider range of scenarios compared to fixed strategies like bagging and boosting. In the
testing data, the stacking model exhibits a slight decrease in the values of precision, recall,
f1-score, and accuracy by 0.9855, 0.9901, 0.9876, and 0.9863, respectively. This suggests
the model’s stability, and indicates the absence of overfitting during testing. The obtained
results confirm the robustness of the stacking model described in this study. This indicates
its feasibility in achieving high accuracy for the mango-quality classification process.

3.3. Comparison with Different Studies

In this study, a stacking method is proposed within the ensemble-learning framework
for classifying mango quality based on external features. The experimental results (as
presented in Section 3.2) show the robustness of this method. In this section, the proposed
method is compared with other approaches for classifying agricultural products. Table 6
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showcases the performance outcomes of diverse methods for various fruits. Specifically,
the convolutional neural network (CNN) in [26] achieved an accuracy of 95.64% in mango-
quality classification, while the Random Forest algorithm in [27] attained 98.10%. In the
other study in [28], the eight-layer CNN focused on general fruit classification and obtained
an accuracy of 95.67%. Meanwhile, the fusion of image processing and ANN in [29] for
dragon fruit classification resulted in an accuracy of 83.10%, and the combination of KNN
and CNN in [29] for dragon fruit achieved 92.85%. Notably, the proposed method for
mango-quality classification outperformed all other models, achieving the highest accuracy,
of 98.63%. The strength of the proposed method lies in its ensemble-learning method, which
synthesizes the predictive abilities of various models into a meta-learner, thus leveraging
the strengths of individual models. The proposed method surpasses the performance of
single models such as RF [27] and ANN [29] because the proposed approach mitigates
individual model weaknesses, leading to more robust and accurate predictions tailored
explicitly toward assessing mango quality. Additionally, the ensemble’s capacity to capture
diverse aspects of mango features in base models, which have a feature extraction function
similar to CNN layers in [26,28]. The extracted features are subsequently input into a robust
model like XGBoost, previously evaluated for mango-classification data, to yield optimal
results. That may explain the proposed method’s equivalent performance compared to
deep learning-based methods.

Table 6. Results of various studies on agricultural-product classification.

Method Target Precision Recall F1-Score Accuracy

CNN [26] Mango - - 0.9587 0.9564
Random Forest [27] Mango 0.9801 0.9796 0.9803 0.981

Eight-layer CNN [28] Fruit - - - 0.9567
Image processing +

ANN [29] Dragon fruit - - - 0.8310

KNN+CNN [29] Dragon fruit - - - 0.9285
Proposed method Mango 0.9855 0.9901 0.9876 0.9863

The results of the processing speed and accuracy of various methods are presented
in Table 7. The system’s processing speed is calculated in frames per second (FPS), which
is taken 2000 times and then calculated as an average value to obtain the final result. In
Table 7, the results are sorted by the decreasing value of FPS. This table lists the traditional
image processing, ML and DL methods used to classify each different object. Table 7
shows that LDA [30] is the method with the fastest processing speed, at 58 FPS. This can be
understood because it is a method without a learning process. For the ML and DL methods,
the processing speed has decreased because the learning process involves a larger number
of calculations. Notably, the CNN networks of the authors in [31] achieve a processing
speed of 18 FPS, which does not meet the real-time processing requirements. Meanwhile,
ML methods achieve better processing speeds than DL methods. The reason for this is
that ML models are often simpler and have fewer parameters. Table 7 also reveals that
individual ML algorithms and ensemble-learning methods (EL) can operate in real time.
Among them, XGBoost has the fastest processing speed, with 32 FPS, and the proposed
ensemble-learning method (EL) reaches 26 FPS. The decrease in processing speed comes
from the model size of the EL method reaching 5.2 M larger than XGB, RF, and ET with
1 M, 1.2 M, and 3.8 M, respectively. For the accuracy of the classification process, it is easy
to see that the ML and DL methods outperform the LDA method. The reason comes from
the fact that intelligent algorithms have a learning process that has the ability to extract
features and adapt to the environment more strongly. Notably, the proposed EL method
achieves the highest accuracy, of 98%. From the above analysis, it can be confirmed that it
is feasible to apply the proposed EL method for classifying mango quality in practice.
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Table 7. Results of various studies on accuracy and processing speed in fruit classification.

Method Target Model Size Accuracy FPS

LDA [30] Pomegranate - 90% 58
XGBoost Mango 1 M 97% 32

Random Forest Mango 1.2 M 96% 31
ExtraTree Mango 3.8 M 96% 30

Proposed Method Mango 5.2 M 98% 26
CNN (eight layers) [31] Apple - 92% 18

4. Conclusions

This paper proposes an ensemble-learning method for mango-quality classification.
In the experiment, the results showed that the stacking model, consisting of a combination
of the base model and the meta-model, achieved the best results. This method established
the relationship between the input data by building a model capable of combining the
strengths of different ML models, leading to the creation of a final prediction with high
reliability. The proposed method has improved efficiency in classifying mango quality. The
feasibility of this study provides an effective method for researchers in the agricultural field
to solve image-feature extraction problems and to build robust prediction models. This
research is not limited to just the mango plant. It contributes to creating a solid foundation
for building classification systems for other fruits, such as sweet potatoes, grapefruit, etc.
Developing and evaluating the proposed ensemble-learning model can even be applied
to solve prediction problems in other research fields. The ensemble-learning method in
this study is a general approach. Therefore, it should be redesigned for application to
specific problems by increasing the number of models at each level. Based on this approach,
researchers in other fields, such as mechanical engineering or even economics, seeking a
powerful prediction algorithm to solve specific problems can refer to this study in the future.

Author Contributions: Conceptualization, N.T.T., N.M.T. and W.C.L.; methodology, N.T.T., N.D.T.
and N.M.T.; software, N.D.T. and N.M.T.; validation, N.T.T., N.D.T. and N.M.T.; formal analysis,
N.T.T., N.D.T. and N.M.T.; investigation, N.M.T., N.D.T.; resources, N.T.T. and N.M.T.; data curation,
N.D.T., N.T.T. and N.M.T.; writing—original draft preparation, N.D.T. and N.M.T.; writing—review
and editing, N.T.T. and W.C.L.; visualization, N.M.T. and N.D.T.; supervision, N.T.T. and W.C.L.;
project administration, N.T.T.; funding acquisition, N.T.T. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Acknowledgments: This research is funded by University of Economics Ho Chi Minh City—UEH, Vietnam.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Momin, M.; Rahman, M.; Sultana, M.; Igathinathane, C.; Ziauddin, A.; Grift, T. Geometry-based mass grading of mango fruits

using image processing. Inf. Process. Agric. 2017, 4, 150–160. [CrossRef]
2. Gururaj, N.; Vinod, V.; Vijayakumar, K. Deep grading of mangoes using convolutional neural network and computer vision.

Multimed. Tools Appl. 2023, 82, 39525–39550. [CrossRef]
3. Thong, N.D.; Thinh, N.T.; Cong, H.T. Mango sorting mechanical system combines image processing. In Proceedings of the

2019 7th International Conference on Control, Mechatronics and Automation (ICCMA), Delft, Netherlands, 6–8 November 2019;
pp. 333–341.

4. Trieu, N.M.; Thinh, N.T. A study of combining knn and ann for classifying dragon fruits automatically. J. Image Graph. 2022,
10, 28–35. [CrossRef]

5. Brezmes, J.; Fructuoso, M.; Llobet, E.; Vilanova, X.; Recasens, I.; Orts, J.; Saiz, G.; Correig, X. Evaluation of an electronic nose to
assess fruit ripeness. IEEE Sens. J. 2005, 5, 97–108. [CrossRef]

6. Matteoli, S.; Diani, M.; Massai, R.; Corsini, G.; Remorini, D. A spectroscopy-based approach for automated nondestructive
maturity grading of peach fruits. IEEE Sens. J. 2015, 15, 5455–5464. [CrossRef]

https://doi.org/10.1016/j.inpa.2017.03.003
https://doi.org/10.1007/s11042-021-11616-2
https://doi.org/10.18178/joig.10.1.28-35
https://doi.org/10.1109/JSEN.2004.837495
https://doi.org/10.1109/JSEN.2015.2442337


Agronomy 2024, 14, 831 18 of 18

7. Nandi, C.S.; Tudu, B.; Koley, C. A machine vision technique for grading of harvested mangoes based on maturity and quality.
IEEE Sens. J. 2016, 16, 6387–6396. [CrossRef]

8. Sa’ad, F.; Ibrahim, M.; Shakaff, A.; Zakaria, A.; Abdullah, M. Shape and weight grading of mangoes using visible imaging.
Comput. Electron. Agric. 2015, 115, 51–56. [CrossRef]

9. Schulze, K.; Nagle, M.; Spreer, W.; Mahayothee, B.; Müller, J. Development and assessment of different modeling approaches
for size-mass estimation of mango fruits (Mangifera indica L., cv.‘Nam Dokmai’). Comput. Electron. Agric. 2015, 114, 269–276.
[CrossRef]

10. Mittal, S.; Dutta, M.K.; Issac, A. Non-destructive image processing based system for assessment of rice quality and defects for
classification according to inferred commercial value. Measurement 2019, 148, 106969. [CrossRef]

11. Cao, J.; Sun, T.; Zhang, W.; Zhong, M.; Huang, B.; Zhou, G.; Chai, X. An automated zizania quality grading method based on
deep classification model. Comput. Electron. Agric. 2021, 183, 106004. [CrossRef]

12. Huang, S.; Fan, X.; Sun, L.; Shen, Y.; Suo, X. Research on classification method of maize seed defect based on machine vision.
J. Sens. 2019, 2019, 2716975. [CrossRef]

13. Pérez-Borrero, I.; Marín-Santos, D.; Gegúndez-Arias, M.E.; Cortés-Ancos, E. A fast and accurate deep learning method for
strawberry instance segmentation. Comput. Electron. Agric. 2020, 178, 105736. [CrossRef]

14. Li, Z.; Yin, C.; Zhang, X. Crack Segmentation Extraction and Parameter Calculation of Asphalt Pavement Based on Image
Processing. Sensors 2023, 23, 9161. [CrossRef] [PubMed]

15. Ghazal, S.; Qureshi, W.S.; Khan, U.S.; Iqbal, J.; Rashid, N.; Tiwana, M.I. Analysis of visual features and classifiers for Fruit
classification problem. Comput. Electron. Agric. 2021, 187, 106267. [CrossRef]

16. Chithra, P.; Henila, M. Apple fruit sorting using novel thresholding and area calculation algorithms. Soft Comput. 2021, 25,
431–445. [CrossRef]

17. Behera, S.K.; Rath, A.K.; Sethy, P.K. Maturity status classification of papaya fruits based on machine learning and transfer learning
approach. Inf. Process. Agric. 2021, 8, 244–250. [CrossRef]

18. T.K., B.; Annavarapu, C.S.R.; Bablani, A. Machine learning algorithms for social media analysis: A survey. Comput. Sci. Rev. 2021,
40, 100395. [CrossRef]

19. Sen, P.C.; Hajra, M.; Ghosh, M. Supervised classification algorithms in machine learning: A survey and review. In Emerging
Technology in Modelling and Graphics: Proceedings of IEM Graph 2018; Springer: Singapore, 2020; pp. 99–111.

20. Zhang, S. Cost-sensitive KNN classification. Neurocomputing 2020, 391, 234–242. [CrossRef]
21. Ghiasi, M.M.; Zendehboudi, S. Application of decision tree-based ensemble learning in the classification of breast cancer. Comput.

Biol. Med. 2021, 128, 104089. [CrossRef]
22. Ileberi, E.; Sun, Y.; Wang, Z. Performance evaluation of machine learning methods for credit card fraud detection using SMOTE

and AdaBoost. IEEE Access 2021, 9, 165286–165294. [CrossRef]
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