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Abstract: In order to eliminate the limitations of traditional winter wheat yield prediction methods,
the prediction models based on machine learning are used to improve the accuracy of winter wheat
yield prediction. In this study, by collecting a large amount of domestic literature about wheat growth
characteristics, the irrigation amount, fertilization amount, soil nutrient status, planting density,
maximum leaf area index (LAImax), maximum aboveground dry matter accumulation (Dmax) and
yield (Y) were chosen to develop the learning models. Using the data of the irrigation amount,
fertilization amount, soil nutrient status and planting density as the training set, the regression
prediction models (Gaussian process regression mode, linear regression model, regression tree mode
and support vector machine model) were used to train and learn the data of the LAImax, Dmax and
Y, respectively. The results show that the Gaussian regression model has the best precision compared
to the other models. The coefficients of determination (R2) of the learning results of the Gaussian
regression model for the LAImax, Dmax and Y are 0.9, 0.93 and 0.86, and the root mean square error
(RMSE) is 0.57, 1125.1 and 640.41. Based on the data of the irrigation amount, nitrogen application
amount, potassium application amount, phosphorus application amount, organic matter content,
total nitrogen content, alkali-hydrolyzable nitrogen content, available phosphorus content, available
potassium content and planting density, the method proposed in this paper can reliably predict the
LAImax, the Dmax and Y of winter wheat. The results also have certain reference significance for the
yield prediction of other crops.

Keywords: machine learning; winter wheat; water and fertilizer coupling; yield prediction

1. Introduction

Crop yield prediction has emerged as a focal point in agricultural research [1], which
is affected by meteorological conditions, soil moisture and fertilizer usage [2,3]. Currently,
many studies propose methods for predicting crop yield to enhance the forecasting accuracy.
The main techniques employed for crop yield prediction include the statistical forecasting
methods and the crop growth models. The statistical approaches include multiple linear
regression models [4,5], factor analysis linear regression methods [6] and gray prediction
models. They are used to obtain the simple functional relationships between the yields
and the influencing factors of water and fertilizer [7–9]. But these methods usually ignore
the environmental and meteorological factors and are thus hard to use widely. In order
to consider the effect of photosynthesis, water and fertilizer dynamics and the dry matter
distribution on yields, crop growth models are developed, such as AquaCrop [10], DSSAT-
CERES-Wheat [11], etc. However, a large number of parameters in the crop growth
models need numerous experimental studies to determine them. With the continuous
advancement of computer technology, machine learning methods—such as artificial neural
networks—have emerged in recent years. The machine learning method can find the
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relationship between the target variable and its influencing factors from a large amount of
data. Therefore, a simple and accurate yield prediction method can be developed based on
machine learning and the agricultural data.

Machine learning can directly learn relevant information from input data and estimate
yield by establishing an empirical relationship between yield drivers and historical yield
records. It has the advantage of not relying on crop parameters and has been used for
crop yield prediction. Khanal et al. [12] used linear regression and five machine learning
algorithms (random forest, neural network, support vector machine, Gradient Boosting
Model and Cubist) to predict corn yield and compared their performance. Leng et al. [13]
used the traditional linear regression models and random forest models to predict changes
in corn yield in the United States from 1980 to 2010. Zhou et al. [14] explored the potential
of nine climate variables, three remote sensing-derived indicators and three machine
learning methods (random forest, support vector machine and Least absolute Shrinkage
and Selection Operator) in predicting wheat yield based on data from 1582 counties in three
wheat growing areas in China from 2002 to 2010. This research showed that the machine
learning models had good performances on crop yield prediction in most cases compared
to linear regression models.

The major sources of the training set in the machine learning model are the agricultural
meteorological and remote sensing data. Based on analyzing the key meteorological factors
of sugarcane yield, Shi et al. [15] used the mean values of meteorological data in the entire
growth period as the inputs of the machine learning model to develop the sugarcane
yield prediction model. Liu et al. [16] used the long time-series data of 47 meteorological
factors and 3 spatial factors as the training set and proposed the winter wheat yield
prediction model by combining it with the random forest method. Meanwhile, the spectral
information obtained from remote sensing satellites or unmanned aerial vehicles can
better reflect the growth status of crops, which provides the possibility for large-scale
crop yield prediction [17]. Yan et al. [18] analyzed the multispectral remote sensing data
of unmanned aerial vehicles and selected five commonly applied vegetation indices as
the training set for machine learning to develop the alfalfa yield prediction model. Sun
et al. [19] combined the satellite remote sensing data with convolutional neural networks
and back-propagation neural networks for the county-level yield prediction of winter
wheat. Machine learning models have been widely applied to develop yield prediction
methods for different crops. Based on the different spectral preprocessing methods, Ma
et al. [20] proposed the estimation model of the leaf area index by the cotton canopy spectral
reflectance of unmanned aerial vehicles. Zhou [21] used remote sensing data and machine
learning regression models to construct crop yield prediction models for wheat and rice
and evaluated the proposed prediction models. But there are still two problems that limit
the application of the proposed models. One is the forecasting precision of meteorological
data and the preprocessing precision of spectral data [22]. The other one is that the satellite
remote sensing data make it hard to reflect the irrigation and fertilization conditions, which
means the prediction methods based on the machine learning models cannot be used to
decide irrigation and fertilization schedules.

The main goal of this paper is to develop an early prediction method of the leaf area
index, the dry matter mass and yield for winter wheat based on the machine learning
models, irrigation and fertilization amount, soil quality indicators and planting density.
Moreover, the water and nitrogen coupling functions are developed for optimizing the
water and nitrogen management in farmland by using the predicted results of the machine
learning models. The proposed method can be used to predict yields and provide the
irrigation and fertilization schedules simply and accurately from the conditions of the local
soil quality and farmland management.



Agronomy 2024, 14, 839 3 of 18

2. Data Sources and Research Methods
2.1. Data Sources

The wheat growth characteristics data in this study including the leaf area index, the
dry matter mass and yield were collected from 57 domestic and international studies pub-
lished from 1996 to 2021. This literature covered 20 locations across the country, excluding
Hong Kong, Macao and Taiwan. The meteorological data were sourced exclusively from
the China Meteorological Data Network. During the collection of crop growth data, the
following principles were adhered to [4]:

(1) Direct Data Acquisition. The data were not only directly obtained in the text of the
original literature but were also extracted from the curve graphs in the literature by the
GetData Graph Digitizer tool.

(2) Universal Cultivation Technology. Priority was given to the crop growth data ob-
tained under universal cultivation technology, specifically conditions involving fertilization
and irrigation. Data from new technology management practices that were not widely
adopted were excluded.

(3) Sample Size Considerations: In each region, more than three sets of data samples
should be collected. In certain areas with limited research, only one to two sets of data
samples were available.

Figure 1 shows the distribution map of the wheat planting areas in the collected lit-
erature, primarily concentrated in East China, Central China and Northwest China. The
soil texture of these planting regions mainly consisted of loam with consistent fertility. The
different varieties of winter wheat were sown with a concentration from early October to
mid-November and harvested from June to July in the subsequent year. In most experi-
mental plots, urea (nitrogen fertilizer), K2O (potassium fertilizer) and P2O5 (phosphate
fertilizer) served as the foundational fertilizers. Table 1 shows the details on the number of
samples and data sources employed for each growth indicator.
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Table 1. Sample size and data sources.

District

Leaf Area Index Dry Matter Mass Yield

Sample Size of
Each City Data Source Sample Size of

Each City Data Source Sample Size of
Each City Data Source

Anhui 12 [23] 12 [23] 18 [23]

Beijing 9 [24] 11 [24,25]

Hebei 44 [26–35] 29 [24,27,29–31,35] 84 [26–39]

Henan 37 [40–45] 26 [40–42] 65 [40–43,45–47]

Jiangsu 3 [48,49] 26 [50] 30 [49,50]

Shandong 19 [51,52] 15 [51,53] 27 [51–53]

Shanxi 31 [54,55] 40 [55,56] 39 [55,56]

Shaanxi 41 [57–60] 33 [27,58,59,61] 127 [57–70]

Xinjiang 46 [71–77] 20 [71,73,75,77] 43 [71–77]

Total 233 210 444

2.2. Research Methods

Machine learning is a multidisciplinary field that involves probability theory, statistics,
algorithm complexity and other disciplines. Machine learning automatically processes the
relationship between input variables and output variables, mining implicit patterns from
example samples to ‘learn’ the structural description of this data [78]. Common machine
learning algorithms include Gaussian regression, multiple linear regression, BP neural
networks, random forests, support vector machines and regression trees.

By consulting a substantial amount of domestic literature on wheat growth character-
istics, we collected data on various factors, such as the irrigation amount, fertilizer content
(including nitrogen, phosphorus and potassium), soil quality at the experimental site (in-
cluding organic matter, total nitrogen, alkali-hydrolyzable nitrogen, available phosphorus
and available potassium), planting density, maximum leaf area index (LAImax), maximum
aboveground dry matter mass (Dmax) and yield (Y). The training set consisted of data on
the irrigation amount, fertilizer content, soil quality and planting density. The maximum
values of the leaf area index, the aboveground dry matter mass and yield are the response
variables. Machine learning techniques were employed to establish relationships between
each response variable and the training set. Moreover, MATLAB’s Regression Learner
toolbox offers a range of regression models that can automatically train one or more models.
By training these models using the training set data and response variables, we obtained
the relevant regression prediction models. The specific machine learning parameters are de-
tailed in Table 2. The cross-validation method was used to estimate the predictive accuracy
of the final model trained using the full dataset. If k folds were chosen, the training data
would be divided into k disjoint sets or folds. For each fold, the out-of-fold observations
were used to train the learning model, and the in-fold data were used to assess the model
performances and calculate the average test errors over all the folds. This method requires
multiple fits but makes efficient use of all the data, so it works well for small datasets.
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Table 2. Machine learning parameters.

Learning Parameters Input Amount

Training set

Irrigation amount (mm), nitrogen application amount (kg/hm2),
potassium application amount (kg/hm2), phosphorus application

amount (kg/hm2), organic matter content (%), available phosphorus
content (mg/kg),

alkaline hydrolysis nitrogen content (mg/kg), total nitrogen
amount (g/kg), available potassium content (mg/kg), planting

density (kg/hm2)

Response variable Maximum leaf area index (cm2/cm2), maximum dry matter
mass (kg/hm2), yield (kg/hm2)

Number of datasets 255 (maximum leaf area index), 210 (maximum dry matter mass),
444 (yield)

Cross validation fold 10

Regression model Linear regression model, regression tree, support vector machine,
Gaussian regression model

2.3. Regression Models in Machine Learning

(1) Gaussian regression model
The Gaussian process regression method is a type of Bayesian optimization technique

that performs well in addressing regression problems involving small samples, high di-
mensionality and nonlinearity [79]. In regression tasks, the goal is to establish a mapping
relationship between the input and output. By leveraging this mapping, we can predict the
new output quantity corresponding to a new input. A Gaussian process can be defined
to describe the distribution of a function. The characteristics of the Gaussian process are
determined by its mean function (m(x)) and covariance function (k (x, x1)):

m(x) = E[ f (x)] (1)

k(x, x1) = E[( f (x)− m(x))( f (x1)− m(x1))] (2)

where x and x1 are the random variables.
GP is defined as:

f (x) ∼ GP[m(x), f (x, x1)] (3)

Its mean function usually makes it equal to 0. Considering that the observation target
value y contains noise, the general model for establishing the Gaussian process regression
problem is:

y = f (x) + ε (4)

where x is the n-dimensional random vector, f is the function value, y is the observations
contaminated by noise and ε is the independent white Gaussian noise. ε is conformed
to the Gaussian distribution, with a mean value of 0 and a variance of σ2, which can be
recorded as:

σ ∼ N(0, σ2) (5)

The prior distribution of the observed value y can be obtained as:

y ∼ N(0, k(x, x1) + σ2
n I) (6)

Then, the joint prior distribution of the observed value y and the predicted value f∗ is:[
y
f∗

]
∼ N

(
0,
[

K(X, X) + σ2 I K(X, X∗)
K(X∗, X) K(X∗, X∗)

])
(7)
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where K (X∗, X∗) is the test point x∗ self-covariance matrix, and K (X, X) is the covariance
matrix of the training points and K (X, X∗) = K (X∗, X) is the covariance matrix between the
test point x∗ and the training set point x.

From this, we can calculate the posterior distribution of the predicted value f∗ as:

f∗|X, y, x∗ ∼ N(µ, ∑) (8)

µ = K(x∗, X)
[
K(X, X) + σ2 I

]−1
y (9)

∑ = K(X, x∗)− K(x∗, X)(K(X, X) + σ2 I)
−1

K(X, x∗) (10)

where µ is the mean value of the predicted value f* corresponding to the test point x∗, and
∑ is the covariance of the predicted value f* corresponding to the test point x∗.

(2) Linear regression model
The multiple linear regression model is an equation that describes how the dependent

variable y depends on the independent variables x1, x2, . . ., xm and the error term. The
general form of the regression equation is:

y = β0 + β1x1 + · · ·+ βmxm + ε (11)

where y is the dependent variable, x1, x2, . . ., xm are the independent variables and β0, β1,
β2, . . ., βm are the regression coefficients.

Substituting the observation data into the regression equation, the following structural
formula is obtained: 

y1 = β0 + β1x11 + · · ·+ βmx1m + ε1
· · ·
yN = β0 + β1xN1 + · · ·+ βmxNm + εN

(12)

where ε1, . . ., εN are N random variables that are independent of each other and obey the
same normal distribution N (0, σ).

If Y =

 y1
...

yN

, X =

1
...
1

x11
...

xN1

· · ·

· · ·

x1m
...

xNm

, β =

 β0
...

βm

, and ε =

 ε1
...

εN

,

We get the matrix equation:
Y = Xβ + ε (13)

Assume β0’, β1’, . . ., βm’ are the least square estimates of parameters β0, β1, β2, . . ., βm,
respectively; then, the observed value of y can be expressed as:

yk = β′
0 + β′

1xk1 + · · ·+ β′
mxkm + ek (14)

where ek is the estimated value of the error (k = 1, 2, . . ., N).
(3) Regression tree model
The regression tree is a non-parametric model that relies on a tree structure algorithm.

When provided with a set of training data, it employs a top–down, divide-and-conquer
learning strategy to iteratively split the data into non-overlapping subsets. Once the
division process is complete, the mean value of the data samples within each subset serves
as the output, allowing us to create a prediction model. The mathematical representation
of a regression tree is as follows:

f (x) =
M

∑
m=1

cm I(x ∈ Rm) (15)
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where M is the number of subsets in the regression tree model, cm is the corresponding
mean of the data samples in each subset and Rm is each divided subset. I(x ∈ Rm) is an
indicative function. The value is 1 when x ∈ Rm; otherwise, it is 0.

Given a training dataset, it contains N samples (xi, yi), where i = 1, 2, . . ., N, and each
sample has p inputs xi and one output yi. The establishment process of the regression tree
model is mainly to find a variable x(j) and a split point s among all the input variables, so
the set can be divided into two subsets, and the training error after division is minimal.
The process of finding the variable x(j) and the dividing point s is:

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)
2 + min

c2
∑

xi∈R2(j,s)
(yi − c2)

2

 (16)

where R1(j, s) is the data samples in subset 1 generated during the partitioning process,
R2(j, s) is the data sample in subset 2, c1 is the corresponding mean of the data samples in
subset 1 and c2 is the corresponding mean of the data samples in subset 2.

The above division process is repeated until the termination condition is reached, and
the establishment of the regression tree model is completed. The termination condition is
generally that the number of data samples contained in each subset is less than a certain
number.

(4) Support vector machine regression model
The support vector machine (SVM) is a popular machine learning method used for

both classification and regression tasks. This algorithm relies on statistical theory, the
Vapnik–Chervonenkis dimension (VC dimension) theory and the principle of structural risk
minimization. The SVM aims to strike a balance between model complexity and learning
capability by seeking an optimal solution based on limited samples. The goal is to achieve
the best possible generalization performance. For handling nonlinear and inseparable
problems, the SVM employs a kernel function to map data from a low-dimensional space
to a high-dimensional space. This transformation facilitates high-dimensional separability.

The basis of the support vector machine is to find the optimal separation hyperplane
under linear separability conditions. First, a sample set is given

S =
{
(xi, yi); i = 1, · · ·, n, x ∈ Rd, y ∈ {+1,−1}

}
(17)

where xi is the data, and yi is the category to which the data belong.
The original problem of the support vector machine can be expressed as:

yi(ωxi + b) ≥ 1 − ξi; min(
1
2
∥ω∥2) + C

n

∑
i=1

ξi (18)

where i = 1, . . ., n. ω is the weight vector; b is the bias vector; ξ is the relaxation factor
(ξ ≥ 0); and C is the penalty factor (C > 0), and this parameter can be adjusted to achieve a
balance between algorithm complexity and classification accuracy.

The optimal solution to the original problem is obtained by finding the extreme points
of the Lagrange function. Referring to the Lagrange multiplier algorithm, the above original
problem is transformed into a dual form, expressed as:

maxQ(α) = −1
2

n

∑
i,j=1

αiαjyiyj(xi · xj) +
n

∑
i,j=1

αi (19)

n

∑
i,j=1

αiyi = 0(0 ≤ α ≤ C; i = 1, · · ·, n) (20)

where α is the Lagrange multiplier.
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For nonlinear inseparable samples, the support vector machine maps the sample (xi,
yi) into the high-dimensional feature space guided by the kernel function K (xi, yi) and
the nonlinear mapping and implements the inner product operation in the feature space.
Therefore, the formula can be expressed as:

maxQ(α) = −1
2

n

∑
i,j=1

αiαjyiyjK(xi · xj) +
n

∑
i,j=1

αi (21)

n

∑
i,j=1

αiyi = 0(0 ≤ α ≤ C; i = 1, · · ·, n) (22)

2.4. Data Analysis

The collected data were processed in Excel 2021 and drawn in Origin 2022. We deduced
the model parameters with MATLAB 2021 and used the R2, root mean square error (RMSE)
and relative error (Re) as the feature evaluation indicators for the error analysis.

The root mean square error (RMSE), relative error (Re) and coefficient of determination
(R2) were used for the statistical analyses to investigate the simulation accuracy and
applicability of the approximate analytical solutions. The specific expressions are as follows:

R2 = 1 −

n
∑

i=1
(yi − Yi)

2

n
∑

i=1
(Yi − Yi)

2
(23)

RMSE =

√
1
n

n

∑
i=1

(yi − Yi)
2 (24)

Re =

√
∑ (Yi − yi)

2

∑ Y2
i

× 100% (25)

where Yi is the average of the true values, yi is the predictive value, Yi is the actual value
and n is the total number of test samples.

3. Results and Analysis
3.1. Comparison of Predictive Regression Models

The collected training data were used to build the machine learning models by using
MATLAB R2020a Regression Learner toolbox for the corresponding maximum leaf area
index, maximum dry matter mass and yield, respectively. The learning results from each re-
gression model are shown in Figure 2. It can be seen from Figure 2 that the Gaussian process
regression model achieved the highest learning accuracy for the three growth indicators in
the four machine regression models. For the maximum leaf area index, the determination
coefficients (R2) of the Gaussian regression model, linear regression model, regression
tree model and support vector machine regression model were 0.90, 0.79, 0.79 and 0.77,
respectively. The root mean square errors (RMSEs) were 0.57, 0.83, 0.83 and 0.86 cm2/cm2,
respectively. For the maximum dry matter mass, the determination coefficients (R2) of the
four models were 0.93, 0.81, 0.79 and 0.81, respectively. The corresponding RMSE values
were 1125.1, 1818.9, 1886.8 and 1823.2 kg/hm2, respectively. For yield, the determination
coefficients (R2) of the four models were 0.86, 0.57, 0.71 and 0.78, respectively. The RMSE
values were 640.41, 1118.6, 925.91 and 807.97 kg/hm2, respectively.
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By the comprehensive comparison of the four regression models, the learning accuracy
of the linear regression, regression tree and support vector machine was lower than the
Gaussian process regression. Therefore, the Gaussian regression model was recommended
as the machine learning model to predict the winter wheat yield.
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3.2. Validation of Predictive Regression Models

To validate the learning accuracy of the Gaussian regression model, we selected the
experimental data from the studies conducted by Wang et al. [53], Zhao et al. [72] and
Qin et al. [80]. The data included the irrigation amount, nitrogen application, potassium
application, phosphorus application, organic matter content and total water usage. More-
over, the relevant data such as the nitrogen content, alkaline-hydrolyzable nitrogen content,
available phosphorus content, available potassium content and planting density were used
as new datasets and input into the Gaussian regression model that had completed its
learning phase. The predicted values of the maximum leaf area index, the maximum dry
matter mass and yield were used to compare the measured values to discuss the availability
of the learning models.

The experiment conducted by Wang et al. [53] took place at the Shandong Practice
Base of China Agricultural University, situated in Suo Town, Hengtai County, Shandong
Province. The planting model followed the local typical winter wheat–summer corn
rotation. In the experimental plot, the soil’s organic matter content at a depth of 0–20 cm
was 1.39%. Additionally, the total nitrogen content was 0.93 g/kg, alkali-hydrolyzable
nitrogen content was 48 mg/kg, available phosphorus content was 38 mg/kg and available
potassium content was 86 mg/kg. The phosphorus application amount was 375 kg/hm2,
and the potassium application amount was 128.25 kg/hm2. The experimental site of
Zhao et al. [72] was located at the Manas Experimental Station of the Xinjiang Academy of
Agricultural Sciences. The planting mode was the long-term continuous cropping of winter
wheat. The experimental soil was loam, with an organic matter content of 2.56%, alkali-
hydrolyzable nitrogen content of 54.5 mg/kg, available phosphorus content of 9.65 mg/kg
and available potassium content of 113 mg/kg, at the depth of 0–20 cm. In the whole
growth period, the phosphorus application amount was 26.2 kg/hm2. Additionally, the
potassium application amount was 101.3 kg/hm2, and the planting density was 4.1 million
plants per hectare. The experiment of Qin et al. [80] was carried out at the Fengqiu National
Experimental Station of Agricultural Ecology, Chinese Academy of Sciences, located in
Pandian Town, Fengqiu County, Henan Province (114◦24′ E, 35◦00′ N). The main soil
texture in this area was light fluvo-aquic soil developed from the sediments of the Yellow
River. At the experimental soil depth of 0–20 cm, the soil organic matter content was 1.02%,
the total nitrogen content was 0.57 g/kg, the alkali-hydrolyzable nitrogen content was
45.7 mg/kg, the available phosphorus content was 5.75 mg/kg and the available potassium
content was 120 mg/kg. In the whole growth period, the phosphorus application rate was
80 kg/hm2, the potassium application rate was 200 kg/hm2 and the planting density was
225 kg/hm2. The irrigation and nitrogen application amount in the three experimental
sites are shown in Table 3. Based on the proposed Gaussian regression model of machine
learning, the predicted values of the maximum leaf area index, the maximum dry matter
mass and yield were calculated. As shown in Table 3, the errors between the predicted and
measured values were analyzed.

Table 3 shows that the test treatments corresponding to the maximum values of
each indicator all involved the highest nitrogen application amount. However, it cannot
imply that these treatments represent the optimal irrigation and nitrogen application
levels. To refine our understanding and determine the optimal amounts of irrigation
and fertilization, we further narrowed down the water and nitrogen application amount
intervals based on information from each literature source. Moreover, the refined irrigation
and nitrogen amounts were input into the learning model to calculate the maximum leaf
area index, the maximum dry matter mass and yield. The relationships between the growth
index and water–nitrogen levels in the three experimental areas were analyzed by the
calculated results. Figure 3 shows the predicted values of the maximum leaf area index,
the maximum dry matter mass and yield by the Gaussian regression model and refined
water–nitrogen levels.
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Table 3. Comparison of growth characteristics indicators between predicted values by Gaussian
process regression model and measured value.

Validation
Literature

Predictive
Indicators

Irrigation
Amount (mm)

Nitrogen
Application

Amount
(kg/hm2)

Measured
Value

Predicted
Value

Relative Error
(%)

[53] Maximum leaf
area index

473 0 3.447 3.898 13.08

473 100 4.553 4.446 2.35

473 200 4.585 5.197 13.35

473 300 7.178 6.065 15.51

428 0 4.207 4.042 3.92

428 100 5.068 4.606 9.12

428 200 5.386 5.349 0.35

428 300 6.406 6.191 3.36

[72] Maximum dry
matter mass

553 0 13,466.5 14,820 10.05

691.1 0 13,251 15,040 13.5

708.5 0 13,131 15,050 14.61

559.75 180 12,781 15,730 23.07

691.32 180 12,978 15,840 22.05

712.5 180 14,434.5 15,810 9.53

563.26 270 13,356 15,930 19.27

700.23 270 16,077 15,960 0.72

713.16 270 16,042.5 15,940 0.64

[80] Yield

502.66 150 6318.4 5861 7.24

502.66 190 6636 6417 3.47

502.66 230 7005.4 6654 5.01

502.66 270 7146.2 6643 7.04

576.1 150 6653.9 5846 12.14

576.1 190 7072.3 6370 9.35

576.1 230 7185.2 6542 8.95

576.1 270 7240.5 6468 10.67

612.25 150 6040.3 5801 3.96

612.25 190 7007.1 6303 10.05

612.25 230 7060.1 6452 8.61

612.25 270 6535.88 6363 2.65

642.92 150 5149 5737 11.42

642.92 190 5434.6 6214 14.34

642.92 230 5299.4 6342 19.67

642.92 270 5347.3 6244 16.77

720.92 150 5467.9 5516 0.8
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Figure 3a indicates that the irrigation interval for the maximum predicted value
of the leaf area index was between 450 mm and 550 mm, and the nitrogen application
interval ranged from 550 kg/hm2 to 650 kg/hm2. Notably, the experiments conducted
by Wang et al. [53] demonstrated that the optimal value of the maximum leaf area index
occurred in the treatment with an irrigation volume of 473 mm and a nitrogen application
rate of 300 kg/hm2. Remarkably, the irrigation volume of 473 mm was in the predicted
optimal irrigation interval of 450 mm to 550 mm. However, the nitrogen application rate
of 300 kg/hm2 exhibited a slight deviation from the predicted range of 550 kg/hm2 to
650 kg/hm2. Because the maximum leaf area index was observed in the treatment with
the highest nitrogen application amount (300 kg/hm2), this discrepancy was caused by the
limited number of water–fertilizer coupling treatments in the experiment.

In Figure 3b, the irrigation interval and nitrogen application interval for the maximum
predicted value of dry matter mass are from 600 mm to 700 mm and 250 kg/hm2 to
350 kg/hm2, respectively. The experimental results by Zhao et al. [72] were in agreement
with the intervals of irrigation and nitrogen application. The optimal value of the maximum
dry matter mass was observed in a treatment with the irrigation volume of 700.23 mm
and the nitrogen application rate of 270 kg/hm2. The closer the predicted maximum dry
matter mass value is to the optimal water and nitrogen interval, the higher the prediction
accuracy. In this case, the prediction accuracy for the combination of 700.23 mm irrigation
and 270 kg/hm2 nitrogen reached 0.72%, while the combination of 713.16 mm irrigation
and 270 kg/hm2 nitrogen achieved an accuracy of 0.64%.

In Figure 3c, the irrigation interval of the predicted maximum yield value is between
400 mm and 600 mm, while the nitrogen application interval is from 210 kg/hm2 to
300 kg/hm2. Notably, the experimental results by Qin et al. [80] demonstrated that the
optimal value for maximum yield occurred in the treatment with an irrigation volume of
576.1 mm and a nitrogen application rate of 270 kg/hm2. It precisely matched the predicted
optimal water and fertilizer intervals. The Gaussian regression model of machine learning
had high accuracy in predicting wheat yield within this optimal water and fertilizer range.
Moreover, the deviation in the prediction accuracy for the 642.92 mm irrigation level is
attributed to the actual experiment’s conditions. There was less rainfall during that wheat
growth season, and a significant amount of precipitation occurred during the grain filling
period. The early-stage irrigation was more substantial, but water scarcity during the critical
growth period of the winter wheat led to physiological damage. Therefore, the increasing
irrigation did not effectively recover yields but resulted in reduced crop productivity.

3.3. Construction of Water and Fertilizer Coupling Function

These experimental results are from Wang et al. [53] in Hengtai County, Shandong
Province. The soil of the experimental farmland contained 1.39% organic matter content,
0.93 g/kg total nitrogen content, 48 mg/kg alkali-hydrolyzable nitrogen content, 38 mg/kg
available phosphorus content and 86 mg/kg available potassium content. Under the winter
wheat–summer corn rotation planting mode, the optimal value of the maximum leaf area
index was in the irrigation interval of 450 mm to 550 mm and the nitrogen application
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interval of 550 kg/hm2 to 650 kg/hm2. Based on the maximum leaf area index prediction
data obtained by machine learning as shown in Figure 3, we used a quadratic polynomial
to develop a model of the water–nitrogen coupling function of the maximum leaf area
index in the optimal water and nitrogen range.

LAIm = 1.653 + 4.467 × 10−3Wa + 1.974 × 10−2Nr − 4.396 × 10−6W2
a − 2.737 × 10−9WaNr − 1.685 × 10−5N2

r (26)

where LAIm is the maximum leaf area index predicted value, cm2/cm2; Wa is the irrigation
amount, mm; and Nr is the nitrogen application amount, kg/hm2.

Figure 4a shows the predicted value and fitting value of the maximum leaf area index
in the optimal water and nitrogen interval. The R2 of the fitting result was 0.9993 and
the RMSE was 0.0006572 cm2/cm2. By dLAIm

dWa
= 0, and dLAIm

dNr
= 0, the optimal irrigation

amount and nitrogen application amount for the maximum leaf area index can be calculated,
which are 500 mm and 600 kg/hm2, respectively. Based on Equation (26), the corresponding
optimal maximum leaf area index is 9.1091 cm2/cm2.
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Zhao et al. [72] conducted experiments in the Manas region of Xinjiang, where the
soil characteristics include 2.56% organic matter content, 54.5 mg/kg alkali-hydrolyzable
nitrogen content, 9.65 mg/kg available phosphorus content and 113 mg/kg available
potassium content. These experiments were carried out within a long-term continuous
cropping winter wheat planting mode. Remarkably, the optimal value for the maximum
dry matter mass agreed precisely with the predicted optimal irrigation interval of 600 mm
to 700 mm and the nitrogen application interval of 250 kg/hm2 to 350 kg/hm2. According
to the maximum dry matter prediction data obtained by machine learning as shown
in Figure 3, the quadratic polynomial of the water–nitrogen coupling function for the
maximum dry matter mass in the optimal water and nitrogen range was fitted as follows.

Dm = 9426 + 16.86Wa + 6.51Nr − 1.264 × 10−2W2
a − 1.779 × 10−3WaNr − 6.899 × 10−3N2

r (27)

where Dm is the predicted maximum dry matter mass, kg/hm2; Wa is the irrigation amount,
mm; and Nr is the nitrogen application amount, kg/hm2.

Figure 4b shows the predicted value and fitting value of the maximum dry matter mass
in the optimal water and nitrogen interval. The R2 of the fitting result was 0.9924 and the
RMSE was 2.853 kg/hm2. By letting dDm

dWa
= 0, and dDm

dNr
= 0, the optimal irrigation amount

and nitrogen application amount for the maximum dry matter mass can be calculated,
which are 600 mm and 350 kg/hm2, respectively. Based on Equation (27), the corresponding
optimal maximum dry matter mass is 15,772 kg/hm2.

The experiments by Qin et al. [80] showed that the soil organic matter content in
Fengqiu County, Henan Province, was 1.02%, the total nitrogen content was 0.57 g/kg, the
alkali-hydrolyzable nitrogen content was 45.7 mg/kg, the available phosphorus content
was 5.75 mg/kg and the available potassium content was 120 mg/kg. Under the planting
density of 225 kg/hm2, the irrigation interval and nitrogen application interval for an
optimal yield of winter wheat were 400~600 mm and 210~300 kg/hm2, respectively. Ac-
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cording to the yield prediction data obtained by machine learning in Figure 3, the quadratic
polynomial was used to fit the water and nitrogen coupling function of winter wheat yield
as follows:

Y = −2159 + 18.07Wa + 35.64Nr − 1.351 × 10−2W2
a − 2.08 × 10−2WaNr − 5.023 × 10−2N2

r (28)

where Y is the production forecast value, kg/hm2; Wa is the irrigation amount, mm; and Nr
is the nitrogen application amount, kg/hm2.

Figure 4c shows the predicted value and fitting value of yield in the optimal water and
nitrogen interval. The R2 of the fitting result was 0.993 and the RMSE was 6.579 kg/hm2.
By letting dY

dWa
= 0 and dY

dNr
= 0, the optimal irrigation amount and nitrogen application

amount for yield can be calculated, which are 480 mm and 240 kg/hm2, respectively. Based
on Equation (28), the corresponding optimal yield is 6677 kg/hm2.

4. Discussion

Because the number of samples available for machine learning training was limited,
the sample size of the verification dataset was not enough. Specifically, for predicting
the maximum leaf area index of wheat, we lack verification samples that precisely match
the optimal irrigation and nitrogen application levels. Consequently, we cannot directly
compare the predicted optimal intervals with the verification data. However, the trend
observed in the predicted maximum leaf area index agreed well with the trend observed
in the measured maximum leaf area index. For yield prediction, we utilized experimental
data by Qin et al. [80] during the period from 2011 to 2013 as the validation samples and
obtained that the optimal yield was 6677 kg/hm2. To validate this prediction, we consulted
the wheat yield data of Henan Province and Xinxiang City during the same period in the
Statistical Yearbook as shown in Table 4. The comparison results indicated that the predicted
optimal yield closely corresponded to the actual yield data.

Table 4. Wheat yield in Henan and Xinxiang from 2011 to 2013.

Year Wheat Yield in Henan Province
(kg/hm2)

Wheat Yield in Xinxiang City
(kg/hm2)

2013 6012 6791

2012 5950 6757

2011 5867 6703

The water and fertilizer requirements of the crop growth were varying during the dif-
ferent growth stages. Liu et al. [81] conducted a study on the effects of irrigation frequency
and timing on wheat yield and key agronomic traits and found that the jointing stage and
heading stage are critical periods for water demand in wheat. Similarly, Wu et al. [82]
arrived at the same conclusion in their investigation of irrigation and nitrogen fertilization
effects on spring wheat growth and yield in the Hexi Oasis of Gansu Province. However,
the total amount of irrigation and fertilization throughout the entire growth period ignored
the effects of water and fertilizer requirements on the crop growth in the different growth
stages. Thus, the proposed regression models for the maximum leaf area index, the maxi-
mum dry matter mass and yield of winter wheat had inherent limitations. To enhance the
prediction accuracy, future research should consider the irrigation and nitrogen application
of each growth stage as the core variables in the training set.

Numerous factors influence the growth process and yield of winter wheat. In addi-
tion to irrigation and nitrogen application, the other critical factors include the planting
density [83], plant physiological indicators [43], meteorological conditions [84] and sowing
date [85]. Based on the Gaussian process regression transmission model and an unmanned
aerial vehicle (UAV) hyperspectral image, Rabi [86] evaluated the growth status and yields
of wheat by the leaf area index and canopy chlorophyll content. In this study, the machine
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learning prediction model used the irrigation and fertilization amount, soil quality indica-
tors and planting density as variables to predict the growth indicators and yield. In future
research, it would be beneficial to incorporate these factors as variables in the model.

5. Conclusions

The machine learning prediction method based on Gaussian process regression, linear
regression, regression tree and the support vector machine model was used to predict
the growth index and yield. The data of the LAImax, the Dmax and yield of wheat were
trained and learned to construct the regression prediction model. In order to simplify the
prediction, the water and fertilizer coupling functions were proposed. The main conclusions
are as follows:

(1) From the accuracy of the prediction model, the Gaussian process regression model
had the best prediction effects on the LAImax, the Dmax and yield. The determination
coefficient R2 was greater than 0.9. The support vector machine regression model and the
regression tree model had similar performances and better predicted results. The linear
regression model had the worst learning effects for the training data.

(2) By selecting the two indicators of irrigation and nitrogen application, the values of
the LAImax, the Dmax and yield of wheat simulated by the Gaussian regression model were
predicted and compared with the measured values. The average relative errors between
the predicted and measured values were 7.6%, 12.6% and 8.9%, respectively. The model
can be used to guide farmland management, such as irrigation and nitrogen application,
and provide the irrigation and fertilization schemes.

(3) Based on the machine learning models, a new idea for obtaining the water and
fertilizer coupling functions was proposed for predicting the optimal LAImax, Dmax
and yield of winter wheat, exploring the optimal irrigation and fertilization interval and
formulating a reasonable irrigation and fertilization scheme.
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