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Abstract: The uses of precision oliviculture have increased in recent years to improve the quality
and quantity of extra virgin olive oil. In traditional and intensive systems, biennial pruning is often
applied to balance and maintain plant vigour, aiming at reducing management costs. This study
presents the results of a three-year experiment with the objective of quantifying the effects of biennial
pruning on the vegetative vigour of olive trees, investigating the geometric and spectral characteristics
of each canopy determined with multispectral images acquired by UAV. The experiment was carried
out in an olive orchard located in western Sicily (Italy). Multispectral images were acquired using a
UAV in automatic flight configuration at an altitude of 70 m a.g.l. The segmentation and classification
of the images were performed using Object-Based Image Analysis (OBIA) based on the Digital
Elevation Model (DEM) and orthomosaic to extract the canopy area, height, volume and NDVI for
each plant. This study showed that the technology and image analysis processing used were able to
estimate vigour parameters at different canopy densities, compared to field measurements (R2 = 0.97
and 0.96 for canopy area and volume, respectively). Furthermore, it was possible to determine
the amount of removed biomass for each plant and vigour level. Biennial pruning decreased the
number of plants initially classified as LV (low-vigour) and maintained a vegetative balance for MV
(medium-vigour) and HV (high-vigour) plants, reducing the spatial variability in the field.

Keywords: precision farming; UAV; olive pruning

1. Introduction

Agricultural techniques applied to olive orchards aim at increasing production ef-
ficiency, minimising the use of inputs and increasing environmental sustainability [1,2].
Olive cultivation is mainly concentrated in Europe, within the Mediterranean region, par-
ticularly in countries such as Spain, Italy and Greece, which together account for 61% of
the global cultivated area [3]. In these cultivation regions, there is significant soil and
climatic diversity, resulting in different growing conditions [4,5]. This variability in plots
of various sizes causes waste of the applied resources. Therefore, it is important to imple-
ment agronomic techniques based on variable distribution systems according to effective
requirements. For this purpose, variability evaluation can be carried out continuously
and/or periodically using different technologies and sensors. In precision oliviculture,
some studies have shown that the variability observed in olive production was closely
linked to soil variability, in particular to the concentration of organic matter, nitrogen and
electrical conductivity [6,7]. Scientific research has focused on the study of biophysical [8,9]
and spectral parameters [10,11] to achieve a better understanding of the physiological state,
vegetative vigour and productivity of plants. The main biophysical canopy parameters
currently observed include canopy height (CH), canopy area (CA), canopy volume (CV)
and, in some cases, canopy perimeter and penetrability [8,12,13]. Spectral parameters,
on the other hand, are based on the study of plant reflectance in specific regions of the
electromagnetic spectrum using various methodologies, including the determination of
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vegetation indices (VIs) [14,15]. The most commonly used vegetation index in olive or-
chards is the Normalised Different Vegetation Index (NDVI) [16], because it provides a good
indication of biomass, nutritional, productive and physiological conditions by exploiting
crop reflectance in the red and near-infrared bands [17]. Unmanned Aerial Vehicles (UAVs)
are remote platforms capable of housing sensors that can detect vegetative and spectral
conditions. They are widely used in olive groves for their versatility in different orographic
conditions and ability to provide high-resolution images over extensive areas.

Once variability has been detected within an olive orchard, variable-rate agronomic
techniques can be applied; these include irrigation [18], fertilisation [19], pest and disease
control [20] and pruning [21].

Pruning is essential for balancing vegetative and reproductive activity, resource allo-
cation and modifying canopy architecture [22]. In traditional and intensive olive groves,
pruning cannot be standardised and represents a major management cost [23]. There-
fore, mapping a plot’s vigour conditions would make it possible to predict vegetative
development based on plant vigour and the intensity of pruning applied.

Most drone surveys of olive trees aim to quantify the amount of biomass removed
according to different pruning levels, irrigation regimes or varieties [21,24,25]. Jiménez-
Brenes et al. (2017) [21] determined the projected canopy area, height and volume of trees
after three different types of pruning, observing that trees subjected to more aggressive
pruning showed greater vegetative development. Pruning management typically involves
characterising tree architecture through manual measurements in order to estimate canopy
volume using empirical equations [26,27]. The combined use of UAV images, 3D models
and Object-Based Image Analysis (OBIA) provides new opportunities for monitoring and
applying differentiated management of olive orchard pruning [12,28] in order to regularise
growth activity.

This study presents the results of a three-year experiment with the objective of evalu-
ating the potential of multispectral images acquired by UAV to determine the geometric
characteristics and spectral behaviour of olive tree canopies in order to quantify the effects
of biennial pruning on the vegetative vigour of the plants.

2. Materials and Methods
2.1. Study Area

The experimental area is located in Segesta (province of Trapani, Italy; Figure 1);
according to the Koppen–Geiger classification, the climate is Mediterranean with summer
heat [29].

The soil belongs to the sand–clay–silt grain size class, according to the United States
Department of Agriculture (USDA) classification. The plot surface is 5860 m2, with flat
orography. The 20-year-old olive orchard (cv. Cerasuola) is cultivated using an intensive
system, with planting distances 5.0 × 5.5 m; the direction of the rows is NE–SW at an angle
of 60◦ to the north. The experiment was carried out from 2021 to 2023. In this period, the
olive grove was managed according to the ordinary practices of the area, including biennial
pruning. In 2021 and 2022, the trees grew for two vegetative cycles. At the end of the
second year, intensive pruning was carried out (December 2022, BBCH00 vegetative stasis)
in order to assess its effect on changes in vigour, which was evaluated in 2023.
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with a five-band multispectral camera was used (Phantom4 Multispectral drone by DJI, 
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The surveys were planned by setting the same flight parameters. Specifically, flights 
were performed at an altitude of 70 m a.g.l., achieving a Ground Surface Distance (GSD) 

Figure 1. Experimental site location in the Mediterranean area and on the island of Sicily, Italy. Mean
olive oil production calculated using FAOSTAT (2022) [3] data from 2018 to 2022.

2.2. UAV Flights

A total of five flights were conducted between 2021 and 2023 (Figure 2). Three flights,
named F1, F2 and F5, were carried out at phenological stage BBCH 74 (pit hardening),
while the remaining two, named F3 and F4, were conducted in the winter period at stage
BBCH00 before and after pruning, respectively. A UAV (quadricopter) platform equipped
with a five-band multispectral camera was used (Phantom4 Multispectral drone by DJI,
Shenzhen, China). The centres of blue, green, red, rededge and nir bands were, respectively,
450 nm, 560 nm, 650 nm, 730 nm and 840 nm; more details are reported in Roma et al.
(2023) [30].
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Figure 2. Schedule of flights based on the BBCH stage of olive trees during this experimental study.

The surveys were planned by setting the same flight parameters. Specifically, flights
were performed at an altitude of 70 m a.g.l., achieving a Ground Surface Distance (GSD) of
3.6 cm/pixel. Lateral and frontal overlaps between frames were 70%, while the gimbal tilt
was set to acquire nadiral images. Before each flight, seven Ground Control Points (GCPs)
and the reflectance calibration panel were placed to perform geometric and radiometric
calibration, respectively. The GCPs were placed uniformly at the edges and centre of the
plot on a solid platform (Figure 3) and georeferenced using a GNSS instrument, specifically
the Stonex S7-G (Milan, Italy) with an external antenna and RTK correction, as described in
previous studies [31].
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Figure 3. Ground Control Points (GCP) in the experimental plot.

The flights were carried out at midday in excellent weather conditions with high light
intensity and low wind speed. Using the automatic flight configuration, the predetermined
routes and waypoints were followed in RTK mode, while the set acquisition mode was
hover capture.

2.3. Image Processing

The multispectral and RGB images, once acquired, were processed to obtain a multi-
band orthomosaic and a Digital Elevation Model (DEM). These products were obtained
through a photogrammetric process performed using the Agisoft Metashape Professional
software (version 1.7.3), as shown in the workflow below (Figure 4). The individual steps
of the photogrammetric process are described in Catania et al. (2023) [12].
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The orthomosaic, DEM and Digital Terrain Model (DTM) were processed by applying
different Object-Based Image Analysis (OBIA) methodologies in order to obtain the single
canopy of each plant and its vegetative and spectral information. The DTM was obtained
through a geostatistical interpolation process of soil points. OBIA was performed using
the open-source software QGIS ver. 3.16.6 Hannover [32] and the Saga and Grass tools
implemented within. Image classification and segmentation was obtained [33] using the
VI map [11] and Crop Surface Model (CSM) [12]. NDVI was the vegetation index used to
determine the spectral variability and carry out the classification process, while CSM was
used to obtain the geometric information. The CSM was determined from the DEM and
DTM, as described in Catania et al. (2023) [12].

Image classification was performed using the K-means unsupervised algorithm, avail-
able in the SAGA image analysis library. In order to identify individual canopies, only
the pixels corresponding to the canopies were extracted at the end of the segmentation
process. Subsequently, vectorisation of this image was applied to transform the canopy
layer into a vector format. Then, the following geometric and spectral information was
determined using the Zonal Statistics tool [11,12]: canopy area (CA, m2), canopy volume
(CV, m3), canopy height (CH, m) and median NDVI (Figure 5).
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Figure 5. Schematic representation of data processing input and output.

The information extracted was used to determine the vigour class of each plant.
The vigour classification was performed using the “Attribute based clustering” plugin
available in the QGIS software version 3.16.6 Hannover (QGIS.org, 2022). It allows different
algorithms to be run. In this study, an unsupervised classification approach with three
classes was used. The chosen number of classes was confirmed by performing the Elbow
Method. In this way, the three classes identified high- (HV), medium- (MV) and low-vigour
(LV) conditions based on their vegetative and spectral characteristics (Figure 6).
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Classification was performed using information from the year 2021 for each plant.
This allowed for the identification of CA and NDVI thresholds to separate vigour levels.
They were used to determine the vigour conditions in subsequent years and to assess their
potential changes.

2.4. Sampling and Surveys

Within the three vigour classes identified using the methodology described in Section 2.3,
17 plants were selected out of 211 in the entire plot to evaluate the accuracy of the mul-
tispectral image estimation. The chosen plants were the closest to the centroid of each
group’s classification. Specifically, 6 plants were selected for high and low vigour, and
5 were selected for medium vigour.

The selected plants were identified in the field using a GNSS device (S7-G by Stonex,
Milan, Italy). Their vegetative characteristics were surveyed directly in the field in flights
F3 and F4, measuring canopy height (CH) and the length of the two main axes that allowed
for the calculation of CA and CV for each plant (Figure 7).
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Simultaneously with the F4 flight, the weight of biomass removed by pruning was
quantified in the selected plants using a dynamometric balance (Zetalab HCB 20K10,
Padova, Italy).

2.5. Statistical Analysis

The data collected from sampling and via the remote sensing platform were pro-
cessed and statistically analysed. A descriptive statistical analysis was first performed to
determine mean, maximum, minimum, standard deviation and coefficients of variation.
The coefficient of determination (R2) and the Root Mean Square Error (RMSE) were used
to verify the estimation accuracy between the processed data and the field surveys. An
analysis of variance (ANOVA) and Tukey’s multiple comparison test were performed. All
statistical procedures were performed using RStudio (RStudio Team, 2020) [34].

3. Results

In this experiment, the geometric conditions were expressed as CH, CA and CV. The
spatial variability of these characteristics was obtained by processing high-resolution UAV
images with high precision. In particular, the best results were obtained for CA estimation
(Figure 8), showing low RMSE and high coefficients of determination, as also observed
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in other studies [35,36]. Also, CV showed a very good correlation between the predicted
values (estimated by UAV) and those observed in the field (Figure 8c,d).
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Figure 8. Comparison between the observed and predicted values of canopy area (CA, m2) before (a)
and after (b) pruning, canopy volume (CV, m3) before (c) and after (d) pruning and canopy height
(CH, m) before (e) and after (f) pruning. The red line is the line interpolating the data. Green and
yellow triangles represent the values obtained during the pre and post-pruning operation respectively
for each plant.

Pruning was intensively performed on the plant structure, leading to a strong reduc-
tion in vegetation (Figure 9). CA showed an average reduction of 31%, with an average
area decreasing from 15.62 m2 to 10.75 m2 due to pruning. This percentage was different
in the three vigour levels, varying between 37% and 22% in HV and LV, respectively. The
pruning operation also influenced CV, causing an average 39% reduction considering all
the plants of the plot.
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CH is often used to quantify plant vigour; however, depending on the olive training
system, it can be very variable. Unlike CA and CV, CH showed a greater reduction among
high-vigour than low-vigour plants, with an average decrease from 3.59 m to 2.93 m.
Specifically, the CH of the three vigour levels averaged at 4.25 m, 3.57 m and 3.10 m before
pruning; after the operation, they decreased to 3.05 m, 2.91 m and 2.71 m for HV, MV and
LV, respectively.

The low-vigour group showed a 41% reduction in CV, while the medium- and high-
vigour groups showed reductions of 34% and 47%, respectively (Figure 10a). In fact, the
amount of biomass removed was statistically different between the three vigour levels,
as confirmed by ANOVA (pvalue > 0.001). Furthermore, an exponential correlation was
observed between the percentage reductions in CA and CV compared to the geometric pre-
pruning conditions (Figure 10b), underlining the close dependence of the two parameters.
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The behaviour of the 17 selected plants is in line with that observed in the whole
plot. In fact, good correlations were found between plant volume before and after pruning
(R2 = 0.76 ***; Figure 11a). Furthermore, positive correlations were found between the
difference in volume and the weight of the biomass removed (R2 = 0.65 ***, Figure 11b).
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The weight of the removed biomass was not proportional to the volume of the plants.
In fact, the calculated pruning density (kg m−3) was different among the vigour classes
(Figure 12), as confirmed by the ANOVA test (pvalue < 0.001).
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A reduction in NDVI values was observed across the three vigour levels, especially
in areas where biomass removal was more pronounced due to pruning. The results of
the ANOVA and Tukey tests performed on all the plants revealed variations in vegetative
vigour and spectral conditions attributable to pruning (Table 1). It was noted that plants
before pruning exhibited statistically significant differences in all parameters among the
three vigour levels. After pruning, NDVI did not show statistically significant differences
between MV and HV, while there were statistically significant differences between HV
and LV.
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Table 1. Results of ANOVA and Tukey’s test performed among the three vigour levels before and
after pruning in terms of NDVI, CA and CV values (pvalue = 0.001). Letters ‘a’, ‘b’, and ‘c’ indicate
statistically significant differences among the three groups HV, MV and LV.

Before After

Mean ± sd Range Mean ± sd Range

NDVI HV 0.84 ± 0.02 a 0.73–0.91 0.73 ± 0.04 a 0.59–0.81
MV 0.81 ± 0.01 b 0.75–0.83 0.74 ± 0.03 a 0.62–0.81
LV 0.78 ± 0.02 c 0.72–0.82 0.71 ± 0.04 b 0.64–0.79

CA HV 18.43 ± 2.3 a 15.6–23.3 10.97 ± 2.7 a 4.2–19.2
[m2] MV 13.74 ± 1.0 b 11.7–15.5 9.4 ± 1.8 ab 4.9–13.1

LV 9.53 ± 2.3 c 3.6–12 6.62 ± 1.9 b 2.5–9.7

CV HV 54.10 ± 7.8 a 54.1–72.3 26.38 ± 8.1 a 10.0–34.9
[m3] MV 38.3 ± 4.1 b 30.6–45.1 21.10 ± 6.0 ab 7.7–30.2

LV 23.94 ± 7.1 c 12.0–31.1 15.55 ± 6.0 b 5.1–27.9

The results show that pruning led to an overall reduction in vegetation. It is crucial to
understand the variations in vigour levels from 2021 to 2023. Figure 13 shows the vigour
levels of each plant observed between 2021 and 2023 during the same phenological stage
(BBCH 74). There is a notable decrease in the number of plants with low vigour between
2021 and 2022. Meanwhile, between 2022 and 2023, following pruning, the number of
plants at each vigour level remained constant.
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Figure 13. Distribution of all plants in the three levels of vigour over the three-year experimental
period, evaluated at the BBCH74 phenological stage.

During the first year, the vigour reduction was almost zero, while 36% of plants
showed an increase in vigour. Between the second and third year, despite pruning, during
the 2023 growing season, the plants responded with intense vegetative growth, which
allowed them to maintain the percentage distribution of vigour levels from the previous
year. Overall, from July 2021 to July 2023, there was an increase in the number of HV plants
and a decrease in LV plants, while the percentage of MV plants remained around 45%
(Figure 14).
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Figure 14. Vigour levels percentage distribution observed over the three years (HV, MV, LV). Internal
pie charts show percentage changes between one level of vigour and the others.

The ANOVA and Tukey’s test performed with a pvalue of 0.001 (Table 2) showed
statistically significant differences in NDVI values between the first and third year of the
experiment in the high and low vigour classes, while MV plants between the first and third
years, on the other hand, did not show differences. Concerning the geometric conditions of
vegetation, CA values for LV plants showed statistically significant differences across all the
years, with higher values observed in the third year. In contrast, MV and HV plant groups
in the second year of growth showed an increase in CA, while between the beginning
and end of the two-year cycle (i.e., between 2021 and 2023), there were no statistically
significant differences.

Table 2. Results of ANOVA and Tukey’s test among the three years for NDVI and CA for each vigour
level (p = 0.01). Letters ‘a’, ‘b’, and ‘c’ indicate statistically significant differences among the three
groups HV, MV and LV.

HV MV LV

NDVI mean ± sd Range mean ± sd Range mean ± sd Range
2021 0.63 ± 0.02 b 0.62–0.64 0.60 ± 0.03 b 0.59–0.61 0.58 ± 0.03 c 0.57–0.59
2022 0.67 ± 0.03 a 0.66–0.68 0.65 ± 0.03 a 0.64–0.65 0.63 ± 0.04 a 0.62–0.64
2023 0.61 ± 0.03 c 0.60–0.62 0.61 ± 0.03 b 0.60–0.61 0.61 ± 0.03 b 0.60–0.62

CA mean ± sd Range mean ± sd Range mean ± sd Range
2021 12.88 ± 2.1 b 12.0–13.8 9.97 ± 0.86 b 9.6–10.4 6.49 ± 1.60 c 5.6–7.4
2022 14.92 ± 3.1 a 14.0–15.8 12.28 ± 1.95 a 11.9–12.7 9.04 ± 2.63 b 8.1–9.9
2023 12.39 ± 2.8 b 11.5–13.2 11.72 ± 0.48 ab 9.7–13.7 11.70 ± 3.53 a 10.8–12.6

4. Discussion

The vegetative activity of trees can be modified through the agronomic management
of various factors based on the vigour conditions of an olive orchard [37]. Therefore, the
accurate assessment of the actual growth conditions is an essential element of appropriate,
site-specific management. The assessment of olive trees’ geometric and spectral charac-
teristics by processing images captured through multispectral cameras mounted on UAV
platforms is feasible. This technology enables the high-resolution monitoring of plant
health at various levels of detail and is an efficient alternative to laborious and expensive
manual ground measurements [38]. In this experiment, NDVI showed a robust correlation
with plant vigour, making it a valuable tool for assessing vegetation status. Consequently,
any agronomic practice capable of modifying plant vigour can significantly impact the
spectral response.

This study allowed us to evaluate the monitoring capability of an UAV with a multi-
spectral camera in an intensive olive orchard subjected to biennial pruning. The correlation
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between the canopy area and volume measurements of individual plants and those esti-
mated by UAV revealed the effectiveness of this technology, which is consistent with the
findings of other studies [12,35,38]. Indeed, the correlations between the estimated and
observed volumes were lower compared to those observed between the estimated and
observed CAs (Figure 8). This discrepancy is caused by the inaccuracy of field measure-
ments, especially in determining the average height of the canopy [26], as observed in other
studies [12,38].

Furthermore, we observed that a smaller canopy size resulted in greater difficulty
in estimating the geometric parameters. Therefore, larger and denser canopies allow for
greater estimation accuracy with new survey technologies, including both algorithms and
processing. This result emphasises the need for further studies to improve 3D model
reconstructions in sparse canopies.

Biennial pruning can be the key to maintaining the vegetative and productive balance
of plants [21]. Therefore, it should be calibrated based on the observed variability and
requirements. In general, since, on average, more than 30% of the biomass was removed,
the intervention carried out for the purposes of this experiment can be defined as intensive,
as defined in Jiménez-Brenes et al. (2017) [21]. During the experiment, it was observed
that plants underwent pruning based on their vigour level. Indeed, post- and pre-pruning
volumes were correlated (Figure 11a) and the removed biomass statistically differed among
the three vigour levels (Figure 10a). Furthermore, the removed biomass had a statistically
different density depending on the vigour level. This effect can be explained by the different
percentage ratio between leaves, the previous year’s branches and older branches. In fact,
pruning density had statistically different values between high- and low-vigour trees
(Figure 12), with higher values for high-vigour plants. This result, observed by Albarracín
et al. (2017) [39] as well, highlights that the biomass removed from HV plants consisted of
a higher percentage of old branches compared to leaves.

In general, pruning led to a reduction in the heterogeneity of the field, standardising
the canopies in terms of their geometric (CA and CV) and consequently their spectral
characteristics (Table 1). Therefore, biennial pruning was able to even out the geometric
characteristics of the plants, allowing for the formation of vegetative and productive
branches in the next year. This effect is favoured by the high plasticity of olive trees in
responding to different levels of pruning, as observed by Rodrigues et al. (2018) [40],
although the best response would be obtained with moderate intensities in the year after
the intervention. If the plants were pruned with different intensities, and thus not according
to their level of vigour, there would be an increase in spatial variability, making annual
pruning necessary, as also observed by Farinelli et al. (2010) and Jiménez-Brenes et al.
(2017) [21,41].

The 3D multi-temporal analysis of the olive grove models revealed the effect of pruning
intensity on the annual growth of and spectral changes in the canopies. The years 2021 and
2022 allowed the plants to grow, resulting in an increase in size at all vigour levels. This
allowed only 11.2% of the plants to be classified as low-vigour, according to the thresholds
determined in the previous year. The increase in NDVI and CA values underlines the
close association between these two parameters and plant growth [11,28]. Between the
second and third year, pruning maintained 88.6% of the plants in the medium- to high-
vigour levels. In general, comparing the starting and final conditions, HV and MV plants
seem to have preserved their canopy surface and NDVI characteristics. In contrast, LV
plants, having been pruned less and left to vegetate, showed an increase in CA and NDVI
compared to the starting values. Overall, the experiment resulted in greater uniformity
among the plants in the plot.

This study can be used as a starting point to investigate other aspects of olive culti-
vation. Indeed, a reduction in volume has a considerable impact on light penetration and
light interception by the canopy [42]. These effects could be used to improve the actual
estimation of irrigation requirements [18,43] or implement new growth models [22,44] or
cultivar-specific models [24]. In addition, the amount of biomass can affect the efficiency
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of mechanical harvesting [23,45] and allow for using fewer pesticides for disease and pest
control [46,47], especially if combined with greater precision in the estimation of canopy
volumes [35]. The accurate quantification of the amounts of biomass that can be extracted
from pruning can be useful for estimating energy production and may aid in the design of
biomass energy plants [25,48]. Furthermore, for biomass left in the field, an accurate esti-
mate of organic matter input can be obtained. This estimation allows for more appropriate
choices on fertiliser distribution [19,49] and for a reduction in environmental impact [50].

5. Conclusions

This study was carried out over three years to obtain a complete overview of the
possible implications of biennial pruning. UAVs, multispectral cameras, and OBIA tech-
niques proved capable of assessing the effects of biennial pruning on canopy growth and
the maintenance of plant vigour conditions. Intensive and progressively volume-based
biennial pruning reduced the percentage of low-vigour plants, while maintaining stability
and reducing differences between medium- and high-vigour plants. Pruning can therefore
be differentiated based on vigour maps to maintain the correct vegetative and productive
balance of plants. In addition, the experiment showed that remote sensing images and
the OBIA approach were able to estimate biophysical parameters with high accuracy even
in conditions of sparsely or dense canopies, significantly reducing costs and increasing
estimation accuracy compared to manual assessments.

The results obtained come from the first study carried out in Sicily and can be im-
plemented in other olive-growing areas with different cultivars, planting systems and
pedoclimatic conditions.
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